scheduling_heun_discrete.py 23.7 KB
Newer Older
1
# Copyright 2024 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
16
from typing import List, Optional, Tuple, Union
17
18
19
20
21

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
Kashif Rasul's avatar
Kashif Rasul committed
22
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
23
24


25
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
26
27
28
29
30
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
31
32
33
34
35
36
37
38
39
40
41
42
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
43
44
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
45
46
47
48

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
49
    if alpha_transform_type == "cosine":
50

YiYi Xu's avatar
YiYi Xu committed
51
52
53
54
55
56
57
58
59
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
60
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
61
62
63
64
65

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
66
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
67
68
69
    return torch.tensor(betas, dtype=torch.float32)


70
71
class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
72
    Scheduler with Heun steps for discrete beta schedules.
73

74
75
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
76
77

    Args:
78
79
80
81
82
83
84
85
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
86
            `linear` or `scaled_linear`.
87
88
89
90
91
92
93
94
95
96
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        clip_sample (`bool`, defaults to `True`):
            Clip the predicted sample for numerical stability.
        clip_sample_range (`float`, defaults to 1.0):
            The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
97
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
98
99
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
100
101
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
102
103
104
105
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
106
            An offset added to the inference steps, as required by some model families.
107
108
    """

Kashif Rasul's avatar
Kashif Rasul committed
109
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
110
111
112
113
114
115
116
117
118
    order = 2

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.00085,  # sensible defaults
        beta_end: float = 0.012,
        beta_schedule: str = "linear",
119
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
120
        prediction_type: str = "epsilon",
121
        use_karras_sigmas: Optional[bool] = False,
122
        use_exponential_sigmas: Optional[bool] = False,
YiYi Xu's avatar
YiYi Xu committed
123
124
        clip_sample: Optional[bool] = False,
        clip_sample_range: float = 1.0,
125
126
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
127
    ):
128
129
        if sum([self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError("Only one of `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used.")
130
        if trained_betas is not None:
131
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
132
133
134
135
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
136
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
137
138
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
YiYi Xu's avatar
YiYi Xu committed
139
140
141
            self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="cosine")
        elif beta_schedule == "exp":
            self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="exp")
142
        else:
143
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
144
145
146
147
148
149

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

        #  set all values
        self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
150
        self.use_karras_sigmas = use_karras_sigmas
151

YiYi Xu's avatar
YiYi Xu committed
152
        self._step_index = None
153
        self._begin_index = None
154
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
YiYi Xu's avatar
YiYi Xu committed
155

156
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
157
158
159
160
161
162
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        indices = (schedule_timesteps == timestep).nonzero()

YiYi Xu's avatar
YiYi Xu committed
163
164
165
166
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
167
        pos = 1 if len(indices) > 1 else 0
YiYi Xu's avatar
YiYi Xu committed
168

169
170
        return indices[pos].item()

171
172
173
174
175
176
177
178
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        if self.config.timestep_spacing in ["linspace", "trailing"]:
            return self.sigmas.max()

        return (self.sigmas.max() ** 2 + 1) ** 0.5

YiYi Xu's avatar
YiYi Xu committed
179
180
181
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
182
        The index counter for current timestep. It will increase 1 after each scheduler step.
YiYi Xu's avatar
YiYi Xu committed
183
184
185
        """
        return self._step_index

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

204
205
    def scale_model_input(
        self,
206
207
208
        sample: torch.Tensor,
        timestep: Union[float, torch.Tensor],
    ) -> torch.Tensor:
209
210
211
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.
212
213

        Args:
214
            sample (`torch.Tensor`):
215
216
217
218
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

219
        Returns:
220
            `torch.Tensor`:
221
                A scaled input sample.
222
        """
YiYi Xu's avatar
YiYi Xu committed
223
224
        if self.step_index is None:
            self._init_step_index(timestep)
225

YiYi Xu's avatar
YiYi Xu committed
226
        sigma = self.sigmas[self.step_index]
227
228
229
230
231
        sample = sample / ((sigma**2 + 1) ** 0.5)
        return sample

    def set_timesteps(
        self,
232
        num_inference_steps: Optional[int] = None,
233
234
        device: Union[str, torch.device] = None,
        num_train_timesteps: Optional[int] = None,
235
        timesteps: Optional[List[int]] = None,
236
237
    ):
        """
238
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
239
240
241

        Args:
            num_inference_steps (`int`):
242
243
244
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
245
246
247
248
249
250
251
            num_train_timesteps (`int`, *optional*):
                The number of diffusion steps used when training the model. If `None`, the default
                `num_train_timesteps` attribute is used.
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, timesteps will be
                generated based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps`
                must be `None`, and `timestep_spacing` attribute will be ignored.
252
        """
253
254
255
256
257
258
        if num_inference_steps is None and timesteps is None:
            raise ValueError("Must pass exactly one of `num_inference_steps` or `custom_timesteps`.")
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
        if timesteps is not None and self.config.use_karras_sigmas:
            raise ValueError("Cannot use `timesteps` with `config.use_karras_sigmas = True`")
259
260
        if timesteps is not None and self.config.use_exponential_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
261
262

        num_inference_steps = num_inference_steps or len(timesteps)
263
264
265
        self.num_inference_steps = num_inference_steps
        num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps

266
267
        if timesteps is not None:
            timesteps = np.array(timesteps, dtype=np.float32)
268
        else:
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
            # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
            if self.config.timestep_spacing == "linspace":
                timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[::-1].copy()
            elif self.config.timestep_spacing == "leading":
                step_ratio = num_train_timesteps // self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
                timesteps += self.config.steps_offset
            elif self.config.timestep_spacing == "trailing":
                step_ratio = num_train_timesteps / self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (np.arange(num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
                timesteps -= 1
            else:
                raise ValueError(
                    f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
                )
288
289

        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
290
        log_sigmas = np.log(sigmas)
291
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
292

YiYi Xu's avatar
YiYi Xu committed
293
        if self.config.use_karras_sigmas:
294
295
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
296
297
298
        elif self.config.use_exponential_sigmas:
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
299

300
301
302
303
304
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
        sigmas = torch.from_numpy(sigmas).to(device=device)
        self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]])

        timesteps = torch.from_numpy(timesteps)
305
        timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
306

YiYi Xu's avatar
YiYi Xu committed
307
        self.timesteps = timesteps.to(device=device)
308
309
310
311
312

        # empty dt and derivative
        self.prev_derivative = None
        self.dt = None

YiYi Xu's avatar
YiYi Xu committed
313
        self._step_index = None
314
        self._begin_index = None
315
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
YiYi Xu's avatar
YiYi Xu committed
316

317
318
319
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
320
        log_sigma = np.log(np.maximum(sigma, 1e-10))
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
342
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
343
344
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
359
360
361
362
363
364
365
366

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
        """Constructs an exponential noise schedule."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

        sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
        return sigmas

389
390
391
392
    @property
    def state_in_first_order(self):
        return self.dt is None

YiYi Xu's avatar
YiYi Xu committed
393
394
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
    def _init_step_index(self, timestep):
395
396
397
398
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
YiYi Xu's avatar
YiYi Xu committed
399
        else:
400
            self._step_index = self._begin_index
YiYi Xu's avatar
YiYi Xu committed
401

402
403
    def step(
        self,
404
405
406
        model_output: Union[torch.Tensor, np.ndarray],
        timestep: Union[float, torch.Tensor],
        sample: Union[torch.Tensor, np.ndarray],
407
408
409
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
410
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
411
        process from the learned model outputs (most often the predicted noise).
412
413

        Args:
414
            model_output (`torch.Tensor`):
415
416
417
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
418
            sample (`torch.Tensor`):
419
420
421
422
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.

423
424
        Returns:
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
425
426
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
427
        """
YiYi Xu's avatar
YiYi Xu committed
428
429
        if self.step_index is None:
            self._init_step_index(timestep)
430
431

        if self.state_in_first_order:
YiYi Xu's avatar
YiYi Xu committed
432
433
            sigma = self.sigmas[self.step_index]
            sigma_next = self.sigmas[self.step_index + 1]
434
435
        else:
            # 2nd order / Heun's method
YiYi Xu's avatar
YiYi Xu committed
436
437
            sigma = self.sigmas[self.step_index - 1]
            sigma_next = self.sigmas[self.step_index]
438
439
440
441
442
443
444
445

        # currently only gamma=0 is supported. This usually works best anyways.
        # We can support gamma in the future but then need to scale the timestep before
        # passing it to the model which requires a change in API
        gamma = 0
        sigma_hat = sigma * (gamma + 1)  # Note: sigma_hat == sigma for now

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
446
        if self.config.prediction_type == "epsilon":
Suraj Patil's avatar
Suraj Patil committed
447
448
            sigma_input = sigma_hat if self.state_in_first_order else sigma_next
            pred_original_sample = sample - sigma_input * model_output
449
        elif self.config.prediction_type == "v_prediction":
Suraj Patil's avatar
Suraj Patil committed
450
451
452
453
            sigma_input = sigma_hat if self.state_in_first_order else sigma_next
            pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
                sample / (sigma_input**2 + 1)
            )
454
        elif self.config.prediction_type == "sample":
YiYi Xu's avatar
YiYi Xu committed
455
            pred_original_sample = model_output
456
457
458
459
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )
460

YiYi Xu's avatar
YiYi Xu committed
461
462
463
464
465
        if self.config.clip_sample:
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

466
        if self.state_in_first_order:
467
            # 2. Convert to an ODE derivative for 1st order
468
            derivative = (sample - pred_original_sample) / sigma_hat
469
            # 3. delta timestep
470
471
472
473
474
475
476
477
            dt = sigma_next - sigma_hat

            # store for 2nd order step
            self.prev_derivative = derivative
            self.dt = dt
            self.sample = sample
        else:
            # 2. 2nd order / Heun's method
Suraj Patil's avatar
Suraj Patil committed
478
            derivative = (sample - pred_original_sample) / sigma_next
479
480
            derivative = (self.prev_derivative + derivative) / 2

481
            # 3. take prev timestep & sample
482
483
484
485
486
487
488
489
490
491
492
            dt = self.dt
            sample = self.sample

            # free dt and derivative
            # Note, this puts the scheduler in "first order mode"
            self.prev_derivative = None
            self.dt = None
            self.sample = None

        prev_sample = sample + derivative * dt

YiYi Xu's avatar
YiYi Xu committed
493
494
495
        # upon completion increase step index by one
        self._step_index += 1

496
497
498
499
500
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

501
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
502
503
    def add_noise(
        self,
504
505
506
507
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        timesteps: torch.Tensor,
    ) -> torch.Tensor:
508
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
509
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
510
511
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
512
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
513
514
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
515
            schedule_timesteps = self.timesteps.to(original_samples.device)
516
517
            timesteps = timesteps.to(original_samples.device)

518
519
520
        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
521
522
523
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
524
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
525
            # add noise is called before first denoising step to create initial latent(img2img)
526
            step_indices = [self.begin_index] * timesteps.shape[0]
527

528
        sigma = sigmas[step_indices].flatten()
529
530
531
532
533
534
535
536
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps