scheduling_ddpm.py 7.62 KB
Newer Older
1
# Copyright 2022 UC Berkely Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from typing import Union
Patrick von Platen's avatar
Patrick von Platen committed
19

Patrick von Platen's avatar
Patrick von Platen committed
20
import numpy as np
21
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
22

23
from ..configuration_utils import ConfigMixin, register_to_config
24
25
26
27
28
from .scheduling_utils import SchedulerMixin


def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
Patrick von Platen's avatar
Patrick von Platen committed
29
30
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
31

Patrick von Platen's avatar
Patrick von Platen committed
32
33
34
    :param num_diffusion_timesteps: the number of betas to produce. :param alpha_bar: a lambda that takes an argument t
    from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that part of the diffusion process.
35
36
37
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
38

39
40
41
42
43
44
45
46
47
    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas, dtype=np.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
48
49


Patrick von Platen's avatar
Patrick von Platen committed
50
class DDPMScheduler(SchedulerMixin, ConfigMixin):
51
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
52
53
    def __init__(
        self,
Nathan Lambert's avatar
Nathan Lambert committed
54
        num_train_timesteps=1000,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
55
56
57
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
58
        trained_betas=None,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
59
        variance_type="fixed_small",
Patrick von Platen's avatar
Patrick von Platen committed
60
        clip_sample=True,
61
        tensor_format="pt",
Patrick von Platen's avatar
improve  
Patrick von Platen committed
62
63
    ):

64
65
66
        if trained_betas is not None:
            self.betas = np.asarray(trained_betas)
        elif beta_schedule == "linear":
Nathan Lambert's avatar
Nathan Lambert committed
67
            self.betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32)
anton-l's avatar
anton-l committed
68
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
69
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
70
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
71
72
73
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
74
75
76
77
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
        self.one = np.array(1.0)

78
79
80
81
82
        # setable values
        self.num_inference_steps = None
        self.timesteps = np.arange(0, num_train_timesteps)[::-1].copy()

        self.tensor_format = tensor_format
Patrick von Platen's avatar
Patrick von Platen committed
83
84
        self.set_format(tensor_format=tensor_format)

85
86
        self.variance_type = variance_type

87
    def set_timesteps(self, num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
88
        num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
89
90
91
92
93
94
        self.num_inference_steps = num_inference_steps
        self.timesteps = np.arange(
            0, self.config.num_train_timesteps, self.config.num_train_timesteps // self.num_inference_steps
        )[::-1].copy()
        self.set_format(tensor_format=self.tensor_format)

95
    def _get_variance(self, t, predicted_variance=None, variance_type=None):
96
97
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
98

Kashif Rasul's avatar
Kashif Rasul committed
99
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
100
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
101
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
102
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]
Patrick von Platen's avatar
Patrick von Platen committed
103

104
105
106
        if variance_type is None:
            variance_type = self.config.variance_type

Patrick von Platen's avatar
Patrick von Platen committed
107
        # hacks - were probs added for training stability
108
        if variance_type == "fixed_small":
Patrick von Platen's avatar
Patrick von Platen committed
109
            variance = self.clip(variance, min_value=1e-20)
110
        # for rl-diffuser https://arxiv.org/abs/2205.09991
111
        elif variance_type == "fixed_small_log":
112
            variance = self.log(self.clip(variance, min_value=1e-20))
113
        elif variance_type == "fixed_large":
114
            variance = self.betas[t]
115
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
116
            # Glide max_log
117
            variance = self.log(self.betas[t])
118
119
120
121
122
123
124
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = variance
            max_log = self.betas[t]
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
125
126
127

        return variance

128
129
    def step(
        self,
Patrick von Platen's avatar
Patrick von Platen committed
130
        model_output: Union[torch.FloatTensor, np.ndarray],
131
132
133
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
        predict_epsilon=True,
Patrick von Platen's avatar
Patrick von Platen committed
134
        generator=None,
135
136
    ):
        t = timestep
137
138
139
140
141
142
        
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
143
        # 1. compute alphas, betas
144
145
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
146
147
148
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

149
        # 2. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
150
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
151
        if predict_epsilon:
Patrick von Platen's avatar
Patrick von Platen committed
152
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
153
        else:
Patrick von Platen's avatar
Patrick von Platen committed
154
            pred_original_sample = model_output
Patrick von Platen's avatar
Patrick von Platen committed
155
156

        # 3. Clip "predicted x_0"
157
        if self.config.clip_sample:
158
            pred_original_sample = self.clip(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
159

160
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Patrick von Platen's avatar
Patrick von Platen committed
161
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
162
163
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
        current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
164

165
        # 5. Compute predicted previous sample µ_t
Patrick von Platen's avatar
Patrick von Platen committed
166
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
167
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
168

Patrick von Platen's avatar
Patrick von Platen committed
169
170
171
        # 6. Add noise
        variance = 0
        if t > 0:
172
            noise = self.randn_like(model_output, generator=generator)
173
            variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * noise
Patrick von Platen's avatar
Patrick von Platen committed
174
175
176

        pred_prev_sample = pred_prev_sample + variance

177
        return {"prev_sample": pred_prev_sample}
Patrick von Platen's avatar
Patrick von Platen committed
178

179
    def add_noise(self, original_samples, noise, timesteps):
anton-l's avatar
anton-l committed
180
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
181
        sqrt_alpha_prod = self.match_shape(sqrt_alpha_prod, original_samples)
anton-l's avatar
anton-l committed
182
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
183
184
185
        sqrt_one_minus_alpha_prod = self.match_shape(sqrt_one_minus_alpha_prod, original_samples)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
186
        return noisy_samples
anton-l's avatar
anton-l committed
187

Patrick von Platen's avatar
improve  
Patrick von Platen committed
188
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
189
        return self.config.num_train_timesteps