README.md 262 KB
Newer Older
1
# Community Pipeline Examples
2

Patrick von Platen's avatar
Patrick von Platen committed
3
4
> **For more information about community pipelines, please have a look at [this issue](https://github.com/huggingface/diffusers/issues/841).**

5
6
7
8
9
**Community pipeline** examples consist pipelines that have been added by the community.
Please have a look at the following tables to get an overview of all community examples. Click on the **Code Example** to get a copy-and-paste ready code example that you can try out.
If a community pipeline doesn't work as expected, please open an issue and ping the author on it.

Please also check out our [Community Scripts](https://github.com/huggingface/diffusers/blob/main/examples/community/README_community_scripts.md) examples for tips and tricks that you can use with diffusers without having to run a community pipeline.
10

11
12
| Example                                                                                                                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Code Example                                                                              | Colab                                                                                                                                                                                                              |                                                        Author |
|:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:|
13
|Spatiotemporal Skip Guidance (STG)|[Spatiotemporal Skip Guidance for Enhanced Video Diffusion Sampling](https://arxiv.org/abs/2411.18664) (CVPR 2025) enhances video diffusion models by generating a weaker model through layer skipping and using it as guidance, improving fidelity in models like HunyuanVideo, LTXVideo, and Mochi.|[Spatiotemporal Skip Guidance](#spatiotemporal-skip-guidance)|-|[Junha Hyung](https://junhahyung.github.io/), [Kinam Kim](https://kinam0252.github.io/)|
14
|Adaptive Mask Inpainting|Adaptive Mask Inpainting algorithm from [Beyond the Contact: Discovering Comprehensive Affordance for 3D Objects from Pre-trained 2D Diffusion Models](https://github.com/snuvclab/coma) (ECCV '24, Oral) provides a way to insert human inside the scene image without altering the background, by inpainting with adapting mask.|[Adaptive Mask Inpainting](#adaptive-mask-inpainting)|-|[Hyeonwoo Kim](https://sshowbiz.xyz),[Sookwan Han](https://jellyheadandrew.github.io)|
15
|Flux with CFG|[Flux with CFG](https://github.com/ToTheBeginning/PuLID/blob/main/docs/pulid_for_flux.md) provides an implementation of using CFG in [Flux](https://blackforestlabs.ai/announcing-black-forest-labs/).|[Flux with CFG](#flux-with-cfg)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/flux_with_cfg.ipynb)|[Linoy Tsaban](https://github.com/linoytsaban), [Apolinário](https://github.com/apolinario), and [Sayak Paul](https://github.com/sayakpaul)|
16
|Differential Diffusion|[Differential Diffusion](https://github.com/exx8/differential-diffusion) modifies an image according to a text prompt, and according to a map that specifies the amount of change in each region.|[Differential Diffusion](#differential-diffusion)|[![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/exx8/differential-diffusion) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/exx8/differential-diffusion/blob/main/examples/SD2.ipynb)|[Eran Levin](https://github.com/exx8) and [Ohad Fried](https://www.ohadf.com/)|
haikmanukyan's avatar
haikmanukyan committed
17
| HD-Painter                                                                                                                            | [HD-Painter](https://github.com/Picsart-AI-Research/HD-Painter) enables prompt-faithfull and high resolution (up to 2k) image inpainting upon any diffusion-based image inpainting method.                                                                                                                                                                                                                                                                                                               | [HD-Painter](#hd-painter)                                                                 | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/PAIR/HD-Painter)                                                                              | [Manukyan Hayk](https://github.com/haikmanukyan) and [Sargsyan Andranik](https://github.com/AndranikSargsyan) |
18
| Marigold Monocular Depth Estimation                                                                                                   | A universal monocular depth estimator, utilizing Stable Diffusion, delivering sharp predictions in the wild. (See the [project page](https://marigoldmonodepth.github.io) and [full codebase](https://github.com/prs-eth/marigold) for more details.)                                                                                                                                                                                                                                                        | [Marigold Depth Estimation](#marigold-depth-estimation)                                   | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/toshas/marigold) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/12G8reD13DdpMie5ZQlaFNo2WCGeNUH-u?usp=sharing) | [Bingxin Ke](https://github.com/markkua) and [Anton Obukhov](https://github.com/toshas) |
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
19
20
| LLM-grounded Diffusion (LMD+)                                                                                                         | LMD greatly improves the prompt following ability of text-to-image generation models by introducing an LLM as a front-end prompt parser and layout planner. [Project page.](https://llm-grounded-diffusion.github.io/) [See our full codebase (also with diffusers).](https://github.com/TonyLianLong/LLM-groundedDiffusion)                                                                                                                                                                                                                                                                                                                                                                                                                                   | [LLM-grounded Diffusion (LMD+)](#llm-grounded-diffusion)                             | [Huggingface Demo](https://huggingface.co/spaces/longlian/llm-grounded-diffusion) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1SXzMSeAB-LJYISb2yrUOdypLz4OYWUKj) |                [Long (Tony) Lian](https://tonylian.com/) |
| CLIP Guided Stable Diffusion                                                                                                          | Doing CLIP guidance for text to image generation with Stable Diffusion                                                                                                                                                                                                                                                                                                                                                                                                                                   | [CLIP Guided Stable Diffusion](#clip-guided-stable-diffusion)                             | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/CLIP_Guided_Stable_diffusion_with_diffusers.ipynb) |                [Suraj Patil](https://github.com/patil-suraj/) |
21
| One Step U-Net (Dummy)                                                                                                                | Example showcasing of how to use Community Pipelines (see <https://github.com/huggingface/diffusers/issues/841>)                                                                                                                                                                                                                                                                                                                                                                                           | [One Step U-Net](#one-step-unet)                                                          | -                                                                                                                                                                                                                  |    [Patrick von Platen](https://github.com/patrickvonplaten/) |
22
| Stable Diffusion Interpolation                                                                                                        | Interpolate the latent space of Stable Diffusion between different prompts/seeds                                                                                                                                                                                                                                                                                                                                                                                                                         | [Stable Diffusion Interpolation](#stable-diffusion-interpolation)                         | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_interpolation.ipynb)                                                                                                                                                           |                       [Nate Raw](https://github.com/nateraw/) |
23
| Stable Diffusion Mega                                                                                                                 | **One** Stable Diffusion Pipeline with all functionalities of [Text2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py), [Image2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py) and [Inpainting](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py) | [Stable Diffusion Mega](#stable-diffusion-mega)                                           | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_mega.ipynb)                                                                                                                                                                             |    [Patrick von Platen](https://github.com/patrickvonplaten/) |
24
| Long Prompt Weighting Stable Diffusion                                                                                                | **One** Stable Diffusion Pipeline without tokens length limit, and support parsing weighting in prompt.                                                                                                                                                                                                                                                                                                                                                                                                  | [Long Prompt Weighting Stable Diffusion](#long-prompt-weighting-stable-diffusion)         | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/long_prompt_weighting_stable_diffusion.ipynb)                                                                                        |                           [SkyTNT](https://github.com/SkyTNT) |
25
| Speech to Image                                                                                                                       | Using automatic-speech-recognition to transcribe text and Stable Diffusion to generate images                                                                                                                                                                                                                                                                                                                                                                                                            | [Speech to Image](#speech-to-image)                                                       |[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/speech_to_image.ipynb)                                                                                                                                                                                                   |             [Mikail Duzenli](https://github.com/MikailINTech)
26
| Wild Card Stable Diffusion                                                                                                            | Stable Diffusion Pipeline that supports prompts that contain wildcard terms (indicated by surrounding double underscores), with values instantiated randomly from a corresponding txt file or a dictionary of possible values                                                                                                                                                                                                                                                                            | [Wildcard Stable Diffusion](#wildcard-stable-diffusion)                                   | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/wildcard_stable_diffusion.ipynb)                                                                                                                                                                                 |              [Shyam Sudhakaran](https://github.com/shyamsn97) |
27
| [Composable Stable Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) | Stable Diffusion Pipeline that supports prompts that contain "&#124;" in prompts (as an AND condition) and weights (separated by "&#124;" as well) to positively / negatively weight prompts.                                                                                                                                                                                                                                                                                                            | [Composable Stable Diffusion](#composable-stable-diffusion)                               | -                                                                                                                                                                                                                  |                      [Mark Rich](https://github.com/MarkRich) |
28
29
| Seed Resizing Stable Diffusion                                                                                                        | Stable Diffusion Pipeline that supports resizing an image and retaining the concepts of the 512 by 512 generation.                                                                                                                                                                                                                                                                                                                                                                                       | [Seed Resizing](#seed-resizing)                                                           | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/seed_resizing.ipynb)                                                                                                                                                                                                                  |                      [Mark Rich](https://github.com/MarkRich) |
| Imagic Stable Diffusion                                                                                                               | Stable Diffusion Pipeline that enables writing a text prompt to edit an existing image                                                                                                                                                                                                                                                                                                                                                                                                                   | [Imagic Stable Diffusion](#imagic-stable-diffusion)                                       | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/imagic_stable_diffusion.ipynb)                                                                                                                                                                                                  |                      [Mark Rich](https://github.com/MarkRich) |
30
| Multilingual Stable Diffusion                                                                                                         | Stable Diffusion Pipeline that supports prompts in 50 different languages.                                                                                                                                                                                                                                                                                                                                                                                                                               | [Multilingual Stable Diffusion](#multilingual-stable-diffusion-pipeline)                  | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/multilingual_stable_diffusion.ipynb)                                                                                                                                                                             |          [Juan Carlos Piñeros](https://github.com/juancopi81) |
31
| GlueGen Stable Diffusion                                                                                                         | Stable Diffusion Pipeline that supports prompts in different languages using GlueGen adapter.                                                                                                                                                                                                                                                                                                                                                                                                                               | [GlueGen Stable Diffusion](#gluegen-stable-diffusion-pipeline)                  | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/gluegen_stable_diffusion.ipynb)                                                                                                                                                                                                                  |          [Phạm Hồng Vinh](https://github.com/rootonchair) |
32
| Image to Image Inpainting Stable Diffusion                                                                                            | Stable Diffusion Pipeline that enables the overlaying of two images and subsequent inpainting                                                                                                                                                                                                                                                                                                                                                                                                            | [Image to Image Inpainting Stable Diffusion](#image-to-image-inpainting-stable-diffusion) | -                                                                                                                                                                                                                  |                    [Alex McKinney](https://github.com/vvvm23) |
33
| Text Based Inpainting Stable Diffusion                                                                                                | Stable Diffusion Inpainting Pipeline that enables passing a text prompt to generate the mask for inpainting                                                                                                                                                                                                                                                                                                                                                                                              | [Text Based Inpainting Stable Diffusion](#text-based-inpainting-stable-diffusion)     | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/text_based_inpainting_stable_dffusion.ipynb)                                                                                                                                                                                                    |                   [Dhruv Karan](https://github.com/unography) |
34
35
| Bit Diffusion                                                                                                                         | Diffusion on discrete data                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [Bit Diffusion](#bit-diffusion)                                                           | -  |                       [Stuti R.](https://github.com/kingstut) |
| K-Diffusion Stable Diffusion                                                                                                          | Run Stable Diffusion with any of [K-Diffusion's samplers](https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py)                                                                                                                                                                                                                                                                                                                                                                  | [Stable Diffusion with K Diffusion](#stable-diffusion-with-k-diffusion)                   | -  |    [Patrick von Platen](https://github.com/patrickvonplaten/) |
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
36
| Checkpoint Merger Pipeline                                                                                                            | Diffusion Pipeline that enables merging of saved model checkpoints                                                                                                                                                                                                                                                                                                                                                                                                                                       | [Checkpoint Merger Pipeline](#checkpoint-merger-pipeline)                                 | -                                                                                                                                                                                                                  | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
37
| Stable Diffusion v1.1-1.4 Comparison                                                                                                  | Run all 4 model checkpoints for Stable Diffusion and compare their results together                                                                                                                                                                                                                                                                                                                                                                                                                      | [Stable Diffusion Comparison](#stable-diffusion-comparisons)                              | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_comparison.ipynb) |        [Suvaditya Mukherjee](https://github.com/suvadityamuk) |
38
| MagicMix                                                                                                                              | Diffusion Pipeline for semantic mixing of an image and a text prompt                                                                                                                                                                                                                                                                                                                                                                                                                                     | [MagicMix](#magic-mix)                                                                    | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/magic_mix.ipynb) |                    [Partho Das](https://github.com/daspartho) |
39
40
| Stable UnCLIP                                                                                                                         | Diffusion Pipeline for combining prior model (generate clip image embedding from text, UnCLIPPipeline `"kakaobrain/karlo-v1-alpha"`) and decoder pipeline (decode clip image embedding to image, StableDiffusionImageVariationPipeline `"lambdalabs/sd-image-variations-diffusers"` ).                                                                                                                                                                                                                   | [Stable UnCLIP](#stable-unclip)                                                           | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_unclip.ipynb)  |                                [Ray Wang](https://wrong.wang) |
| UnCLIP Text Interpolation Pipeline                                                                                                    | Diffusion Pipeline that allows passing two prompts and produces images while interpolating between the text-embeddings of the two prompts                                                                                                                                                                                                                                                                                                                                                                | [UnCLIP Text Interpolation Pipeline](#unclip-text-interpolation-pipeline)                 | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/unclip_text_interpolation.ipynb)| [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
41
| UnCLIP Image Interpolation Pipeline                                                                                                   | Diffusion Pipeline that allows passing two images/image_embeddings and produces images while interpolating between their image-embeddings                                                                                                                                                                                                                                                                                                                                                                | [UnCLIP Image Interpolation Pipeline](#unclip-image-interpolation-pipeline)               | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/unclip_image_interpolation.ipynb)| [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
42
| DDIM Noise Comparative Analysis Pipeline                                                                                              | Investigating how the diffusion models learn visual concepts from each noise level (which is a contribution of [P2 weighting (CVPR 2022)](https://arxiv.org/abs/2204.00227))                                                                                                                                                                                                                                                                                                                             | [DDIM Noise Comparative Analysis Pipeline](#ddim-noise-comparative-analysis-pipeline)     | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/ddim_noise_comparative_analysis.ipynb)|              [Aengus (Duc-Anh)](https://github.com/aengusng8) |
43
| CLIP Guided Img2Img Stable Diffusion Pipeline                                                                                         | Doing CLIP guidance for image to image generation with Stable Diffusion                                                                                                                                                                                                                                                                                                                                                                                                                                  | [CLIP Guided Img2Img Stable Diffusion](#clip-guided-img2img-stable-diffusion)             | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/clip_guided_img2img_stable_diffusion.ipynb) |               [Nipun Jindal](https://github.com/nipunjindal/) |
44
| TensorRT Stable Diffusion Text to Image Pipeline                                                                                                    | Accelerates the Stable Diffusion Text2Image Pipeline using TensorRT                                                                                                                                                                                                                                                                                                                                                                                                                                      | [TensorRT Stable Diffusion Text to Image Pipeline](#tensorrt-text2image-stable-diffusion-pipeline)      | - |              [Asfiya Baig](https://github.com/asfiyab-nvidia) |
45
46
| EDICT Image Editing Pipeline                                                                                                          | Diffusion pipeline for text-guided image editing                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [EDICT Image Editing Pipeline](#edict-image-editing-pipeline)                             | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/edict_image_pipeline.ipynb) |                    [Joqsan Azocar](https://github.com/Joqsan) |
| Stable Diffusion RePaint                                                                                                              | Stable Diffusion pipeline using [RePaint](https://arxiv.org/abs/2201.09865) for inpainting.                                                                                                                                                                                                                                                                                                                                                                                                               | [Stable Diffusion RePaint](#stable-diffusion-repaint )|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_repaint.ipynb)|                  [Markus Pobitzer](https://github.com/Markus-Pobitzer) |
47
| TensorRT Stable Diffusion Image to Image Pipeline                                                                                                    | Accelerates the Stable Diffusion Image2Image Pipeline using TensorRT                                                                                                                                                                                                                                                                                                                                                                                                                                      | [TensorRT Stable Diffusion Image to Image Pipeline](#tensorrt-image2image-stable-diffusion-pipeline)      | - |              [Asfiya Baig](https://github.com/asfiyab-nvidia) |
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
48
| Stable Diffusion IPEX Pipeline | Accelerate Stable Diffusion inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [Stable Diffusion on IPEX](#stable-diffusion-on-ipex) | - | [Yingjie Han](https://github.com/yingjie-han/) |
49
| CLIP Guided Images Mixing Stable Diffusion Pipeline | Сombine images using usual diffusion models. | [CLIP Guided Images Mixing Using Stable Diffusion](#clip-guided-images-mixing-with-stable-diffusion) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/clip_guided_images_mixing_with_stable_diffusion.ipynb) | [Karachev Denis](https://github.com/TheDenk) |
50
| TensorRT Stable Diffusion Inpainting Pipeline                                                                                                    | Accelerates the Stable Diffusion Inpainting Pipeline using TensorRT                                                                                                                                                                                                                                                                                                                                                                                                                                      | [TensorRT Stable Diffusion Inpainting Pipeline](#tensorrt-inpainting-stable-diffusion-pipeline)      | - |              [Asfiya Baig](https://github.com/asfiyab-nvidia) |
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
51
|   IADB Pipeline                                                                                                    | Implementation of [Iterative α-(de)Blending: a Minimalist Deterministic Diffusion Model](https://arxiv.org/abs/2305.03486)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [IADB Pipeline](#iadb-pipeline)      | - |              [Thomas Chambon](https://github.com/tchambon)
52
|   Zero1to3 Pipeline                                                                                                    | Implementation of [Zero-1-to-3: Zero-shot One Image to 3D Object](https://arxiv.org/abs/2303.11328)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Zero1to3 Pipeline](#zero1to3-pipeline)      | - |              [Xin Kong](https://github.com/kxhit) |
53
| Stable Diffusion XL Long Weighted Prompt Pipeline | A pipeline support unlimited length of prompt and negative prompt, use A1111 style of prompt weighting | [Stable Diffusion XL Long Weighted Prompt Pipeline](#stable-diffusion-xl-long-weighted-prompt-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1LsqilswLR40XLLcp6XFOl5nKb_wOe26W?usp=sharing) | [Andrew Zhu](https://xhinker.medium.com/) |
54
55
56
| Stable Diffusion Mixture Tiling Pipeline SD 1.5 | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending | [Stable Diffusion Mixture Tiling Pipeline SD 1.5](#stable-diffusion-mixture-tiling-pipeline-sd-15) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/albarji/mixture-of-diffusers) | [Álvaro B Jiménez](https://github.com/albarji/) |
| Stable Diffusion Mixture Canvas Pipeline SD 1.5 | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending. Works by defining a list of Text2Image region objects that detail the region of influence of each diffuser. | [Stable Diffusion Mixture Canvas Pipeline SD 1.5](#stable-diffusion-mixture-canvas-pipeline-sd-15) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/albarji/mixture-of-diffusers) | [Álvaro B Jiménez](https://github.com/albarji/) |
| Stable Diffusion Mixture Tiling Pipeline SDXL | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending | [Stable Diffusion Mixture Tiling Pipeline SDXL](#stable-diffusion-mixture-tiling-pipeline-sdxl) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/elismasilva/mixture-of-diffusers-sdxl-tiling) | [Eliseu Silva](https://github.com/DEVAIEXP/) |
57
| Stable Diffusion MoD ControlNet Tile SR Pipeline SDXL | This is an advanced pipeline that leverages ControlNet Tile and Mixture-of-Diffusers techniques, integrating tile diffusion directly into the latent space denoising process. Designed to overcome the limitations of conventional pixel-space tile processing, this pipeline delivers Super Resolution (SR) upscaling for higher-quality images, reduced processing time, and greater adaptability. | [Stable Diffusion MoD ControlNet Tile SR Pipeline SDXL](#stable-diffusion-mod-controlnet-tile-sr-pipeline-sdxl) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/elismasilva/mod-control-tile-upscaler-sdxl) | [Eliseu Silva](https://github.com/DEVAIEXP/) |
58
| FABRIC - Stable Diffusion with feedback Pipeline | pipeline supports feedback from liked and disliked images | [Stable Diffusion Fabric Pipeline](#stable-diffusion-fabric-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_fabric.ipynb)| [Shauray Singh](https://shauray8.github.io/about_shauray/) |
Aryan V S's avatar
Aryan V S committed
59
| sketch inpaint - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion Pipeline](#stable-diffusion-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
60
| sketch inpaint xl - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion XL Pipeline](#stable-diffusion-xl-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
Aryan V S's avatar
Aryan V S committed
61
| prompt-to-prompt | change parts of a prompt and retain image structure (see [paper page](https://prompt-to-prompt.github.io/)) | [Prompt2Prompt Pipeline](#prompt2prompt-pipeline) | - | [Umer H. Adil](https://twitter.com/UmerHAdil) |
62
|   Latent Consistency Pipeline                                                                                                    | Implementation of [Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference](https://arxiv.org/abs/2310.04378)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Latent Consistency Pipeline](#latent-consistency-pipeline)      | - |              [Simian Luo](https://github.com/luosiallen) |
Logan's avatar
Logan committed
63
|   Latent Consistency Img2img Pipeline                                                                                                    | Img2img pipeline for Latent Consistency Models                                                                                                                                                                                                                                                                                                                                                                                                                                    | [Latent Consistency Img2Img Pipeline](#latent-consistency-img2img-pipeline)      | - |              [Logan Zoellner](https://github.com/nagolinc) |
64
|   Latent Consistency Interpolation Pipeline                                                                                                    | Interpolate the latent space of Latent Consistency Models with multiple prompts                                                                                                                                                                                                                                                                                                                                                                                                                                    | [Latent Consistency Interpolation Pipeline](#latent-consistency-interpolation-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1pK3NrLWJSiJsBynLns1K1-IDTW9zbPvl?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
65
| SDE Drag Pipeline                                                                                                                         | The pipeline supports drag editing of images using stochastic differential equations                                                                                                                                                                                                                                                                                                                                                                                                                | [SDE Drag Pipeline](#sde-drag-pipeline)                                                     | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/sde_drag.ipynb) | [NieShen](https://github.com/NieShenRuc) [Fengqi Zhu](https://github.com/Monohydroxides) |
66
|   Regional Prompting Pipeline                                                                                               | Assign multiple prompts for different regions                                                                                                                                                                                                                                                                                                                                                    |  [Regional Prompting Pipeline](#regional-prompting-pipeline) | - | [hako-mikan](https://github.com/hako-mikan) |
67
| LDM3D-sr (LDM3D upscaler)                                                                                                             | Upscale low resolution RGB and depth inputs to high resolution                                                                                                                                                                                                                                                                                                                                                                                                                              | [StableDiffusionUpscaleLDM3D Pipeline](https://github.com/estelleafl/diffusers/tree/ldm3d_upscaler_community/examples/community#stablediffusionupscaleldm3d-pipeline)                                                                             | -                                                                                                                                                                                                             |                                                        [Estelle Aflalo](https://github.com/estelleafl) |
68
| AnimateDiff ControlNet Pipeline                                                                                                    | Combines AnimateDiff with precise motion control using ControlNets                                                                                                                                                                                                                                                                                                                                                                                                                                    | [AnimateDiff ControlNet Pipeline](#animatediff-controlnet-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1SKboYeGjEQmQPWoFC0aLYpBlYdHXkvAu?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) and [Edoardo Botta](https://github.com/EdoardoBotta) |
69
70
|   DemoFusion Pipeline                                                                                                    | Implementation of [DemoFusion: Democratising High-Resolution Image Generation With No $$$](https://arxiv.org/abs/2311.16973)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [DemoFusion Pipeline](#demofusion)      | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/demo_fusion.ipynb) |              [Ruoyi Du](https://github.com/RuoyiDu) |
|   Instaflow Pipeline                                                                                                    | Implementation of [InstaFlow! One-Step Stable Diffusion with Rectified Flow](https://arxiv.org/abs/2309.06380)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Instaflow Pipeline](#instaflow-pipeline)      | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/insta_flow.ipynb) |              [Ayush Mangal](https://github.com/ayushtues) |
71
|   Null-Text Inversion Pipeline  | Implement [Null-text Inversion for Editing Real Images using Guided Diffusion Models](https://arxiv.org/abs/2211.09794) as a pipeline.                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Null-Text Inversion](https://github.com/google/prompt-to-prompt/)      | - |              [Junsheng Luan](https://github.com/Junsheng121) |
72
|   Rerender A Video Pipeline                                                                                                    | Implementation of [[SIGGRAPH Asia 2023] Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation](https://arxiv.org/abs/2306.07954)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Rerender A Video Pipeline](#rerender-a-video)      | - |              [Yifan Zhou](https://github.com/SingleZombie) |
73
| StyleAligned Pipeline                                                                                                    | Implementation of [Style Aligned Image Generation via Shared Attention](https://arxiv.org/abs/2312.02133)                                                                                                                                                                                                                                                                                                                                                                                                                                   | [StyleAligned Pipeline](#stylealigned-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://drive.google.com/file/d/15X2E0jFPTajUIjS0FzX50OaHsCbP2lQ0/view?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
74
| AnimateDiff Image-To-Video Pipeline | Experimental Image-To-Video support for AnimateDiff (open to improvements) | [AnimateDiff Image To Video Pipeline](#animatediff-image-to-video-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://drive.google.com/file/d/1TvzCDPHhfFtdcJZe4RLloAwyoLKuttWK/view?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
75
|   IP Adapter FaceID Stable Diffusion                                                                                               | Stable Diffusion Pipeline that supports IP Adapter Face ID                                                                                                                                                                                                                                                                                                                                                  |  [IP Adapter Face ID](#ip-adapter-face-id) |[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/ip_adapter_face_id.ipynb)| [Fabio Rigano](https://github.com/fabiorigano) |
Aryan V S's avatar
Aryan V S committed
76
|   InstantID Pipeline                                                                                               | Stable Diffusion XL Pipeline that supports InstantID                                                                                                                                                                                                                                                                                                                                                 |  [InstantID Pipeline](#instantid-pipeline) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/InstantX/InstantID) | [Haofan Wang](https://github.com/haofanwang) |
77
|   UFOGen Scheduler                                                                                               | Scheduler for UFOGen Model (compatible with Stable Diffusion pipelines)                                                                                                                                                                                                                                                                                                                                                 |  [UFOGen Scheduler](#ufogen-scheduler) | - | [dg845](https://github.com/dg845) |
78
| Stable Diffusion XL IPEX Pipeline | Accelerate Stable Diffusion XL inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [Stable Diffusion XL on IPEX](#stable-diffusion-xl-on-ipex) | - | [Dan Li](https://github.com/ustcuna/) |
79
| Stable Diffusion BoxDiff Pipeline | Training-free controlled generation with bounding boxes using [BoxDiff](https://github.com/showlab/BoxDiff) | [Stable Diffusion BoxDiff Pipeline](#stable-diffusion-boxdiff) | - | [Jingyang Zhang](https://github.com/zjysteven/) |
80
|   FRESCO V2V Pipeline                                                                                                    | Implementation of [[CVPR 2024] FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation](https://arxiv.org/abs/2403.12962)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [FRESCO V2V Pipeline](#fresco)      | - |              [Yifan Zhou](https://github.com/SingleZombie) |
81
| AnimateDiff IPEX Pipeline | Accelerate AnimateDiff inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [AnimateDiff on IPEX](#animatediff-on-ipex) | - | [Dan Li](https://github.com/ustcuna/) |
82
PIXART-α Controlnet pipeline | Implementation of the controlnet model for pixart alpha and its diffusers pipeline | [PIXART-α Controlnet pipeline](#pixart-α-controlnet-pipeline) | - | [Raul Ciotescu](https://github.com/raulc0399/) |
83
84
| HunyuanDiT Differential Diffusion Pipeline | Applies [Differential Diffusion](https://github.com/exx8/differential-diffusion) to [HunyuanDiT](https://github.com/huggingface/diffusers/pull/8240). | [HunyuanDiT with Differential Diffusion](#hunyuandit-with-differential-diffusion) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing) | [Monjoy Choudhury](https://github.com/MnCSSJ4x) |
| [🪆Matryoshka Diffusion Models](https://huggingface.co/papers/2310.15111) | A diffusion process that denoises inputs at multiple resolutions jointly and uses a NestedUNet architecture where features and parameters for small scale inputs are nested within those of the large scales. See [original codebase](https://github.com/apple/ml-mdm). | [🪆Matryoshka Diffusion Models](#matryoshka-diffusion-models) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/pcuenq/mdm) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/tolgacangoz/1f54875fc7aeaabcf284ebde64820966/matryoshka_hf.ipynb) | [M. Tolga Cangöz](https://github.com/tolgacangoz) |
85
| Stable Diffusion XL Attentive Eraser Pipeline |[[AAAI2025 Oral] Attentive Eraser](https://github.com/Anonym0u3/AttentiveEraser) is a novel tuning-free method that enhances object removal capabilities in pre-trained diffusion models.|[Stable Diffusion XL Attentive Eraser Pipeline](#stable-diffusion-xl-attentive-eraser-pipeline)|-|[Wenhao Sun](https://github.com/Anonym0u3) and [Benlei Cui](https://github.com/Benny079)|
86
| Perturbed-Attention Guidance |StableDiffusionPAGPipeline is a modification of StableDiffusionPipeline to support Perturbed-Attention Guidance (PAG).|[Perturbed-Attention Guidance](#perturbed-attention-guidance)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/perturbed_attention_guidance.ipynb)|[Hyoungwon Cho](https://github.com/HyoungwonCho)|
87
| CogVideoX DDIM Inversion Pipeline | Implementation of DDIM inversion and guided attention-based editing denoising process on CogVideoX. | [CogVideoX DDIM Inversion Pipeline](#cogvideox-ddim-inversion-pipeline) | - | [LittleNyima](https://github.com/LittleNyima) |
88

89
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
Aryan V S's avatar
Aryan V S committed
90

91
```py
92
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", custom_pipeline="filename_in_the_community_folder")
93
94
```

Patrick von Platen's avatar
Patrick von Platen committed
95
96
## Example usages

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
### Spatiotemporal Skip Guidance

**Junha Hyung\*, Kinam Kim\*, Susung Hong, Min-Jung Kim, Jaegul Choo**

**KAIST AI, University of Washington**

[*Spatiotemporal Skip Guidance (STG) for Enhanced Video Diffusion Sampling*](https://arxiv.org/abs/2411.18664) (CVPR 2025) is a simple training-free sampling guidance method for enhancing transformer-based video diffusion models. STG employs an implicit weak model via self-perturbation, avoiding the need for external models or additional training. By selectively skipping spatiotemporal layers, STG produces an aligned, degraded version of the original model to boost sample quality without compromising diversity or dynamic degree.

Following is the example video of STG applied to Mochi.


https://github.com/user-attachments/assets/148adb59-da61-4c50-9dfa-425dcb5c23b3

More examples and information can be found on the [GitHub repository](https://github.com/junhahyung/STGuidance) and the [Project website](https://junhahyung.github.io/STGuidance/).

#### Usage example
```python
import torch
from pipeline_stg_mochi import MochiSTGPipeline
from diffusers.utils import export_to_video

# Load the pipeline
pipe = MochiSTGPipeline.from_pretrained("genmo/mochi-1-preview", variant="bf16", torch_dtype=torch.bfloat16)

# Enable memory savings
pipe = pipe.to("cuda")

#--------Option--------#
prompt = "A close-up of a beautiful woman's face with colored powder exploding around her, creating an abstract splash of vibrant hues, realistic style."
stg_applied_layers_idx = [34]
stg_mode = "STG"
stg_scale = 1.0 # 0.0 for CFG
#----------------------#

# Generate video frames
frames = pipe(
    prompt, 
    height=480,
    width=480,
    num_frames=81,
    stg_applied_layers_idx=stg_applied_layers_idx,
    stg_scale=stg_scale,
    generator = torch.Generator().manual_seed(42),
    do_rescaling=do_rescaling,
).frames[0]

export_to_video(frames, "output.mp4", fps=30)
```

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
### Adaptive Mask Inpainting

**Hyeonwoo Kim\*, Sookwan Han\*, Patrick Kwon, Hanbyul Joo**

**Seoul National University, Naver Webtoon**

Adaptive Mask Inpainting, presented in the ECCV'24 oral paper [*Beyond the Contact: Discovering Comprehensive Affordance for 3D Objects from Pre-trained 2D Diffusion Models*](https://snuvclab.github.io/coma), is an algorithm designed to insert humans into scene images without altering the background. Traditional inpainting methods often fail to preserve object geometry and details within the masked region, leading to false affordances. Adaptive Mask Inpainting addresses this issue by progressively specifying the inpainting region over diffusion timesteps, ensuring that the inserted human integrates seamlessly with the existing scene.

Here is the demonstration of Adaptive Mask Inpainting:

<video controls>
  <source src="https://snuvclab.github.io/coma/static/videos/adaptive_mask_inpainting_vis.mp4" type="video/mp4">
  Your browser does not support the video tag.
</video>

![teaser-img](https://snuvclab.github.io/coma/static/images/example_result_adaptive_mask_inpainting.png)


You can find additional information about Adaptive Mask Inpainting in the [paper](https://arxiv.org/pdf/2401.12978) or in the [project website](https://snuvclab.github.io/coma).

#### Usage example
First, clone the diffusers github repository, and run the following command to set environment.
```Shell
git clone https://github.com/huggingface/diffusers.git
cd diffusers

conda create --name ami python=3.9 -y
conda activate ami

conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge -y
python -m pip install detectron2==0.6 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu113/torch1.10/index.html
pip install easydict
pip install diffusers==0.20.2 accelerate safetensors transformers
pip install setuptools==59.5.0
pip install opencv-python
pip install numpy==1.24.1
```
Then, run the below code under 'diffusers' directory.
```python
import numpy as np
import torch
from PIL import Image

from diffusers import DDIMScheduler
from diffusers import DiffusionPipeline
from diffusers.utils import load_image

from examples.community.adaptive_mask_inpainting import download_file, AdaptiveMaskInpaintPipeline, AMI_INSTALL_MESSAGE

print(AMI_INSTALL_MESSAGE)

from easydict import EasyDict



if __name__ == "__main__":    
    """
    Download Necessary Files
    """
    download_file(
        url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/model_final_edd263.pkl?download=true",
        output_file = "model_final_edd263.pkl",
        exist_ok=True,
    )
    download_file(
        url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/pointrend_rcnn_R_50_FPN_3x_coco.yaml?download=true",
        output_file = "pointrend_rcnn_R_50_FPN_3x_coco.yaml",
        exist_ok=True,
    )
    download_file(
        url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/input_img.png?download=true",
        output_file = "input_img.png",
        exist_ok=True,
    )
    download_file(
        url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/input_mask.png?download=true",
        output_file = "input_mask.png",
        exist_ok=True,
    )
    download_file(
        url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/Base-PointRend-RCNN-FPN.yaml?download=true",
        output_file = "Base-PointRend-RCNN-FPN.yaml",
        exist_ok=True,
    )
    download_file(
        url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/Base-RCNN-FPN.yaml?download=true",
        output_file = "Base-RCNN-FPN.yaml",
        exist_ok=True,
    )
    
    """ 
    Prepare Adaptive Mask Inpainting Pipeline
    """
    # device
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    num_steps = 50
    
    # Scheduler
    scheduler = DDIMScheduler(
        beta_start=0.00085, 
        beta_end=0.012, 
        beta_schedule="scaled_linear", 
        clip_sample=False, 
        set_alpha_to_one=False
    )
    scheduler.set_timesteps(num_inference_steps=num_steps)

    ## load models as pipelines
    pipeline = AdaptiveMaskInpaintPipeline.from_pretrained(
        "Uminosachi/realisticVisionV51_v51VAE-inpainting", 
        scheduler=scheduler, 
        torch_dtype=torch.float16, 
        requires_safety_checker=False
    ).to(device)

    ## disable safety checker
    enable_safety_checker = False
    if not enable_safety_checker:
        pipeline.safety_checker = None
    
    """ 
    Run Adaptive Mask Inpainting 
    """
    default_mask_image = Image.open("./input_mask.png").convert("L")
    init_image = Image.open("./input_img.png").convert("RGB")
    
    
    seed = 59
    generator = torch.Generator(device=device)
    generator.manual_seed(seed)
    
    image = pipeline(
        prompt="a man sitting on a couch",
        negative_prompt="worst quality, normal quality, low quality, bad anatomy, artifacts, blurry, cropped, watermark, greyscale, nsfw",
        image=init_image,
        default_mask_image=default_mask_image,
        guidance_scale=11.0,
        strength=0.98,
        use_adaptive_mask=True,
        generator=generator,
        enforce_full_mask_ratio=0.0,
        visualization_save_dir="./ECCV2024_adaptive_mask_inpainting_demo", # DON'T CHANGE THIS!!!
        human_detection_thres=0.015,
    ).images[0]

    
    image.save(f'final_img.png')
```
#### [Troubleshooting]

If you run into an error `cannot import name 'cached_download' from 'huggingface_hub'` (issue [1851](https://github.com/easydiffusion/easydiffusion/issues/1851)), remove `cached_download` from the import line in the file `diffusers/utils/dynamic_modules_utils.py`. 

For example, change the import line from `.../env/lib/python3.8/site-packages/diffusers/utils/dynamic_modules_utils.py`.


301
302
### Flux with CFG

303
Know more about Flux [here](https://blackforestlabs.ai/announcing-black-forest-labs/). Since Flux doesn't use CFG, this implementation provides one, inspired by the [PuLID Flux adaptation](https://github.com/ToTheBeginning/PuLID/blob/main/docs/pulid_for_flux.md).
304
305
306
307
308

Example usage:

```py
from diffusers import DiffusionPipeline
309
import torch
310

311
312
313
314
315
model_name = "black-forest-labs/FLUX.1-dev"
prompt = "a watercolor painting of a unicorn"
negative_prompt = "pink"

# Load the diffusion pipeline
316
pipeline = DiffusionPipeline.from_pretrained(
317
    model_name,
318
    torch_dtype=torch.bfloat16,
319
320
321
322
    custom_pipeline="pipeline_flux_with_cfg"
)
pipeline.enable_model_cpu_offload()

323
# Generate the image
324
img = pipeline(
325
326
327
328
    prompt=prompt,
    negative_prompt=negative_prompt,
    true_cfg=1.5,
    guidance_scale=3.5,
329
330
    generator=torch.manual_seed(0)
).images[0]
331
332

# Save the generated image
333
img.save("cfg_flux.png")
334
print("Image generated and saved successfully.")
335
336
```

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
### Differential Diffusion

**Eran Levin, Ohad Fried**

**Tel Aviv University, Reichman University**

Diffusion models have revolutionized image generation and editing, producing state-of-the-art results in conditioned and unconditioned image synthesis. While current techniques enable user control over the degree of change in an image edit, the controllability is limited to global changes over an entire edited region. This paper introduces a novel framework that enables customization of the amount of change per pixel or per image region. Our framework can be integrated into any existing diffusion model, enhancing it with this capability. Such granular control on the quantity of change opens up a diverse array of new editing capabilities, such as control of the extent to which individual objects are modified, or the ability to introduce gradual spatial changes. Furthermore, we showcase the framework's effectiveness in soft-inpainting---the completion of portions of an image while subtly adjusting the surrounding areas to ensure seamless integration. Additionally, we introduce a new tool for exploring the effects of different change quantities. Our framework operates solely during inference, requiring no model training or fine-tuning. We demonstrate our method with the current open state-of-the-art models, and validate it via both quantitative and qualitative comparisons, and a user study.

![teaser-img](https://github.com/exx8/differential-diffusion/raw/main/assets/teaser.png)

You can find additional information about Differential Diffusion in the [paper](https://differential-diffusion.github.io/paper.pdf) or in the [project website](https://differential-diffusion.github.io/).

#### Usage example

```python
import torch
from torchvision import transforms

from diffusers import DPMSolverMultistepScheduler
from diffusers.utils import load_image
from examples.community.pipeline_stable_diffusion_xl_differential_img2img import (
    StableDiffusionXLDifferentialImg2ImgPipeline,
)


pipeline = StableDiffusionXLDifferentialImg2ImgPipeline.from_pretrained(
    "SG161222/RealVisXL_V4.0", torch_dtype=torch.float16, variant="fp16"
).to("cuda")
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, use_karras_sigmas=True)


def preprocess_image(image):
    image = image.convert("RGB")
    image = transforms.CenterCrop((image.size[1] // 64 * 64, image.size[0] // 64 * 64))(image)
    image = transforms.ToTensor()(image)
    image = image * 2 - 1
    image = image.unsqueeze(0).to("cuda")
    return image


def preprocess_map(map):
    map = map.convert("L")
    map = transforms.CenterCrop((map.size[1] // 64 * 64, map.size[0] // 64 * 64))(map)
    map = transforms.ToTensor()(map)
    map = map.to("cuda")
    return map


image = preprocess_image(
    load_image(
        "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true"
    )
)

mask = preprocess_map(
    load_image(
        "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true"
    )
)

prompt = "a green pear"
negative_prompt = "blurry"

image = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    guidance_scale=7.5,
    num_inference_steps=25,
    original_image=image,
    image=image,
    strength=1.0,
    map=mask,
).images[0]

image.save("result.png")
```

haikmanukyan's avatar
haikmanukyan committed
414
415
416
417
418
419
420
421
422
423
424
425
426
### HD-Painter

Implementation of [HD-Painter: High-Resolution and Prompt-Faithful Text-Guided Image Inpainting with Diffusion Models](https://arxiv.org/abs/2312.14091).

![teaser-img](https://raw.githubusercontent.com/Picsart-AI-Research/HD-Painter/main/__assets__/github/teaser.jpg)

The abstract from the paper is:

Recent progress in text-guided image inpainting, based on the unprecedented success of text-to-image diffusion models, has led to exceptionally realistic and visually plausible results.
However, there is still significant potential for improvement in current text-to-image inpainting models, particularly in better aligning the inpainted area with user prompts and performing high-resolution inpainting.
Therefore, in this paper we introduce _HD-Painter_, a completely **training-free** approach that **accurately follows to prompts** and coherently **scales to high-resolution** image inpainting.
To this end, we design the _Prompt-Aware Introverted Attention (PAIntA)_ layer enhancing self-attention scores by prompt information and resulting in better text alignment generations.
To further improve the prompt coherence we introduce the _Reweighting Attention Score Guidance (RASG)_ mechanism seamlessly integrating a post-hoc sampling strategy into general form of DDIM to prevent out-of-distribution latent shifts.
427
428
Moreover, HD-Painter allows extension to larger scales by introducing a specialized super-resolution technique customized for inpainting, enabling the completion of missing regions in images of up to 2K resolution.
Our experiments demonstrate that HD-Painter surpasses existing state-of-the-art approaches qualitatively and quantitatively, achieving an impressive generation accuracy improvement of **61.4** vs **51.9**.
haikmanukyan's avatar
haikmanukyan committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
We will make the codes publicly available.

You can find additional information about Text2Video-Zero in the [paper](https://arxiv.org/abs/2312.14091) or the [original codebase](https://github.com/Picsart-AI-Research/HD-Painter).

#### Usage example

```python
import torch
from diffusers import DiffusionPipeline, DDIMScheduler
from diffusers.utils import load_image, make_image_grid

pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-inpainting",
    custom_pipeline="hd_painter"
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)

prompt = "wooden boat"
init_image = load_image("https://raw.githubusercontent.com/Picsart-AI-Research/HD-Painter/main/__assets__/samples/images/2.jpg")
mask_image = load_image("https://raw.githubusercontent.com/Picsart-AI-Research/HD-Painter/main/__assets__/samples/masks/2.png")

450
image = pipe(prompt, init_image, mask_image, use_rasg=True, use_painta=True, generator=torch.manual_seed(12345)).images[0]
haikmanukyan's avatar
haikmanukyan committed
451
452
453
454

make_image_grid([init_image, mask_image, image], rows=1, cols=3)
```

455
456
457
458
459
460
461
462
463
464
### Marigold Depth Estimation

Marigold is a universal monocular depth estimator that delivers accurate and sharp predictions in the wild. Based on Stable Diffusion, it is trained exclusively with synthetic depth data and excels in zero-shot adaptation to real-world imagery. This pipeline is an official implementation of the inference process. More details can be found on our [project page](https://marigoldmonodepth.github.io) and [full codebase](https://github.com/prs-eth/marigold) (also implemented with diffusers).

![Marigold Teaser](https://marigoldmonodepth.github.io/images/teaser_collage_compressed.jpg)

This depth estimation pipeline processes a single input image through multiple diffusion denoising stages to estimate depth maps. These maps are subsequently merged to produce the final output. Below is an example code snippet, including optional arguments:

```python
import numpy as np
465
import torch
466
467
468
469
from PIL import Image
from diffusers import DiffusionPipeline
from diffusers.utils import load_image

470
# Original DDIM version (higher quality)
471
pipe = DiffusionPipeline.from_pretrained(
472
    "prs-eth/marigold-v1-0",
473
474
    custom_pipeline="marigold_depth_estimation"
    # torch_dtype=torch.float16,                # (optional) Run with half-precision (16-bit float).
475
476
477
478
479
    # variant="fp16",                           # (optional) Use with `torch_dtype=torch.float16`, to directly load fp16 checkpoint
)

# (New) LCM version (faster speed)
pipe = DiffusionPipeline.from_pretrained(
480
    "prs-eth/marigold-depth-lcm-v1-0",
481
482
483
    custom_pipeline="marigold_depth_estimation"
    # torch_dtype=torch.float16,                # (optional) Run with half-precision (16-bit float).
    # variant="fp16",                           # (optional) Use with `torch_dtype=torch.float16`, to directly load fp16 checkpoint
484
485
486
487
488
489
490
491
)

pipe.to("cuda")

img_path_or_url = "https://share.phys.ethz.ch/~pf/bingkedata/marigold/pipeline_example.jpg"
image: Image.Image = load_image(img_path_or_url)

pipeline_output = pipe(
492
493
    image,                    # Input image.
    # ----- recommended setting for DDIM version -----
494
495
    # denoising_steps=10,     # (optional) Number of denoising steps of each inference pass. Default: 10.
    # ensemble_size=10,       # (optional) Number of inference passes in the ensemble. Default: 10.
496
    # ------------------------------------------------
497

498
499
500
501
    # ----- recommended setting for LCM version ------
    # denoising_steps=4,
    # ensemble_size=5,
    # -------------------------------------------------
502

503
504
505
    # processing_res=768,     # (optional) Maximum resolution of processing. If set to 0: will not resize at all. Defaults to 768.
    # match_input_res=True,   # (optional) Resize depth prediction to match input resolution.
    # batch_size=0,           # (optional) Inference batch size, no bigger than `num_ensemble`. If set to 0, the script will automatically decide the proper batch size. Defaults to 0.
506
    # seed=2024,              # (optional) Random seed can be set to ensure additional reproducibility. Default: None (unseeded). Note: forcing --batch_size 1 helps to increase reproducibility. To ensure full reproducibility, deterministic mode needs to be used.
507
    # color_map="Spectral",   # (optional) Colormap used to colorize the depth map. Defaults to "Spectral". Set to `None` to skip colormap generation.
508
509
510
511
512
513
514
515
516
517
518
519
520
521
    # show_progress_bar=True, # (optional) If true, will show progress bars of the inference progress.
)

depth: np.ndarray = pipeline_output.depth_np                    # Predicted depth map
depth_colored: Image.Image = pipeline_output.depth_colored      # Colorized prediction

# Save as uint16 PNG
depth_uint16 = (depth * 65535.0).astype(np.uint16)
Image.fromarray(depth_uint16).save("./depth_map.png", mode="I;16")

# Save colorized depth map
depth_colored.save("./depth_colored.png")
```

522
523
524
525
526
527
528
529
530
531
532
533
### LLM-grounded Diffusion

LMD and LMD+ greatly improves the prompt understanding ability of text-to-image generation models by introducing an LLM as a front-end prompt parser and layout planner. It improves spatial reasoning, the understanding of negation, attribute binding, generative numeracy, etc. in a unified manner without explicitly aiming for each. LMD is completely training-free (i.e., uses SD model off-the-shelf). LMD+ takes in additional adapters for better control. This is a reproduction of LMD+ model used in our work. [Project page.](https://llm-grounded-diffusion.github.io/) [See our full codebase (also with diffusers).](https://github.com/TonyLianLong/LLM-groundedDiffusion)

![Main Image](https://llm-grounded-diffusion.github.io/main_figure.jpg)
![Visualizations: Enhanced Prompt Understanding](https://llm-grounded-diffusion.github.io/visualizations.jpg)

This pipeline can be used with an LLM or on its own. We provide a parser that parses LLM outputs to the layouts. You can obtain the prompt to input to the LLM for layout generation [here](https://github.com/TonyLianLong/LLM-groundedDiffusion/blob/main/prompt.py). After feeding the prompt to an LLM (e.g., GPT-4 on ChatGPT website), you can feed the LLM response into our pipeline.

The following code has been tested on 1x RTX 4090, but it should also support GPUs with lower GPU memory.

#### Use this pipeline with an LLM
534

535
536
537
538
539
```python
import torch
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
540
    "longlian/lmd_plus",
541
    custom_pipeline="llm_grounded_diffusion",
542
    custom_revision="main",
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
    variant="fp16", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()

# Generate directly from a text prompt and an LLM response
prompt = "a waterfall and a modern high speed train in a beautiful forest with fall foliage"
phrases, boxes, bg_prompt, neg_prompt = pipe.parse_llm_response("""
[('a waterfall', [71, 105, 148, 258]), ('a modern high speed train', [255, 223, 181, 149])]
Background prompt: A beautiful forest with fall foliage
Negative prompt:
""")

images = pipe(
    prompt=prompt,
    negative_prompt=neg_prompt,
    phrases=phrases,
    boxes=boxes,
    gligen_scheduled_sampling_beta=0.4,
    output_type="pil",
    num_inference_steps=50,
    lmd_guidance_kwargs={}
).images

images[0].save("./lmd_plus_generation.jpg")
```

#### Use this pipeline on its own for layout generation
570

571
572
573
574
575
```python
import torch
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
576
    "longlian/lmd_plus",
577
    custom_pipeline="llm_grounded_diffusion",
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
    variant="fp16", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()

# Generate an image described by the prompt and
# insert objects described by text at the region defined by bounding boxes
prompt = "a waterfall and a modern high speed train in a beautiful forest with fall foliage"
boxes = [[0.1387, 0.2051, 0.4277, 0.7090], [0.4980, 0.4355, 0.8516, 0.7266]]
phrases = ["a waterfall", "a modern high speed train"]

images = pipe(
    prompt=prompt,
    phrases=phrases,
    boxes=boxes,
    gligen_scheduled_sampling_beta=0.4,
    output_type="pil",
    num_inference_steps=50,
    lmd_guidance_kwargs={}
).images

images[0].save("./lmd_plus_generation.jpg")
```

Patrick von Platen's avatar
Patrick von Platen committed
601
602
### CLIP Guided Stable Diffusion

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
603
CLIP guided stable diffusion can help to generate more realistic images
Patrick von Platen's avatar
Patrick von Platen committed
604
605
606
607
608
609
by guiding stable diffusion at every denoising step with an additional CLIP model.

The following code requires roughly 12GB of GPU RAM.

```python
from diffusers import DiffusionPipeline
610
from transformers import CLIPImageProcessor, CLIPModel
Patrick von Platen's avatar
Patrick von Platen committed
611
612
613
import torch


614
feature_extractor = CLIPImageProcessor.from_pretrained("laion/CLIP-ViT-B-32-laion2B-s34B-b79K")
Patrick von Platen's avatar
Patrick von Platen committed
615
616
617
618
clip_model = CLIPModel.from_pretrained("laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16)


guided_pipeline = DiffusionPipeline.from_pretrained(
619
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
Patrick von Platen's avatar
Patrick von Platen committed
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
    custom_pipeline="clip_guided_stable_diffusion",
    clip_model=clip_model,
    feature_extractor=feature_extractor,
    torch_dtype=torch.float16,
)
guided_pipeline.enable_attention_slicing()
guided_pipeline = guided_pipeline.to("cuda")

prompt = "fantasy book cover, full moon, fantasy forest landscape, golden vector elements, fantasy magic, dark light night, intricate, elegant, sharp focus, illustration, highly detailed, digital painting, concept art, matte, art by WLOP and Artgerm and Albert Bierstadt, masterpiece"

generator = torch.Generator(device="cuda").manual_seed(0)
images = []
for i in range(4):
    image = guided_pipeline(
        prompt,
        num_inference_steps=50,
        guidance_scale=7.5,
        clip_guidance_scale=100,
        num_cutouts=4,
        use_cutouts=False,
        generator=generator,
    ).images[0]
    images.append(image)
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
643

Patrick von Platen's avatar
Patrick von Platen committed
644
645
646
647
648
649
# save images locally
for i, img in enumerate(images):
    img.save(f"./clip_guided_sd/image_{i}.png")
```

The `images` list contains a list of PIL images that can be saved locally or displayed directly in a google colab.
650
Generated images tend to be of higher quality than natively using stable diffusion. E.g. the above script generates the following images:
Patrick von Platen's avatar
Patrick von Platen committed
651
652
653

![clip_guidance](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/clip_guidance/merged_clip_guidance.jpg).

654
### One Step Unet
Patrick von Platen's avatar
Patrick von Platen committed
655
656
657
658
659
660
661
662
663
664

The dummy "one-step-unet" can be run as follows:

```python
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeline="one_step_unet")
pipe()
```

665
**Note**: This community pipeline is not useful as a feature, but rather just serves as an example of how community pipelines can be added (see <https://github.com/huggingface/diffusers/issues/841>).
Patrick von Platen's avatar
Patrick von Platen committed
666
667
668
669
670
671
672
673
674
675
676

### Stable Diffusion Interpolation

The following code can be run on a GPU of at least 8GB VRAM and should take approximately 5 minutes.

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
677
    variant='fp16',
Patrick von Platen's avatar
Patrick von Platen committed
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
    torch_dtype=torch.float16,
    safety_checker=None,  # Very important for videos...lots of false positives while interpolating
    custom_pipeline="interpolate_stable_diffusion",
).to('cuda')
pipe.enable_attention_slicing()

frame_filepaths = pipe.walk(
    prompts=['a dog', 'a cat', 'a horse'],
    seeds=[42, 1337, 1234],
    num_interpolation_steps=16,
    output_dir='./dreams',
    batch_size=4,
    height=512,
    width=512,
    guidance_scale=8.5,
    num_inference_steps=50,
)
```

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
697
The output of the `walk(...)` function returns a list of images saved under the folder as defined in `output_dir`. You can use these images to create videos of stable diffusion.
Patrick von Platen's avatar
Patrick von Platen committed
698

699
> **Please have a look at <https://github.com/nateraw/stable-diffusion-videos> for more in-detail information on how to create videos using stable diffusion as well as more feature-complete functionality.**
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

### Stable Diffusion Mega

The Stable Diffusion Mega Pipeline lets you use the main use cases of the stable diffusion pipeline in a single class.

```python
#!/usr/bin/env python3
from diffusers import DiffusionPipeline
import PIL
import requests
from io import BytesIO
import torch


def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")

718
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_mega", torch_dtype=torch.float16, variant="fp16")
719
720
721
722
723
724
725
726
727
728
729
730
pipe.to("cuda")
pipe.enable_attention_slicing()


### Text-to-Image
images = pipe.text2img("An astronaut riding a horse").images

### Image-to-Image
init_image = download_image("https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg")

prompt = "A fantasy landscape, trending on artstation"

731
images = pipe.img2img(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images
732
733
734
735
736
737
738
739

### Inpainting
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))

prompt = "a cat sitting on a bench"
740
images = pipe.inpaint(prompt=prompt, image=init_image, mask_image=mask_image, strength=0.75).images
741
742
743
744
```

As shown above this one pipeline can run all both "text-to-image", "image-to-image", and "inpainting" in one pipeline.

745
### Long Prompt Weighting Stable Diffusion
746

747
Features of this custom pipeline:
748

749
- Input a prompt without the 77 token length limit.
750
- Includes tx2img, img2img, and inpainting pipelines.
751
752
753
754
755
- Emphasize/weigh part of your prompt with parentheses as so: `a baby deer with (big eyes)`
- De-emphasize part of your prompt as so: `a [baby] deer with big eyes`
- Precisely weigh part of your prompt as so: `a baby deer with (big eyes:1.3)`

Prompt weighting equivalents:
756

757
758
759
760
761
762
- `a baby deer with` == `(a baby deer with:1.0)`
- `(big eyes)` == `(big eyes:1.1)`
- `((big eyes))` == `(big eyes:1.21)`
- `[big eyes]` == `(big eyes:0.91)`

You can run this custom pipeline as so:
763

764
#### PyTorch
765
766
767
768
769
770
771
772
773
774

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    'hakurei/waifu-diffusion',
    custom_pipeline="lpw_stable_diffusion",
    torch_dtype=torch.float16
)
775
pipe = pipe.to("cuda")
776
777
778
779

prompt = "best_quality (1girl:1.3) bow bride brown_hair closed_mouth frilled_bow frilled_hair_tubes frills (full_body:1.3) fox_ear hair_bow hair_tubes happy hood japanese_clothes kimono long_sleeves red_bow smile solo tabi uchikake white_kimono wide_sleeves cherry_blossoms"
neg_prompt = "lowres, bad_anatomy, error_body, error_hair, error_arm, error_hands, bad_hands, error_fingers, bad_fingers, missing_fingers, error_legs, bad_legs, multiple_legs, missing_legs, error_lighting, error_shadow, error_reflection, text, error, extra_digit, fewer_digits, cropped, worst_quality, low_quality, normal_quality, jpeg_artifacts, signature, watermark, username, blurry"

780
pipe.text2img(prompt, negative_prompt=neg_prompt, width=512, height=512, max_embeddings_multiples=3).images[0]
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
```

#### onnxruntime

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    'CompVis/stable-diffusion-v1-4',
    custom_pipeline="lpw_stable_diffusion_onnx",
    revision="onnx",
    provider="CUDAExecutionProvider"
)

prompt = "a photo of an astronaut riding a horse on mars, best quality"
neg_prompt = "lowres, bad anatomy, error body, error hair, error arm, error hands, bad hands, error fingers, bad fingers, missing fingers, error legs, bad legs, multiple legs, missing legs, error lighting, error shadow, error reflection, text, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry"

799
pipe.text2img(prompt, negative_prompt=neg_prompt, width=512, height=512, max_embeddings_multiples=3).images[0]
800
801
```

802
If you see `Token indices sequence length is longer than the specified maximum sequence length for this model ( *** > 77 ) . Running this sequence through the model will result in indexing errors`. Do not worry, it is normal.
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

### Speech to Image

The following code can generate an image from an audio sample using pre-trained OpenAI whisper-small and Stable Diffusion.

```Python
import torch

import matplotlib.pyplot as plt
from datasets import load_dataset
from diffusers import DiffusionPipeline
from transformers import (
    WhisperForConditionalGeneration,
    WhisperProcessor,
)


device = "cuda" if torch.cuda.is_available() else "cpu"

ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")

audio_sample = ds[3]

text = audio_sample["text"].lower()
speech_data = audio_sample["audio"]["array"]

model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
processor = WhisperProcessor.from_pretrained("openai/whisper-small")

diffuser_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="speech_to_image_diffusion",
    speech_model=model,
    speech_processor=processor,
    torch_dtype=torch.float16,
)

diffuser_pipeline.enable_attention_slicing()
diffuser_pipeline = diffuser_pipeline.to(device)

output = diffuser_pipeline(speech_data)
plt.imshow(output.images[0])
```
846

847
848
849
This example produces the following image:

![image](https://user-images.githubusercontent.com/45072645/196901736-77d9c6fc-63ee-4072-90b0-dc8b903d63e3.png)
850
851

### Wildcard Stable Diffusion
852
853

Following the great examples from <https://github.com/jtkelm2/stable-diffusion-webui-1/blob/master/scripts/wildcards.py> and <https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts#wildcards>, here's a minimal implementation that allows for users to add "wildcards", denoted by `__wildcard__` to prompts that are used as placeholders for randomly sampled values given by either a dictionary or a `.txt` file. For example:
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906

Say we have a prompt:

```
prompt = "__animal__ sitting on a __object__ wearing a __clothing__"
```

We can then define possible values to be sampled for `animal`, `object`, and `clothing`. These can either be from a `.txt` with the same name as the category.

The possible values can also be defined / combined by using a dictionary like: `{"animal":["dog", "cat", mouse"]}`.

The actual pipeline works just like `StableDiffusionPipeline`, except the `__call__` method takes in:

`wildcard_files`: list of file paths for wild card replacement
`wildcard_option_dict`: dict with key as `wildcard` and values as a list of possible replacements
`num_prompt_samples`: number of prompts to sample, uniformly sampling wildcards

A full example:

create `animal.txt`, with contents like:

```
dog
cat
mouse
```

create `object.txt`, with contents like:

```
chair
sofa
bench
```

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="wildcard_stable_diffusion",
    torch_dtype=torch.float16,
)
prompt = "__animal__ sitting on a __object__ wearing a __clothing__"
out = pipe(
    prompt,
    wildcard_option_dict={
        "clothing":["hat", "shirt", "scarf", "beret"]
    },
    wildcard_files=["object.txt", "animal.txt"],
    num_prompt_samples=1
)
907
908
out.images[0].save("image.png")
torch.cuda.empty_cache()
909
910
```

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
911
### Composable Stable diffusion
912

913
914
[Composable Stable Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) proposes conjunction and negation (negative prompts) operators for compositional generation with conditional diffusion models.

915
916
917
918
```python
import torch as th
import numpy as np
import torchvision.utils as tvu
919

920
921
from diffusers import DiffusionPipeline

922
923
924
925
926
927
928
929
930
931
932
933
934
import argparse

parser = argparse.ArgumentParser()
parser.add_argument("--prompt", type=str, default="mystical trees | A magical pond | dark",
                    help="use '|' as the delimiter to compose separate sentences.")
parser.add_argument("--steps", type=int, default=50)
parser.add_argument("--scale", type=float, default=7.5)
parser.add_argument("--weights", type=str, default="7.5 | 7.5 | -7.5")
parser.add_argument("--seed", type=int, default=2)
parser.add_argument("--model_path", type=str, default="CompVis/stable-diffusion-v1-4")
parser.add_argument("--num_images", type=int, default=1)
args = parser.parse_args()

935
936
937
has_cuda = th.cuda.is_available()
device = th.device('cpu' if not has_cuda else 'cuda')

938
939
940
941
prompt = args.prompt
scale = args.scale
steps = args.steps

942
pipe = DiffusionPipeline.from_pretrained(
943
    args.model_path,
944
945
946
    custom_pipeline="composable_stable_diffusion",
).to(device)

947
pipe.safety_checker = None
948
949

images = []
950
951
952
953
954
955
956
generator = th.Generator("cuda").manual_seed(args.seed)
for i in range(args.num_images):
    image = pipe(prompt, guidance_scale=scale, num_inference_steps=steps,
                 weights=args.weights, generator=generator).images[0]
    images.append(th.from_numpy(np.array(image)).permute(2, 0, 1) / 255.)
grid = tvu.make_grid(th.stack(images, dim=0), nrow=4, padding=0)
tvu.save_image(grid, f'{prompt}_{args.weights}' + '.png')
957
```
958
959

### Imagic Stable Diffusion
960

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
961
Allows you to edit an image using stable diffusion.
962
963
964
965
966
967

```python
import requests
from PIL import Image
from io import BytesIO
import torch
968
import os
969
from diffusers import DiffusionPipeline, DDIMScheduler
970

971
972
973
974
has_cuda = torch.cuda.is_available()
device = torch.device('cpu' if not has_cuda else 'cuda')
pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
975
    safety_checker=None,
976
    custom_pipeline="imagic_stable_diffusion",
977
    scheduler=DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
978
).to(device)
Dhruv Naik's avatar
Dhruv Naik committed
979
generator = torch.Generator("cuda").manual_seed(0)
980
981
982
983
984
985
986
987
seed = 0
prompt = "A photo of Barack Obama smiling with a big grin"
url = 'https://www.dropbox.com/s/6tlwzr73jd1r9yk/obama.png?dl=1'
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((512, 512))
res = pipe.train(
    prompt,
988
    image=init_image,
989
    generator=generator)
Dhruv Naik's avatar
Dhruv Naik committed
990
res = pipe(alpha=1, guidance_scale=7.5, num_inference_steps=50)
991
os.makedirs("imagic", exist_ok=True)
992
993
image = res.images[0]
image.save('./imagic/imagic_image_alpha_1.png')
Dhruv Naik's avatar
Dhruv Naik committed
994
res = pipe(alpha=1.5, guidance_scale=7.5, num_inference_steps=50)
995
996
image = res.images[0]
image.save('./imagic/imagic_image_alpha_1_5.png')
Dhruv Naik's avatar
Dhruv Naik committed
997
res = pipe(alpha=2, guidance_scale=7.5, num_inference_steps=50)
998
999
1000
1001
image = res.images[0]
image.save('./imagic/imagic_image_alpha_2.png')
```

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1002
### Seed Resizing
1003

1004
1005
1006
Test seed resizing. Originally generate an image in 512 by 512, then generate image with same seed at 512 by 592 using seed resizing. Finally, generate 512 by 592 using original stable diffusion pipeline.

```python
1007
import os
1008
1009
1010
1011
import torch as th
import numpy as np
from diffusers import DiffusionPipeline

1012
1013
1014
1015
# Ensure the save directory exists or create it
save_dir = './seed_resize/'
os.makedirs(save_dir, exist_ok=True)

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
has_cuda = th.cuda.is_available()
device = th.device('cpu' if not has_cuda else 'cuda')

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="seed_resize_stable_diffusion"
).to(device)

def dummy(images, **kwargs):
    return images, False

pipe.safety_checker = dummy

images = []
th.manual_seed(0)
generator = th.Generator("cuda").manual_seed(0)

seed = 0
prompt = "A painting of a futuristic cop"

width = 512
height = 512

res = pipe(
    prompt,
    guidance_scale=7.5,
    num_inference_steps=50,
    height=height,
    width=width,
    generator=generator)
image = res.images[0]
1047
image.save(os.path.join(save_dir, 'seed_resize_{w}_{h}_image.png'.format(w=width, h=height)))
1048
1049
1050
1051
1052
1053

th.manual_seed(0)
generator = th.Generator("cuda").manual_seed(0)

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
1054
    custom_pipeline="seed_resize_stable_diffusion"
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
).to(device)

width = 512
height = 592

res = pipe(
    prompt,
    guidance_scale=7.5,
    num_inference_steps=50,
    height=height,
    width=width,
    generator=generator)
image = res.images[0]
1068
image.save(os.path.join(save_dir, 'seed_resize_{w}_{h}_image.png'.format(w=width, h=height)))
1069
1070
1071

pipe_compare = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
1072
    custom_pipeline="seed_resize_stable_diffusion"
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
).to(device)

res = pipe_compare(
    prompt,
    guidance_scale=7.5,
    num_inference_steps=50,
    height=height,
    width=width,
    generator=generator
)

image = res.images[0]
1085
image.save(os.path.join(save_dir, 'seed_resize_{w}_{h}_image_compare.png'.format(w=width, h=height)))
1086
```
1087

1088
1089
### Multilingual Stable Diffusion Pipeline

1090
The following code can generate images from texts in different languages using the pre-trained [mBART-50 many-to-one multilingual machine translation model](https://huggingface.co/facebook/mbart-large-50-many-to-one-mmt) and Stable Diffusion.
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139

```python
from PIL import Image

import torch

from diffusers import DiffusionPipeline
from transformers import (
    pipeline,
    MBart50TokenizerFast,
    MBartForConditionalGeneration,
)
device = "cuda" if torch.cuda.is_available() else "cpu"
device_dict = {"cuda": 0, "cpu": -1}

# helper function taken from: https://huggingface.co/blog/stable_diffusion
def image_grid(imgs, rows, cols):
    assert len(imgs) == rows*cols

    w, h = imgs[0].size
    grid = Image.new('RGB', size=(cols*w, rows*h))
    grid_w, grid_h = grid.size

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i%cols*w, i//cols*h))
    return grid

# Add language detection pipeline
language_detection_model_ckpt = "papluca/xlm-roberta-base-language-detection"
language_detection_pipeline = pipeline("text-classification",
                                       model=language_detection_model_ckpt,
                                       device=device_dict[device])

# Add model for language translation
trans_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-one-mmt")
trans_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-one-mmt").to(device)

diffuser_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="multilingual_stable_diffusion",
    detection_pipeline=language_detection_pipeline,
    translation_model=trans_model,
    translation_tokenizer=trans_tokenizer,
    torch_dtype=torch.float16,
)

diffuser_pipeline.enable_attention_slicing()
diffuser_pipeline = diffuser_pipeline.to(device)

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1140
prompt = ["a photograph of an astronaut riding a horse",
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
          "Una casa en la playa",
          "Ein Hund, der Orange isst",
          "Un restaurant parisien"]

output = diffuser_pipeline(prompt)

images = output.images

grid = image_grid(images, rows=2, cols=2)
```

This example produces the following images:
![image](https://user-images.githubusercontent.com/4313860/198328706-295824a4-9856-4ce5-8e66-278ceb42fd29.png)

1155
### GlueGen Stable Diffusion Pipeline
1156

1157
GlueGen is a minimal adapter that allows alignment between any encoder (Text Encoder of different language, Multilingual Roberta, AudioClip) and CLIP text encoder used in standard Stable Diffusion model. This method allows easy language adaptation to available english Stable Diffusion checkpoints without the need of an image captioning dataset as well as long training hours.
1158

1159
Make sure you downloaded `gluenet_French_clip_overnorm_over3_noln.ckpt` for French (there are also pre-trained weights for Chinese, Italian, Japanese, Spanish or train your own) at [GlueGen's official repo](https://github.com/salesforce/GlueGen/tree/main).
1160
1161

```python
1162
1163
1164
import os
import gc
import urllib.request
1165
import torch
1166
1167
from transformers import XLMRobertaTokenizer, XLMRobertaForMaskedLM, CLIPTokenizer, CLIPTextModel
from diffusers import DiffusionPipeline
1168

1169
1170
1171
1172
1173
1174
1175
1176
1177
# Download checkpoints
CHECKPOINTS = [
    "https://storage.googleapis.com/sfr-gluegen-data-research/checkpoints_all/gluenet_checkpoint/gluenet_Chinese_clip_overnorm_over3_noln.ckpt",
    "https://storage.googleapis.com/sfr-gluegen-data-research/checkpoints_all/gluenet_checkpoint/gluenet_French_clip_overnorm_over3_noln.ckpt",
    "https://storage.googleapis.com/sfr-gluegen-data-research/checkpoints_all/gluenet_checkpoint/gluenet_Italian_clip_overnorm_over3_noln.ckpt",
    "https://storage.googleapis.com/sfr-gluegen-data-research/checkpoints_all/gluenet_checkpoint/gluenet_Japanese_clip_overnorm_over3_noln.ckpt",
    "https://storage.googleapis.com/sfr-gluegen-data-research/checkpoints_all/gluenet_checkpoint/gluenet_Spanish_clip_overnorm_over3_noln.ckpt",
    "https://storage.googleapis.com/sfr-gluegen-data-research/checkpoints_all/gluenet_checkpoint/gluenet_sound2img_audioclip_us8k.ckpt"
]
1178

1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
LANGUAGE_PROMPTS = {
    "French": "une voiture sur la plage",
    #"Chinese": "海滩上的一辆车",
    #"Italian": "una macchina sulla spiaggia",
    #"Japanese": "浜辺の車",
    #"Spanish": "un coche en la playa"
}

def download_checkpoints(checkpoint_dir):
    os.makedirs(checkpoint_dir, exist_ok=True)
    for url in CHECKPOINTS:
        filename = os.path.join(checkpoint_dir, os.path.basename(url))
        if not os.path.exists(filename):
            print(f"Downloading {filename}...")
            urllib.request.urlretrieve(url, filename)
            print(f"Downloaded {filename}")
        else:
            print(f"Checkpoint {filename} already exists, skipping download.")
    return checkpoint_dir

def load_checkpoint(pipeline, checkpoint_path, device):
    state_dict = torch.load(checkpoint_path, map_location=device)
    state_dict = state_dict.get("state_dict", state_dict)
    missing_keys, unexpected_keys = pipeline.unet.load_state_dict(state_dict, strict=False)
    return pipeline

def generate_image(pipeline, prompt, device, output_path):
    with torch.inference_mode():
        image = pipeline(
            prompt,
            generator=torch.Generator(device=device).manual_seed(42),
            num_inference_steps=50
        ).images[0]
        image.save(output_path)
        print(f"Image saved to {output_path}")

checkpoint_dir = download_checkpoints("./checkpoints_all/gluenet_checkpoint")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")

tokenizer = XLMRobertaTokenizer.from_pretrained("xlm-roberta-base", use_fast=False)
model = XLMRobertaForMaskedLM.from_pretrained("xlm-roberta-base").to(device)
inputs = tokenizer("Ceci est une phrase incomplète avec un [MASK].", return_tensors="pt").to(device)
with torch.inference_mode():
    _ = model(**inputs)
1224
1225


1226
1227
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
clip_text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14").to(device)
1228

1229
1230
1231
1232
1233
1234
1235
1236
# Initialize pipeline
pipeline = DiffusionPipeline.from_pretrained(
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
    text_encoder=clip_text_encoder,
    tokenizer=clip_tokenizer,
    custom_pipeline="gluegen",
    safety_checker=None
).to(device)
1237

1238
os.makedirs("outputs", exist_ok=True)
1239

1240
1241
# Generate images
for language, prompt in LANGUAGE_PROMPTS.items():
1242

1243
1244
1245
1246
1247
1248
1249
1250
1251
    checkpoint_file = f"gluenet_{language}_clip_overnorm_over3_noln.ckpt"
    checkpoint_path = os.path.join(checkpoint_dir, checkpoint_file)
    try:
        pipeline = load_checkpoint(pipeline, checkpoint_path, device)
        output_path = f"outputs/gluegen_output_{language.lower()}.png"
        generate_image(pipeline, prompt, device, output_path)
    except Exception as e:
        print(f"Error processing {language} model: {e}")
        continue
1252

1253
1254
1255
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()
1256
```
1257

1258
1259
1260
1261
Which will produce:

![output_image](https://github.com/rootonchair/diffusers/assets/23548268/db43ffb6-8667-47c1-8872-26f85dc0a57f)

1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
### Image to Image Inpainting Stable Diffusion

Similar to the standard stable diffusion inpainting example, except with the addition of an `inner_image` argument.

`image`, `inner_image`, and `mask` should have the same dimensions. `inner_image` should have an alpha (transparency) channel.

The aim is to overlay two images, then mask out the boundary between `image` and `inner_image` to allow stable diffusion to make the connection more seamless.
For example, this could be used to place a logo on a shirt and make it blend seamlessly.

```python
import PIL
import torch

1275
from diffusers import DiffusionPipeline
1276
1277
1278
1279
1280
1281
1282
1283
1284

image_path = "./path-to-image.png"
inner_image_path = "./path-to-inner-image.png"
mask_path = "./path-to-mask.png"

init_image = PIL.Image.open(image_path).convert("RGB").resize((512, 512))
inner_image = PIL.Image.open(inner_image_path).convert("RGBA").resize((512, 512))
mask_image = PIL.Image.open(mask_path).convert("RGB").resize((512, 512))

1285
pipe = DiffusionPipeline.from_pretrained(
1286
    "runwayml/stable-diffusion-inpainting",
1287
1288
    custom_pipeline="img2img_inpainting",
    torch_dtype=torch.float16
1289
1290
1291
1292
1293
)
pipe = pipe.to("cuda")

prompt = "Your prompt here!"
image = pipe(prompt=prompt, image=init_image, inner_image=inner_image, mask_image=mask_image).images[0]
1294
```
1295

1296
1297
![2 by 2 grid demonstrating image to image inpainting.](https://user-images.githubusercontent.com/44398246/203506577-ec303be4-887e-4ebd-a773-c83fcb3dd01a.png)

1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
### Text Based Inpainting Stable Diffusion

Use a text prompt to generate the mask for the area to be inpainted.
Currently uses the CLIPSeg model for mask generation, then calls the standard Stable Diffusion Inpainting pipeline to perform the inpainting.

```python
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
from diffusers import DiffusionPipeline
from PIL import Image
import requests
1308
import torch
1309

1310
# Load CLIPSeg model and processor
1311
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
1312
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to("cuda")
1313

1314
# Load Stable Diffusion Inpainting Pipeline with custom pipeline
1315
1316
1317
1318
1319
pipe = DiffusionPipeline.from_pretrained(
    "runwayml/stable-diffusion-inpainting",
    custom_pipeline="text_inpainting",
    segmentation_model=model,
    segmentation_processor=processor
1320
).to("cuda")
1321

1322
# Load input image
1323
url = "https://github.com/timojl/clipseg/blob/master/example_image.jpg?raw=true"
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
image = Image.open(requests.get(url, stream=True).raw)

# Step 1: Resize input image for CLIPSeg (224x224)
segmentation_input = image.resize((224, 224))

# Step 2: Generate segmentation mask
text = "a glass"  # Object to mask
inputs = processor(text=text, images=segmentation_input, return_tensors="pt").to("cuda")

with torch.no_grad():
    mask = model(**inputs).logits.sigmoid()  # Get segmentation mask
1335

1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
# Resize mask back to 512x512 for SD inpainting
mask = torch.nn.functional.interpolate(mask.unsqueeze(0), size=(512, 512), mode="bilinear").squeeze(0)

# Step 3: Resize input image for Stable Diffusion
image = image.resize((512, 512))

# Step 4: Run inpainting with Stable Diffusion
prompt = "a cup"  # The masked-out region will be replaced with this
result = pipe(image=image, mask=mask, prompt=prompt,text=text).images[0]

# Save output
result.save("inpainting_output.png")
print("Inpainting completed. Image saved as 'inpainting_output.png'.")
1349
```
Stuti R's avatar
Stuti R committed
1350

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1351
### Bit Diffusion
1352

1353
Based <https://arxiv.org/abs/2208.04202>, this is used for diffusion on discrete data - eg, discrete image data, DNA sequence data. An unconditional discrete image can be generated like this:
Stuti R's avatar
Stuti R committed
1354
1355
1356

```python
from diffusers import DiffusionPipeline
1357

Stuti R's avatar
Stuti R committed
1358
1359
pipe = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeline="bit_diffusion")
image = pipe().images[0]
1360
1361
1362
1363
```

### Stable Diffusion with K Diffusion

1364
Make sure you have @crowsonkb's <https://github.com/crowsonkb/k-diffusion> installed:
1365

1366
```sh
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
pip install k-diffusion
```

You can use the community pipeline as follows:

```python
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="sd_text2img_k_diffusion")
pipe = pipe.to("cuda")

prompt = "an astronaut riding a horse on mars"
1379
pipe.set_scheduler("sample_heun")
1380
1381
1382
1383
1384
1385
1386
1387
1388
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=20).images[0]

image.save("./astronaut_heun_k_diffusion.png")
```

To make sure that K Diffusion and `diffusers` yield the same results:

**Diffusers**:
1389

1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
```python
from diffusers import DiffusionPipeline, EulerDiscreteScheduler

seed = 33

pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")

generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=50).images[0]
```

![diffusers_euler](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/k_diffusion/astronaut_euler.png)

**K Diffusion**:
1406

1407
1408
1409
1410
1411
1412
1413
1414
1415
```python
from diffusers import DiffusionPipeline, EulerDiscreteScheduler

seed = 33

pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="sd_text2img_k_diffusion")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")

1416
pipe.set_scheduler("sample_euler")
1417
1418
1419
1420
1421
1422
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=50).images[0]
```

![diffusers_euler](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/k_diffusion/astronaut_euler_k_diffusion.png)

1423
### Checkpoint Merger Pipeline
1424

1425
Based on the AUTOMATIC1111/webui for checkpoint merging. This is a custom pipeline that merges up to 3 pretrained model checkpoints as long as they are in the HuggingFace model_index.json format.
1426

1427
1428
The checkpoint merging is currently memory intensive as it modifies the weights of a DiffusionPipeline object in place. Expect at least 13GB RAM usage on Kaggle GPU kernels and
on Colab you might run out of the 12GB memory even while merging two checkpoints.
1429
1430

Usage:-
1431

1432
1433
1434
```python
from diffusers import DiffusionPipeline

1435
1436
1437
# Return a CheckpointMergerPipeline class that allows you to merge checkpoints.
# The checkpoint passed here is ignored. But still pass one of the checkpoints you plan to
# merge for convenience
1438
1439
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="checkpoint_merger")

1440
1441
# There are multiple possible scenarios:
# The pipeline with the merged checkpoints is returned in all the scenarios
1442

1443
1444
# Compatible checkpoints a.k.a matched model_index.json files. Ignores the meta attributes in model_index.json during comparison.( attrs with _ as prefix )
merged_pipe = pipe.merge(["CompVis/stable-diffusion-v1-4"," CompVis/stable-diffusion-v1-2"], interp="sigmoid", alpha=0.4)
1445

1446
1447
# Incompatible checkpoints in model_index.json but merge might be possible. Use force=True to ignore model_index.json compatibility
merged_pipe_1 = pipe.merge(["CompVis/stable-diffusion-v1-4", "hakurei/waifu-diffusion"], force=True, interp="sigmoid", alpha=0.4)
1448

1449
1450
# Three checkpoint merging. Only "add_difference" method actually works on all three checkpoints. Using any other options will ignore the 3rd checkpoint.
merged_pipe_2 = pipe.merge(["CompVis/stable-diffusion-v1-4", "hakurei/waifu-diffusion", "prompthero/openjourney"], force=True, interp="add_difference", alpha=0.4)
1451
1452
1453
1454
1455

prompt = "An astronaut riding a horse on Mars"

image = merged_pipe(prompt).images[0]
```
1456

1457
1458
Some examples along with the merge details:

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1459
1. "CompVis/stable-diffusion-v1-4" + "hakurei/waifu-diffusion" ; Sigmoid interpolation; alpha = 0.8
1460
1461
1462

![Stable plus Waifu Sigmoid 0.8](https://huggingface.co/datasets/NagaSaiAbhinay/CheckpointMergerSamples/resolve/main/stability_v1_4_waifu_sig_0.8.png)

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1463
2. "hakurei/waifu-diffusion" + "prompthero/openjourney" ; Inverse Sigmoid interpolation; alpha = 0.8
1464

1465
![Waifu plus openjourney Sigmoid 0.8](https://huggingface.co/datasets/NagaSaiAbhinay/CheckpointMergerSamples/resolve/main/waifu_openjourney_inv_sig_0.8.png)
1466

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1467
3. "CompVis/stable-diffusion-v1-4" + "hakurei/waifu-diffusion" + "prompthero/openjourney"; Add Difference interpolation; alpha = 0.5
1468
1469

![Stable plus Waifu plus openjourney add_diff 0.5](https://huggingface.co/datasets/NagaSaiAbhinay/CheckpointMergerSamples/resolve/main/stable_waifu_openjourney_add_diff_0.5.png)
1470
1471
1472
1473

### Stable Diffusion Comparisons

This Community Pipeline enables the comparison between the 4 checkpoints that exist for Stable Diffusion. They can be found through the following links:
1474

1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1. [Stable Diffusion v1.1](https://huggingface.co/CompVis/stable-diffusion-v1-1)
2. [Stable Diffusion v1.2](https://huggingface.co/CompVis/stable-diffusion-v1-2)
3. [Stable Diffusion v1.3](https://huggingface.co/CompVis/stable-diffusion-v1-3)
4. [Stable Diffusion v1.4](https://huggingface.co/CompVis/stable-diffusion-v1-4)

```python
from diffusers import DiffusionPipeline
import matplotlib.pyplot as plt

pipe = DiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4', custom_pipeline='suvadityamuk/StableDiffusionComparison')
pipe.enable_attention_slicing()
pipe = pipe.to('cuda')
prompt = "an astronaut riding a horse on mars"
output = pipe(prompt)

plt.subplots(2,2,1)
plt.imshow(output.images[0])
plt.title('Stable Diffusion v1.1')
plt.axis('off')
plt.subplots(2,2,2)
plt.imshow(output.images[1])
plt.title('Stable Diffusion v1.2')
plt.axis('off')
plt.subplots(2,2,3)
plt.imshow(output.images[2])
plt.title('Stable Diffusion v1.3')
plt.axis('off')
plt.subplots(2,2,4)
plt.imshow(output.images[3])
plt.title('Stable Diffusion v1.4')
plt.axis('off')

plt.show()
Partho's avatar
Partho committed
1508
1509
1510
1511
1512
1513
1514
1515
1516
```

As a result, you can look at a grid of all 4 generated images being shown together, that captures a difference the advancement of the training between the 4 checkpoints.

### Magic Mix

Implementation of the [MagicMix: Semantic Mixing with Diffusion Models](https://arxiv.org/abs/2210.16056) paper. This is a Diffusion Pipeline for semantic mixing of an image and a text prompt to create a new concept while preserving the spatial layout and geometry of the subject in the image. The pipeline takes an image that provides the layout semantics and a prompt that provides the content semantics for the mixing process.

There are 3 parameters for the method-
1517

Partho's avatar
Partho committed
1518
1519
1520
1521
1522
- `mix_factor`: It is the interpolation constant used in the layout generation phase. The greater the value of `mix_factor`, the greater the influence of the prompt on the layout generation process.
- `kmax` and `kmin`: These determine the range for the layout and content generation process. A higher value of kmax results in loss of more information about the layout of the original image and a higher value of kmin results in more steps for content generation process.

Here is an example usage-

1523
```python
1524
import requests
Partho's avatar
Partho committed
1525
1526
from diffusers import DiffusionPipeline, DDIMScheduler
from PIL import Image
1527
from io import BytesIO
Partho's avatar
Partho committed
1528
1529
1530
1531

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="magic_mix",
1532
    scheduler=DDIMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler"),
Partho's avatar
Partho committed
1533
1534
).to('cuda')

1535
1536
1537
url = "https://user-images.githubusercontent.com/59410571/209578593-141467c7-d831-4792-8b9a-b17dc5e47816.jpg"
response = requests.get(url)
image = Image.open(BytesIO(response.content)).convert("RGB")  # Convert to RGB to avoid issues
Partho's avatar
Partho committed
1538
mix_img = pipe(
1539
    image,
1540
1541
1542
1543
    prompt='bed',
    kmin=0.3,
    kmax=0.5,
    mix_factor=0.5,
Partho's avatar
Partho committed
1544
1545
1546
    )
mix_img.save('phone_bed_mix.jpg')
```
1547

Partho's avatar
Partho committed
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
The `mix_img` is a PIL image that can be saved locally or displayed directly in a google colab. Generated image is a mix of the layout semantics of the given image and the content semantics of the prompt.

E.g. the above script generates the following image:

`phone.jpg`

![206903102-34e79b9f-9ed2-4fac-bb38-82871343c655](https://user-images.githubusercontent.com/59410571/209578593-141467c7-d831-4792-8b9a-b17dc5e47816.jpg)

`phone_bed_mix.jpg`

![206903104-913a671d-ef53-4ae4-919d-64c3059c8f67](https://user-images.githubusercontent.com/59410571/209578602-70f323fa-05b7-4dd6-b055-e40683e37914.jpg)
1559

Partho's avatar
Partho committed
1560
For more example generations check out this [demo notebook](https://github.com/daspartho/MagicMix/blob/main/demo.ipynb).
1561
1562
1563

### Stable UnCLIP

1564
1565
UnCLIPPipeline("kakaobrain/karlo-v1-alpha") provides a prior model that can generate clip image embedding from text.
StableDiffusionImageVariationPipeline("lambdalabs/sd-image-variations-diffusers") provides a decoder model than can generate images from clip image embedding.
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605

```python
import torch
from diffusers import DiffusionPipeline

device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")

pipeline = DiffusionPipeline.from_pretrained(
    "kakaobrain/karlo-v1-alpha",
    torch_dtype=torch.float16,
    custom_pipeline="stable_unclip",
    decoder_pipe_kwargs=dict(
        image_encoder=None,
    ),
)
pipeline.to(device)

prompt = "a shiba inu wearing a beret and black turtleneck"
random_generator = torch.Generator(device=device).manual_seed(1000)
output = pipeline(
    prompt=prompt,
    width=512,
    height=512,
    generator=random_generator,
    prior_guidance_scale=4,
    prior_num_inference_steps=25,
    decoder_guidance_scale=8,
    decoder_num_inference_steps=50,
)

image = output.images[0]
image.save("./shiba-inu.jpg")

# debug

# `pipeline.decoder_pipe` is a regular StableDiffusionImageVariationPipeline instance.
# It is used to convert clip image embedding to latents, then fed into VAE decoder.
print(pipeline.decoder_pipe.__class__)
# <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_image_variation.StableDiffusionImageVariationPipeline'>

1606
# this pipeline only uses prior module in "kakaobrain/karlo-v1-alpha"
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
# It is used to convert clip text embedding to clip image embedding.
print(pipeline)
# StableUnCLIPPipeline {
#   "_class_name": "StableUnCLIPPipeline",
#   "_diffusers_version": "0.12.0.dev0",
#   "prior": [
#     "diffusers",
#     "PriorTransformer"
#   ],
#   "prior_scheduler": [
#     "diffusers",
#     "UnCLIPScheduler"
#   ],
#   "text_encoder": [
#     "transformers",
#     "CLIPTextModelWithProjection"
#   ],
#   "tokenizer": [
#     "transformers",
#     "CLIPTokenizer"
#   ]
# }

# pipeline.prior_scheduler is the scheduler used for prior in UnCLIP.
print(pipeline.prior_scheduler)
# UnCLIPScheduler {
#   "_class_name": "UnCLIPScheduler",
#   "_diffusers_version": "0.12.0.dev0",
#   "clip_sample": true,
#   "clip_sample_range": 5.0,
#   "num_train_timesteps": 1000,
#   "prediction_type": "sample",
#   "variance_type": "fixed_small_log"
# }
```

`shiba-inu.jpg`

![shiba-inu](https://user-images.githubusercontent.com/16448529/209185639-6e5ec794-ce9d-4883-aa29-bd6852a2abad.jpg)

1647
1648
### UnCLIP Text Interpolation Pipeline

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1649
This Diffusion Pipeline takes two prompts and interpolates between the two input prompts using spherical interpolation ( slerp ). The input prompts are converted to text embeddings by the pipeline's text_encoder and the interpolation is done on the resulting text_embeddings over the number of steps specified. Defaults to 5 steps.
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665

```python
import torch
from diffusers import DiffusionPipeline

device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")

pipe = DiffusionPipeline.from_pretrained(
    "kakaobrain/karlo-v1-alpha",
    torch_dtype=torch.float16,
    custom_pipeline="unclip_text_interpolation"
)
pipe.to(device)

start_prompt = "A photograph of an adult lion"
end_prompt = "A photograph of a lion cub"
1666
# For best results keep the prompts close in length to each other. Of course, feel free to try out with differing lengths.
1667
1668
generator = torch.Generator(device=device).manual_seed(42)

1669
output = pipe(start_prompt, end_prompt, steps=6, generator=generator, enable_sequential_cpu_offload=False)
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682

for i,image in enumerate(output.images):
    img.save('result%s.jpg' % i)
```

The resulting images in order:-

![result_0](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_0.png)
![result_1](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_1.png)
![result_2](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_2.png)
![result_3](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_3.png)
![result_4](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_4.png)
![result_5](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_5.png)
1683
1684
1685

### UnCLIP Image Interpolation Pipeline

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1686
This Diffusion Pipeline takes two images or an image_embeddings tensor of size 2 and interpolates between their embeddings using spherical interpolation ( slerp ). The input images/image_embeddings are converted to image embeddings by the pipeline's image_encoder and the interpolation is done on the resulting image_embeddings over the number of steps specified. Defaults to 5 steps.
1687
1688
1689
1690
1691

```python
import torch
from diffusers import DiffusionPipeline
from PIL import Image
1692
1693
import requests
from io import BytesIO
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704

device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")
dtype = torch.float16 if torch.cuda.is_available() else torch.bfloat16

pipe = DiffusionPipeline.from_pretrained(
    "kakaobrain/karlo-v1-alpha-image-variations",
    torch_dtype=dtype,
    custom_pipeline="unclip_image_interpolation"
)
pipe.to(device)

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
# List of image URLs
image_urls = [
    'https://camo.githubusercontent.com/ef13c8059b12947c0d5e8d3ea88900de6bf1cd76bbf61ace3928e824c491290e/68747470733a2f2f68756767696e67666163652e636f2f64617461736574732f4e616761536169416268696e61792f556e434c4950496d616765496e746572706f6c6174696f6e53616d706c65732f7265736f6c76652f6d61696e2f7374617272795f6e696768742e6a7067',
    'https://camo.githubusercontent.com/d1947ab7c49ae3f550c28409d5e8b120df48e456559cf4557306c0848337702c/68747470733a2f2f68756767696e67666163652e636f2f64617461736574732f4e616761536169416268696e61792f556e434c4950496d616765496e746572706f6c6174696f6e53616d706c65732f7265736f6c76652f6d61696e2f666c6f776572732e6a7067'
]

# Open images from URLs
images = []
for url in image_urls:
    response = requests.get(url)
    img = Image.open(BytesIO(response.content))
    images.append(img)

1718
# For best results keep the prompts close in length to each other. Of course, feel free to try out with differing lengths.
1719
1720
generator = torch.Generator(device=device).manual_seed(42)

1721
output = pipe(image=images, steps=6, generator=generator)
1722

1723
for i, image in enumerate(output.images):
1724
1725
    image.save('starry_to_flowers_%s.jpg' % i)
```
1726

1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
The original images:-

![starry](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_night.jpg)
![flowers](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/flowers.jpg)

The resulting images in order:-

![result0](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_0.png)
![result1](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_1.png)
![result2](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_2.png)
![result3](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_3.png)
![result4](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_4.png)
![result5](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_5.png)

1741
### DDIM Noise Comparative Analysis Pipeline
1742

1743
#### **Research question: What visual concepts do the diffusion models learn from each noise level during training?**
1744

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1745
The [P2 weighting (CVPR 2022)](https://arxiv.org/abs/2204.00227) paper proposed an approach to answer the above question, which is their second contribution.
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
The approach consists of the following steps:

1. The input is an image x0.
2. Perturb it to xt using a diffusion process q(xt|x0).
    - `strength` is a value between 0.0 and 1.0, that controls the amount of noise that is added to the input image. Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input.
3. Reconstruct the image with the learned denoising process pθ(ˆx0|xt).
4. Compare x0 and ˆx0 among various t to show how each step contributes to the sample.
The authors used [openai/guided-diffusion](https://github.com/openai/guided-diffusion) model to denoise images in FFHQ dataset. This pipeline extends their second contribution by investigating DDIM on any input image.

```python
import torch
from PIL import Image
import numpy as np

1760
image_path = "path/to/your/image"  # images from CelebA-HQ might be better
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
image_pil = Image.open(image_path)
image_name = image_path.split("/")[-1].split(".")[0]

device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")
pipe = DiffusionPipeline.from_pretrained(
    "google/ddpm-ema-celebahq-256",
    custom_pipeline="ddim_noise_comparative_analysis",
)
pipe = pipe.to(device)

for strength in np.linspace(0.1, 1, 25):
    denoised_image, latent_timestep = pipe(
        image_pil, strength=strength, return_dict=False
    )
    denoised_image = denoised_image[0]
    denoised_image.save(
        f"noise_comparative_analysis_{image_name}_{latent_timestep}.png"
    )
```

Here is the result of this pipeline (which is DDIM) on CelebA-HQ dataset.
1782

1783
![noise-comparative-analysis](https://user-images.githubusercontent.com/67547213/224677066-4474b2ed-56ab-4c27-87c6-de3c0255eb9c.jpeg)
1784
1785
1786

### CLIP Guided Img2Img Stable Diffusion

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1787
CLIP guided Img2Img stable diffusion can help to generate more realistic images with an initial image
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
by guiding stable diffusion at every denoising step with an additional CLIP model.

The following code requires roughly 12GB of GPU RAM.

```python
from io import BytesIO
import requests
import torch
from diffusers import DiffusionPipeline
from PIL import Image
1798
from transformers import CLIPImageProcessor, CLIPModel
1799

1800
# Load CLIP model and feature extractor
1801
feature_extractor = CLIPImageProcessor.from_pretrained(
1802
1803
1804
1805
1806
    "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
)
clip_model = CLIPModel.from_pretrained(
    "laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16
)
1807
1808

# Load guided pipeline
1809
1810
guided_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
1811
    custom_pipeline="clip_guided_stable_diffusion_img2img",
1812
1813
1814
1815
1816
1817
    clip_model=clip_model,
    feature_extractor=feature_extractor,
    torch_dtype=torch.float16,
)
guided_pipeline.enable_attention_slicing()
guided_pipeline = guided_pipeline.to("cuda")
1818
1819

# Define prompt and fetch image
1820
1821
1822
prompt = "fantasy book cover, full moon, fantasy forest landscape, golden vector elements, fantasy magic, dark light night, intricate, elegant, sharp focus, illustration, highly detailed, digital painting, concept art, matte, art by WLOP and Artgerm and Albert Bierstadt, masterpiece"
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
1823
1824
1825
edit_image = Image.open(BytesIO(response.content)).convert("RGB")

# Run the pipeline
1826
1827
image = guided_pipeline(
    prompt=prompt,
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
    height=512,  # Height of the output image
    width=512,   # Width of the output image
    image=edit_image,  # Input image to guide the diffusion
    strength=0.75,  # How much to transform the input image
    num_inference_steps=30,  # Number of diffusion steps
    guidance_scale=7.5,  # Scale of the classifier-free guidance
    clip_guidance_scale=100,  # Scale of the CLIP guidance
    num_images_per_prompt=1,  # Generate one image per prompt
    eta=0.0,  # Noise scheduling parameter
    num_cutouts=4,  # Number of cutouts for CLIP guidance
    use_cutouts=False,  # Whether to use cutouts
    output_type="pil",  # Output as PIL image
1840
).images[0]
1841
1842
1843
1844

# Display the generated image
image.show()

1845
1846
1847
1848
1849
1850
1851
1852
1853
```

Init Image

![img2img_init_clip_guidance](https://huggingface.co/datasets/njindal/images/resolve/main/clip_guided_img2img_init.jpg)

Output Image

![img2img_clip_guidance](https://huggingface.co/datasets/njindal/images/resolve/main/clip_guided_img2img.jpg)
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863

### TensorRT Text2Image Stable Diffusion Pipeline

The TensorRT Pipeline can be used to accelerate the Text2Image Stable Diffusion Inference run.

NOTE: The ONNX conversions and TensorRT engine build may take up to 30 minutes.

```python
import torch
from diffusers import DDIMScheduler
1864
from diffusers.pipelines import DiffusionPipeline
1865
1866

# Use the DDIMScheduler scheduler here instead
1867
scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="scheduler")
1868

1869
1870
1871
1872
1873
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1",
    custom_pipeline="stable_diffusion_tensorrt_txt2img",
    variant='fp16',
    torch_dtype=torch.float16,
    scheduler=scheduler,)
1874
1875

# re-use cached folder to save ONNX models and TensorRT Engines
1876
pipe.set_cached_folder("stabilityai/stable-diffusion-2-1", variant='fp16',)
1877
1878
1879
1880
1881
1882
1883

pipe = pipe.to("cuda")

prompt = "a beautiful photograph of Mt. Fuji during cherry blossom"
image = pipe(prompt).images[0]
image.save('tensorrt_mt_fuji.png')
```
1884
1885
1886
1887

### EDICT Image Editing Pipeline

This pipeline implements the text-guided image editing approach from the paper [EDICT: Exact Diffusion Inversion via Coupled Transformations](https://arxiv.org/abs/2211.12446). You have to pass:
1888

1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
- (`PIL`) `image` you want to edit.
- `base_prompt`: the text prompt describing the current image (before editing).
- `target_prompt`: the text prompt describing with the edits.

```python
from diffusers import DiffusionPipeline, DDIMScheduler
from transformers import CLIPTextModel
import torch, PIL, requests
from io import BytesIO
from IPython.display import display

def center_crop_and_resize(im):

    width, height = im.size
    d = min(width, height)
    left = (width - d) / 2
    upper = (height - d) / 2
    right = (width + d) / 2
    lower = (height + d) / 2

    return im.crop((left, upper, right, lower)).resize((512, 512))

torch_dtype = torch.float16
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# scheduler and text_encoder param values as in the paper
scheduler = DDIMScheduler(
        num_train_timesteps=1000,
        beta_start=0.00085,
        beta_end=0.012,
        beta_schedule="scaled_linear",
        set_alpha_to_one=False,
        clip_sample=False,
)

text_encoder = CLIPTextModel.from_pretrained(
    pretrained_model_name_or_path="openai/clip-vit-large-patch14",
    torch_dtype=torch_dtype,
)

# initialize pipeline
pipeline = DiffusionPipeline.from_pretrained(
    pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4",
    custom_pipeline="edict_pipeline",
1933
    variant="fp16",
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
    scheduler=scheduler,
    text_encoder=text_encoder,
    leapfrog_steps=True,
    torch_dtype=torch_dtype,
).to(device)

# download image
image_url = "https://huggingface.co/datasets/Joqsan/images/resolve/main/imagenet_dog_1.jpeg"
response = requests.get(image_url)
image = PIL.Image.open(BytesIO(response.content))

# preprocess it
cropped_image = center_crop_and_resize(image)

# define the prompts
base_prompt = "A dog"
target_prompt = "A golden retriever"

# run the pipeline
result_image = pipeline(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1954
1955
      base_prompt=base_prompt,
      target_prompt=target_prompt,
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
      image=cropped_image,
)

display(result_image)
```

Init Image

![img2img_init_edict_text_editing](https://huggingface.co/datasets/Joqsan/images/resolve/main/imagenet_dog_1.jpeg)

Output Image

![img2img_edict_text_editing](https://huggingface.co/datasets/Joqsan/images/resolve/main/imagenet_dog_1_cropped_generated.png)
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986

### Stable Diffusion RePaint

This pipeline uses the [RePaint](https://arxiv.org/abs/2201.09865) logic on the latent space of stable diffusion. It can
be used similarly to other image inpainting pipelines but does not rely on a specific inpainting model. This means you can use
models that are not specifically created for inpainting.

Make sure to use the ```RePaintScheduler``` as shown in the example below.

Disclaimer: The mask gets transferred into latent space, this may lead to unexpected changes on the edge of the masked part.
The inference time is a lot slower.

```py
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionPipeline, RePaintScheduler
1987

1988
1989
1990
1991
1992
1993
1994
1995
def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
mask_image = PIL.ImageOps.invert(mask_image)
1996
pipe = StableDiffusionPipeline.from_pretrained(
1997
1998
1999
2000
2001
2002
    "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16, custom_pipeline="stable_diffusion_repaint",
)
pipe.scheduler = RePaintScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
2003
```
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016

### TensorRT Image2Image Stable Diffusion Pipeline

The TensorRT Pipeline can be used to accelerate the Image2Image Stable Diffusion Inference run.

NOTE: The ONNX conversions and TensorRT engine build may take up to 30 minutes.

```python
import requests
from io import BytesIO
from PIL import Image
import torch
from diffusers import DDIMScheduler
2017
from diffusers import DiffusionPipeline
2018
2019
2020
2021
2022

# Use the DDIMScheduler scheduler here instead
scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1",
                                            subfolder="scheduler")

2023
2024
2025
2026
2027
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1",
                                            custom_pipeline="stable_diffusion_tensorrt_img2img",
                                            variant='fp16',
                                            torch_dtype=torch.float16,
                                            scheduler=scheduler,)
2028
2029

# re-use cached folder to save ONNX models and TensorRT Engines
2030
pipe.set_cached_folder("stabilityai/stable-diffusion-2-1", variant='fp16',)
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040

pipe = pipe.to("cuda")

url = "https://pajoca.com/wp-content/uploads/2022/09/tekito-yamakawa-1.png"
response = requests.get(url)
input_image = Image.open(BytesIO(response.content)).convert("RGB")
prompt = "photorealistic new zealand hills"
image = pipe(prompt, image=input_image, strength=0.75,).images[0]
image.save('tensorrt_img2img_new_zealand_hills.png')
```
2041

2042
### Stable Diffusion BoxDiff
2043
BoxDiff is a training-free method for controlled generation with bounding box coordinates. It should work with any Stable Diffusion model. Below shows an example with `stable-diffusion-2-1-base`.
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
```py
import torch
from PIL import Image, ImageDraw
from copy import deepcopy

from examples.community.pipeline_stable_diffusion_boxdiff import StableDiffusionBoxDiffPipeline

def draw_box_with_text(img, boxes, names):
    colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"]
    img_new = deepcopy(img)
    draw = ImageDraw.Draw(img_new)

    W, H = img.size
    for bid, box in enumerate(boxes):
        draw.rectangle([box[0] * W, box[1] * H, box[2] * W, box[3] * H], outline=colors[bid % len(colors)], width=4)
        draw.text((box[0] * W, box[1] * H), names[bid], fill=colors[bid % len(colors)])
    return img_new

pipe = StableDiffusionBoxDiffPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-1-base",
    torch_dtype=torch.float16,
)
pipe.to("cuda")

# example 1
prompt = "as the aurora lights up the sky, a herd of reindeer leisurely wanders on the grassy meadow, admiring the breathtaking view, a serene lake quietly reflects the magnificent display, and in the distance, a snow-capped mountain stands majestically, fantasy, 8k, highly detailed"
phrases = [
    "aurora",
    "reindeer",
    "meadow",
    "lake",
    "mountain"
]
boxes = [[1,3,512,202], [75,344,421,495], [1,327,508,507], [2,217,507,341], [1,135,509,242]]

# example 2
# prompt = "A rabbit wearing sunglasses looks very proud"
# phrases = ["rabbit", "sunglasses"]
# boxes = [[67,87,366,512], [66,130,364,262]]

boxes = [[x / 512 for x in box] for box in boxes]

images = pipe(
    prompt,
    boxdiff_phrases=phrases,
    boxdiff_boxes=boxes,
    boxdiff_kwargs={
        "attention_res": 16,
        "normalize_eot": True
    },
    num_inference_steps=50,
    guidance_scale=7.5,
    generator=torch.manual_seed(42),
    safety_checker=None
).images

draw_box_with_text(images[0], boxes, phrases).save("output.png")
```


2104
2105
### Stable Diffusion Reference

2106
This pipeline uses the Reference Control. Refer to the [sd-webui-controlnet discussion: Reference-only Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1236)[sd-webui-controlnet discussion: Reference-adain Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1280).
2107

2108
Based on [this issue](https://github.com/huggingface/diffusers/issues/3566),
2109

2110
- `EulerAncestralDiscreteScheduler` got poor results.
2111
2112
2113
2114
2115
2116
2117
2118
2119

```py
import torch
from diffusers import UniPCMultistepScheduler
from diffusers.utils import load_image

input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")

pipe = StableDiffusionReferencePipeline.from_pretrained(
2120
       "stable-diffusion-v1-5/stable-diffusion-v1-5",
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
       safety_checker=None,
       torch_dtype=torch.float16
       ).to('cuda:0')

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

result_img = pipe(ref_image=input_image,
      prompt="1girl",
      num_inference_steps=20,
      reference_attn=True,
      reference_adain=True).images[0]
```

Reference Image

![reference_image](https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png)

Output Image of `reference_attn=True` and `reference_adain=False`

![output_image](https://github.com/huggingface/diffusers/assets/24734142/813b5c6a-6d89-46ba-b7a4-2624e240eea5)

Output Image of `reference_attn=False` and `reference_adain=True`

![output_image](https://github.com/huggingface/diffusers/assets/24734142/ffc90339-9ef0-4c4d-a544-135c3e5644da)

Output Image of `reference_attn=True` and `reference_adain=True`

![output_image](https://github.com/huggingface/diffusers/assets/24734142/3c5255d6-867d-4d35-b202-8dfd30cc6827)
2149

2150
2151
2152
2153
### Stable Diffusion ControlNet Reference

This pipeline uses the Reference Control with ControlNet. Refer to the [sd-webui-controlnet discussion: Reference-only Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1236)[sd-webui-controlnet discussion: Reference-adain Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1280).

2154
Based on [this issue](https://github.com/huggingface/diffusers/issues/3566),
2155

2156
2157
- `EulerAncestralDiscreteScheduler` got poor results.
- `guess_mode=True` works well for ControlNet v1.1
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176

```py
import cv2
import torch
import numpy as np
from PIL import Image
from diffusers import UniPCMultistepScheduler
from diffusers.utils import load_image

input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")

# get canny image
image = cv2.Canny(np.array(input_image), 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)

controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetReferencePipeline.from_pretrained(
2177
       "stable-diffusion-v1-5/stable-diffusion-v1-5",
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
       controlnet=controlnet,
       safety_checker=None,
       torch_dtype=torch.float16
       ).to('cuda:0')

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

result_img = pipe(ref_image=input_image,
      prompt="1girl",
      image=canny_image,
      num_inference_steps=20,
      reference_attn=True,
      reference_adain=True).images[0]
```

Reference Image

![reference_image](https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png)

Output Image

![output_image](https://github.com/huggingface/diffusers/assets/24734142/7b9a5830-f173-4b92-b0cf-73d0e9c01d60)

2201
2202
### Stable Diffusion on IPEX

2203
This diffusion pipeline aims to accelerate the inference of Stable-Diffusion on Intel Xeon CPUs with BF16/FP32 precision using [IPEX](https://github.com/intel/intel-extension-for-pytorch).
2204
2205

To use this pipeline, you need to:
2206

2207
2208
1. Install [IPEX](https://github.com/intel/intel-extension-for-pytorch)

2209
**Note:** For each PyTorch release, there is a corresponding release of the IPEX. Here is the mapping relationship. It is recommended to install PyTorch/IPEX2.0 to get the best performance.
2210
2211
2212
2213
2214
2215
2216

|PyTorch Version|IPEX Version|
|--|--|
|[v2.0.\*](https://github.com/pytorch/pytorch/tree/v2.0.1 "v2.0.1")|[v2.0.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.100+cpu)|
|[v1.13.\*](https://github.com/pytorch/pytorch/tree/v1.13.0 "v1.13.0")|[v1.13.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v1.13.100+cpu)|

You can simply use pip to install IPEX with the latest version.
2217

2218
```sh
2219
2220
python -m pip install intel_extension_for_pytorch
```
2221

2222
**Note:** To install a specific version, run with the following command:
2223

2224
```sh
2225
2226
2227
python -m pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
```

2228
2. After pipeline initialization, `prepare_for_ipex()` should be called to enable IPEX acceleration. Supported inference datatypes are Float32 and BFloat16.
2229
2230

**Note:** The setting of generated image height/width for `prepare_for_ipex()` should be same as the setting of pipeline inference.
2231

2232
```python
2233
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_ipex")
2234
# For Float32
2235
pipe.prepare_for_ipex(prompt, dtype=torch.float32, height=512, width=512) # value of image height/width should be consistent with the pipeline inference
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2236
# For BFloat16
2237
pipe.prepare_for_ipex(prompt, dtype=torch.bfloat16, height=512, width=512) # value of image height/width should be consistent with the pipeline inference
2238
2239
2240
```

Then you can use the ipex pipeline in a similar way to the default stable diffusion pipeline.
2241

2242
2243
```python
# For Float32
2244
image = pipe(prompt, num_inference_steps=20, height=512, width=512).images[0] # value of image height/width should be consistent with 'prepare_for_ipex()'
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2245
# For BFloat16
2246
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
2247
    image = pipe(prompt, num_inference_steps=20, height=512, width=512).images[0] # value of image height/width should be consistent with 'prepare_for_ipex()'
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
```

The following code compares the performance of the original stable diffusion pipeline with the ipex-optimized pipeline.

```python
import torch
import intel_extension_for_pytorch as ipex
from diffusers import StableDiffusionPipeline
import time

prompt = "sailing ship in storm by Rembrandt"
2259
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
2260
2261
2262
2263
2264
# Helper function for time evaluation
def elapsed_time(pipeline, nb_pass=3, num_inference_steps=20):
    # warmup
    for _ in range(2):
        images = pipeline(prompt, num_inference_steps=num_inference_steps, height=512, width=512).images
2265
    # time evaluation
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
    start = time.time()
    for _ in range(nb_pass):
        pipeline(prompt, num_inference_steps=num_inference_steps, height=512, width=512)
    end = time.time()
    return (end - start) / nb_pass

##############     bf16 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe = DiffusionPipeline.from_pretrained(model_id, custom_pipeline="stable_diffusion_ipex")
pipe.prepare_for_ipex(prompt, dtype=torch.bfloat16, height=512, width=512)

# 2. Original Pipeline initialization
pipe2 = StableDiffusionPipeline.from_pretrained(model_id)

# 3. Compare performance between Original Pipeline and IPEX Pipeline
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
    latency = elapsed_time(pipe)
    print("Latency of StableDiffusionIPEXPipeline--bf16", latency)
    latency = elapsed_time(pipe2)
2286
    print("Latency of StableDiffusionPipeline--bf16", latency)
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300

##############     fp32 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe3 = DiffusionPipeline.from_pretrained(model_id, custom_pipeline="stable_diffusion_ipex")
pipe3.prepare_for_ipex(prompt, dtype=torch.float32, height=512, width=512)

# 2. Original Pipeline initialization
pipe4 = StableDiffusionPipeline.from_pretrained(model_id)

# 3. Compare performance between Original Pipeline and IPEX Pipeline
latency = elapsed_time(pipe3)
print("Latency of StableDiffusionIPEXPipeline--fp32", latency)
latency = elapsed_time(pipe4)
2301
print("Latency of StableDiffusionPipeline--fp32", latency)
2302
```
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2303

2304
2305
### Stable Diffusion XL on IPEX

2306
This diffusion pipeline aims to accelerate the inference of Stable-Diffusion XL on Intel Xeon CPUs with BF16/FP32 precision using [IPEX](https://github.com/intel/intel-extension-for-pytorch).
2307
2308

To use this pipeline, you need to:
2309

2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
1. Install [IPEX](https://github.com/intel/intel-extension-for-pytorch)

**Note:** For each PyTorch release, there is a corresponding release of IPEX. Here is the mapping relationship. It is recommended to install Pytorch/IPEX2.0 to get the best performance.

|PyTorch Version|IPEX Version|
|--|--|
|[v2.0.\*](https://github.com/pytorch/pytorch/tree/v2.0.1 "v2.0.1")|[v2.0.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.100+cpu)|
|[v1.13.\*](https://github.com/pytorch/pytorch/tree/v1.13.0 "v1.13.0")|[v1.13.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v1.13.100+cpu)|

You can simply use pip to install IPEX with the latest version.
2320

2321
```sh
2322
2323
python -m pip install intel_extension_for_pytorch
```
2324

2325
**Note:** To install a specific version, run with the following command:
2326

2327
```sh
2328
2329
2330
python -m pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
```

2331
2. After pipeline initialization, `prepare_for_ipex()` should be called to enable IPEX acceleration. Supported inference datatypes are Float32 and BFloat16.
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344

**Note:** The values of `height` and `width` used during preparation with `prepare_for_ipex()` should be the same when running inference with the prepared pipeline.

```python
pipe = StableDiffusionXLPipelineIpex.from_pretrained("stabilityai/sdxl-turbo", low_cpu_mem_usage=True, use_safetensors=True)
# value of image height/width should be consistent with the pipeline inference
# For Float32
pipe.prepare_for_ipex(torch.float32, prompt, height=512, width=512)
# For BFloat16
pipe.prepare_for_ipex(torch.bfloat16, prompt, height=512, width=512)
```

Then you can use the ipex pipeline in a similar way to the default stable diffusion xl pipeline.
2345

2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
```python
# value of image height/width should be consistent with 'prepare_for_ipex()'
# For Float32
image = pipe(prompt, num_inference_steps=num_inference_steps, height=512, width=512, guidance_scale=guidance_scale).images[0]
# For BFloat16
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
    image = pipe(prompt, num_inference_steps=num_inference_steps, height=512, width=512, guidance_scale=guidance_scale).images[0]
```

The following code compares the performance of the original stable diffusion xl pipeline with the ipex-optimized pipeline.
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2356
By using this optimized pipeline, we can get about 1.4-2 times performance boost with BFloat16 on fourth generation of Intel Xeon CPUs,
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
code-named Sapphire Rapids.

```python
import torch
from diffusers import StableDiffusionXLPipeline
from pipeline_stable_diffusion_xl_ipex import StableDiffusionXLPipelineIpex
import time

prompt = "sailing ship in storm by Rembrandt"
model_id = "stabilityai/sdxl-turbo"
steps = 4

# Helper function for time evaluation
def elapsed_time(pipeline, nb_pass=3, num_inference_steps=1):
    # warmup
    for _ in range(2):
        images = pipeline(prompt, num_inference_steps=num_inference_steps, height=512, width=512, guidance_scale=0.0).images
2374
    # time evaluation
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
    start = time.time()
    for _ in range(nb_pass):
        pipeline(prompt, num_inference_steps=num_inference_steps, height=512, width=512, guidance_scale=0.0)
    end = time.time()
    return (end - start) / nb_pass

##############     bf16 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe = StableDiffusionXLPipelineIpex.from_pretrained(model_id, low_cpu_mem_usage=True, use_safetensors=True)
pipe.prepare_for_ipex(torch.bfloat16, prompt, height=512, width=512)

# 2. Original Pipeline initialization
pipe2 = StableDiffusionXLPipeline.from_pretrained(model_id, low_cpu_mem_usage=True, use_safetensors=True)

# 3. Compare performance between Original Pipeline and IPEX Pipeline
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
    latency = elapsed_time(pipe, num_inference_steps=steps)
    print("Latency of StableDiffusionXLPipelineIpex--bf16", latency, "s for total", steps, "steps")
    latency = elapsed_time(pipe2, num_inference_steps=steps)
    print("Latency of StableDiffusionXLPipeline--bf16", latency, "s for total", steps, "steps")

##############     fp32 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe3 = StableDiffusionXLPipelineIpex.from_pretrained(model_id, low_cpu_mem_usage=True, use_safetensors=True)
pipe3.prepare_for_ipex(torch.float32, prompt, height=512, width=512)

# 2. Original Pipeline initialization
pipe4 = StableDiffusionXLPipeline.from_pretrained(model_id, low_cpu_mem_usage=True, use_safetensors=True)

# 3. Compare performance between Original Pipeline and IPEX Pipeline
latency = elapsed_time(pipe3, num_inference_steps=steps)
print("Latency of StableDiffusionXLPipelineIpex--fp32", latency, "s for total", steps, "steps")
latency = elapsed_time(pipe4, num_inference_steps=steps)
2410
print("Latency of StableDiffusionXLPipeline--fp32", latency, "s for total", steps, "steps")
2411
2412
```

2413
2414
2415
2416
### CLIP Guided Images Mixing With Stable Diffusion

![clip_guided_images_mixing_examples](https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/main.png)

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2417
2418
CLIP guided stable diffusion images mixing pipeline allows to combine two images using standard diffusion models.
This approach is using (optional) CoCa model to avoid writing image description.
2419
2420
[More code examples](https://github.com/TheDenk/images_mixing)

2421
### Example Images Mixing (with CoCa)
2422

2423
2424
2425
```python
import PIL
import torch
2426
import requests
2427
2428
import open_clip
from open_clip import SimpleTokenizer
2429
from io import BytesIO
2430
from diffusers import DiffusionPipeline
2431
from transformers import CLIPImageProcessor, CLIPModel
2432
2433
2434
2435
2436
2437
2438


def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")

# Loading additional models
2439
feature_extractor = CLIPImageProcessor.from_pretrained(
2440
2441
2442
2443
2444
2445
2446
2447
2448
    "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
)
clip_model = CLIPModel.from_pretrained(
    "laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16
)
coca_model = open_clip.create_model('coca_ViT-L-14', pretrained='laion2B-s13B-b90k').to('cuda')
coca_model.dtype = torch.float16
coca_transform = open_clip.image_transform(
    coca_model.visual.image_size,
2449
2450
2451
    is_train=False,
    mean=getattr(coca_model.visual, 'image_mean', None),
    std=getattr(coca_model.visual, 'image_std', None),
2452
2453
2454
)
coca_tokenizer = SimpleTokenizer()

2455
# Pipeline creating
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
mixing_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="clip_guided_images_mixing_stable_diffusion",
    clip_model=clip_model,
    feature_extractor=feature_extractor,
    coca_model=coca_model,
    coca_tokenizer=coca_tokenizer,
    coca_transform=coca_transform,
    torch_dtype=torch.float16,
)
mixing_pipeline.enable_attention_slicing()
mixing_pipeline = mixing_pipeline.to("cuda")

2469
# Pipeline running
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2470
generator = torch.Generator(device="cuda").manual_seed(17)
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491

def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")

content_image = download_image("https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/boromir.jpg")
style_image = download_image("https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/gigachad.jpg")

pipe_images = mixing_pipeline(
    num_inference_steps=50,
    content_image=content_image,
    style_image=style_image,
    noise_strength=0.65,
    slerp_latent_style_strength=0.9,
    slerp_prompt_style_strength=0.1,
    slerp_clip_image_style_strength=0.1,
    guidance_scale=9.0,
    batch_size=1,
    clip_guidance_scale=100,
    generator=generator,
).images
2492
2493
2494
2495

output_path = "mixed_output.jpg"
pipe_images[0].save(output_path)
print(f"Image saved successfully at {output_path}")
2496
2497
2498
```

![image_mixing_result](https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/boromir_gigachad.png)
2499

2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
### Stable Diffusion XL Long Weighted Prompt Pipeline

This SDXL pipeline supports unlimited length prompt and negative prompt, compatible with A1111 prompt weighted style.

You can provide both `prompt` and `prompt_2`. If only one prompt is provided, `prompt_2` will be a copy of the provided `prompt`. Here is a sample code to use this pipeline.

```python
from diffusers import DiffusionPipeline
from diffusers.utils import load_image
import torch

pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0"
    , torch_dtype       = torch.float16
    , use_safetensors   = True
    , variant           = "fp16"
    , custom_pipeline   = "lpw_stable_diffusion_xl",
)

prompt = "photo of a cute (white) cat running on the grass" * 20
prompt2 = "chasing (birds:1.5)" * 20
prompt = f"{prompt},{prompt2}"
neg_prompt = "blur, low quality, carton, animate"

pipe.to("cuda")

# text2img
t2i_images = pipe(
    prompt=prompt,
    negative_prompt=neg_prompt,
).images  # alternatively, you can call the .text2img() function

# img2img
input_image = load_image("/path/to/local/image.png")  # or URL to your input image
i2i_images = pipe.img2img(
  prompt=prompt,
  negative_prompt=neg_prompt,
  image=input_image,
  strength=0.8,  # higher strength will result in more variation compared to original image
).images

# inpaint
input_mask = load_image("/path/to/local/mask.png")  # or URL to your input inpainting mask
inpaint_images = pipe.inpaint(
  prompt="photo of a cute (black) cat running on the grass" * 20,
  negative_prompt=neg_prompt,
  image=input_image,
  mask=input_mask,
  strength=0.6,  # higher strength will result in more variation compared to original image
).images

pipe.to("cpu")
torch.cuda.empty_cache()

from IPython.display import display  # assuming you are using this code in a notebook
display(t2i_images[0])
display(i2i_images[0])
display(inpaint_images[0])
```

In the above code, the `prompt2` is appended to the `prompt`, which is more than 77 tokens. "birds" are showing up in the result.
![Stable Diffusion XL Long Weighted Prompt Pipeline sample](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_long_weighted_prompt.png)

For more results, checkout [PR #6114](https://github.com/huggingface/diffusers/pull/6114).

2565
### Stable Diffusion Mixture Tiling Pipeline SD 1.5
2566
2567

This pipeline uses the Mixture. Refer to the [Mixture](https://arxiv.org/abs/2302.02412) paper for more details.
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2568

2569
```python
2570
from diffusers import LMSDiscreteScheduler, DiffusionPipeline
2571

2572
# Create scheduler and model (similar to StableDiffusionPipeline)
2573
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
2574
2575
pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", scheduler=scheduler, custom_pipeline="mixture_tiling")
pipeline.to("cuda")
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592

# Mixture of Diffusers generation
image = pipeline(
    prompt=[[
        "A charming house in the countryside, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
        "A dirt road in the countryside crossing pastures, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
        "An old and rusty giant robot lying on a dirt road, by jakub rozalski, dark sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece"
    ]],
    tile_height=640,
    tile_width=640,
    tile_row_overlap=0,
    tile_col_overlap=256,
    guidance_scale=8,
    seed=7178915308,
    num_inference_steps=50,
)["images"][0]
```
2593

2594
2595
![mixture_tiling_results](https://huggingface.co/datasets/kadirnar/diffusers_readme_images/resolve/main/mixture_tiling.png)

2596
### Stable Diffusion Mixture Canvas Pipeline SD 1.5
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630

This pipeline uses the Mixture. Refer to the [Mixture](https://arxiv.org/abs/2302.02412) paper for more details.

```python
from PIL import Image
from diffusers import LMSDiscreteScheduler, DiffusionPipeline
from diffusers.pipelines.pipeline_utils import Image2ImageRegion, Text2ImageRegion, preprocess_image


# Load and preprocess guide image
iic_image = preprocess_image(Image.open("input_image.png").convert("RGB"))

# Create scheduler and model (similar to StableDiffusionPipeline)
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", scheduler=scheduler).to("cuda:0", custom_pipeline="mixture_canvas")
pipeline.to("cuda")

# Mixture of Diffusers generation
output = pipeline(
    canvas_height=800,
    canvas_width=352,
    regions=[
        Text2ImageRegion(0, 800, 0, 352, guidance_scale=8,
            prompt=f"best quality, masterpiece, WLOP, sakimichan, art contest winner on pixiv, 8K, intricate details, wet effects, rain drops, ethereal, mysterious, futuristic, UHD, HDR, cinematic lighting, in a beautiful forest, rainy day, award winning, trending on artstation, beautiful confident cheerful young woman, wearing a futuristic sleeveless dress, ultra beautiful detailed  eyes, hyper-detailed face, complex,  perfect, model,  textured,  chiaroscuro, professional make-up, realistic, figure in frame, "),
        Image2ImageRegion(352-800, 352, 0, 352, reference_image=iic_image, strength=1.0),
    ],
    num_inference_steps=100,
    seed=5525475061,
)["images"][0]
```

![Input_Image](https://huggingface.co/datasets/kadirnar/diffusers_readme_images/resolve/main/input_image.png)
![mixture_canvas_results](https://huggingface.co/datasets/kadirnar/diffusers_readme_images/resolve/main/canvas.png)

2631
### Stable Diffusion Mixture Tiling Pipeline SDXL
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676

This pipeline uses the Mixture. Refer to the [Mixture](https://arxiv.org/abs/2302.02412) paper for more details.

```python
import torch
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler, AutoencoderKL

device="cuda"

# Load fixed vae (optional)
vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to(device)

# Create scheduler and model (similar to StableDiffusionPipeline)
model_id="stablediffusionapi/yamermix-v8-vae"
scheduler = DPMSolverMultistepScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
pipe = DiffusionPipeline.from_pretrained(
    model_id,
    torch_dtype=torch.float16,
    vae=vae,
    custom_pipeline="mixture_tiling_sdxl",
    scheduler=scheduler,
    use_safetensors=False    
).to(device)

pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
pipe.enable_vae_slicing()

generator = torch.Generator(device).manual_seed(297984183)

# Mixture of Diffusers generation
image = pipe(
    prompt=[[
        "A charming house in the countryside, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
        "A dirt road in the countryside crossing pastures, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",        
        "An old and rusty giant robot lying on a dirt road, by jakub rozalski, dark sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece"
    ]],
    tile_height=1024,
    tile_width=1280,
    tile_row_overlap=0,
    tile_col_overlap=256,
    guidance_scale_tiles=[[7, 7, 7]], # or guidance_scale=7 if is the same for all prompts
    height=1024,
2677
    width=3840,    
2678
2679
2680
2681
2682
    generator=generator,
    num_inference_steps=30,
)["images"][0]
```

2683
![mixture_tiling_results](https://huggingface.co/datasets/elismasilva/results/resolve/main/mixture_of_diffusers_sdxl_1.png)
2684

2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
### Stable Diffusion MoD ControlNet Tile SR Pipeline SDXL

This pipeline implements the [MoD (Mixture-of-Diffusers)]("https://arxiv.org/pdf/2408.06072") tiled diffusion technique and combines it with SDXL's ControlNet Tile process to generate SR images.

This works better with 4x scales, but you can try adjusts parameters to higher scales.

````python
import torch
from diffusers import DiffusionPipeline, ControlNetUnionModel, AutoencoderKL, UniPCMultistepScheduler, UNet2DConditionModel
from diffusers.utils import load_image
from PIL import Image

device = "cuda"

# Initialize the models and pipeline
controlnet = ControlNetUnionModel.from_pretrained(
    "brad-twinkl/controlnet-union-sdxl-1.0-promax", torch_dtype=torch.float16
).to(device=device)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to(device=device)

model_id = "SG161222/RealVisXL_V5.0"
pipe = DiffusionPipeline.from_pretrained(
    model_id,
    torch_dtype=torch.float16,
    vae=vae,
    controlnet=controlnet,
    custom_pipeline="mod_controlnet_tile_sr_sdxl",    
    use_safetensors=True,
    variant="fp16",
).to(device)

unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet", variant="fp16", use_safetensors=True)

#pipe.enable_model_cpu_offload()  # << Enable this if you have limited VRAM
pipe.enable_vae_tiling() # << Enable this if you have limited VRAM
pipe.enable_vae_slicing() # << Enable this if you have limited VRAM

# Set selected scheduler
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

# Load image
control_image = load_image("https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/1.jpg")
original_height = control_image.height
original_width = control_image.width
print(f"Current resolution: H:{original_height} x W:{original_width}")

# Pre-upscale image for tiling
resolution = 4096
tile_gaussian_sigma = 0.3
max_tile_size = 1024 # or 1280

current_size = max(control_image.size)
scale_factor = max(2, resolution / current_size)
new_size = (int(control_image.width * scale_factor), int(control_image.height * scale_factor))
image = control_image.resize(new_size, Image.LANCZOS)

# Update target height and width
target_height = image.height
target_width = image.width
print(f"Target resolution: H:{target_height} x W:{target_width}")

# Calculate overlap size
normal_tile_overlap, border_tile_overlap = pipe.calculate_overlap(target_width, target_height)

# Set other params
tile_weighting_method = pipe.TileWeightingMethod.COSINE.value
guidance_scale = 4
num_inference_steps = 35
denoising_strenght = 0.65
controlnet_strength = 1.0
prompt = "high-quality, noise-free edges, high quality, 4k, hd, 8k"
negative_prompt = "blurry, pixelated, noisy, low resolution, artifacts, poor details"

# Image generation
generated_image = pipe(
    image=image,
    control_image=control_image,
    control_mode=[6],
    controlnet_conditioning_scale=float(controlnet_strength),
    prompt=prompt,
    negative_prompt=negative_prompt,
    normal_tile_overlap=normal_tile_overlap,
    border_tile_overlap=border_tile_overlap,
    height=target_height,
    width=target_width,
    original_size=(original_width, original_height),
    target_size=(target_width, target_height),
    guidance_scale=guidance_scale,        
    strength=float(denoising_strenght),
    tile_weighting_method=tile_weighting_method,
    max_tile_size=max_tile_size,
    tile_gaussian_sigma=float(tile_gaussian_sigma),
    num_inference_steps=num_inference_steps,
)["images"][0]
````
![Upscaled](https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/1_input_4x.png)

2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
### TensorRT Inpainting Stable Diffusion Pipeline

The TensorRT Pipeline can be used to accelerate the Inpainting Stable Diffusion Inference run.

NOTE: The ONNX conversions and TensorRT engine build may take up to 30 minutes.

```python
import requests
from io import BytesIO
from PIL import Image
import torch
from diffusers import PNDMScheduler
2794
from diffusers.pipelines import DiffusionPipeline
2795
2796
2797
2798

# Use the PNDMScheduler scheduler here instead
scheduler = PNDMScheduler.from_pretrained("stabilityai/stable-diffusion-2-inpainting", subfolder="scheduler")

2799
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-inpainting",
2800
    custom_pipeline="stable_diffusion_tensorrt_inpaint",
2801
    variant='fp16',
2802
2803
2804
2805
2806
    torch_dtype=torch.float16,
    scheduler=scheduler,
    )

# re-use cached folder to save ONNX models and TensorRT Engines
2807
pipe.set_cached_folder("stabilityai/stable-diffusion-2-inpainting", variant='fp16',)
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821

pipe = pipe.to("cuda")

url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
response = requests.get(url)
input_image = Image.open(BytesIO(response.content)).convert("RGB")

mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
response = requests.get(mask_url)
mask_image = Image.open(BytesIO(response.content)).convert("RGB")

prompt = "a mecha robot sitting on a bench"
image = pipe(prompt, image=input_image, mask_image=mask_image, strength=0.75,).images[0]
image.save('tensorrt_inpaint_mecha_robot.png')
2822
2823
```

2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
### IADB pipeline

This pipeline is the implementation of the [α-(de)Blending: a Minimalist Deterministic Diffusion Model](https://arxiv.org/abs/2305.03486) paper.
It is a simple and minimalist diffusion model.

The following code shows how to use the IADB pipeline to generate images using a pretrained celebahq-256 model.

```python
pipeline_iadb = DiffusionPipeline.from_pretrained("thomasc4/iadb-celebahq-256", custom_pipeline='iadb')

pipeline_iadb = pipeline_iadb.to('cuda')

2836
output = pipeline_iadb(batch_size=4, num_inference_steps=128)
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
for i in range(len(output[0])):
    plt.imshow(output[0][i])
    plt.show()
```

Sampling with the IADB formulation is easy, and can be done in a few lines (the pipeline already implements it):

```python
def sample_iadb(model, x0, nb_step):
    x_alpha = x0
    for t in range(nb_step):
        alpha = (t/nb_step)
        alpha_next =((t+1)/nb_step)

        d = model(x_alpha, torch.tensor(alpha, device=x_alpha.device))['sample']
        x_alpha = x_alpha + (alpha_next-alpha)*d

    return x_alpha
```

The training loop is also straightforward:

```python
# Training loop
while True:
    x0 = sample_noise()
    x1 = sample_dataset()

    alpha = torch.rand(batch_size)

    # Blend
    x_alpha = (1-alpha) * x0 + alpha * x1

    # Loss
    loss = torch.sum((D(x_alpha, alpha)- (x1-x0))**2)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889

### Zero1to3 pipeline

This pipeline is the implementation of the [Zero-1-to-3: Zero-shot One Image to 3D Object](https://arxiv.org/abs/2303.11328) paper.
The original pytorch-lightning [repo](https://github.com/cvlab-columbia/zero123) and a diffusers [repo](https://github.com/kxhit/zero123-hf).

The following code shows how to use the Zero1to3 pipeline to generate novel view synthesis images using a pretrained stable diffusion model.

```python
import os
import torch
from pipeline_zero1to3 import Zero1to3StableDiffusionPipeline
from diffusers.utils import load_image

2890
model_id = "kxic/zero123-165000"  # zero123-105000, zero123-165000, zero123-xl
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901

pipe = Zero1to3StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)

pipe.enable_xformers_memory_efficient_attention()
pipe.enable_vae_tiling()
pipe.enable_attention_slicing()
pipe = pipe.to("cuda")

num_images_per_prompt = 4

# test inference pipeline
2902
# x y z, Polar angle (vertical rotation in degrees)  Azimuth angle (horizontal rotation in degrees)  Zoom (relative distance from center)
2903
2904
2905
2906
2907
2908
2909
2910
query_pose1 = [-75.0, 100.0, 0.0]
query_pose2 = [-20.0, 125.0, 0.0]
query_pose3 = [-55.0, 90.0, 0.0]

# load image
# H, W = (256, 256) # H, W = (512, 512)   # zero123 training is 256,256

# for batch input
2911
2912
2913
input_image1 = load_image("./demo/4_blackarm.png")  # load_image("https://cvlab-zero123-live.hf.space/file=/home/user/app/configs/4_blackarm.png")
input_image2 = load_image("./demo/8_motor.png")  # load_image("https://cvlab-zero123-live.hf.space/file=/home/user/app/configs/8_motor.png")
input_image3 = load_image("./demo/7_london.png")  # load_image("https://cvlab-zero123-live.hf.space/file=/home/user/app/configs/7_london.png")
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
input_images = [input_image1, input_image2, input_image3]
query_poses = [query_pose1, query_pose2, query_pose3]

# # for single input
# H, W = (256, 256)
# input_images = [input_image2.resize((H, W), PIL.Image.NEAREST)]
# query_poses = [query_pose2]


# better do preprocessing
from gradio_new import preprocess_image, create_carvekit_interface
import numpy as np
import PIL.Image as Image

pre_images = []
models = dict()
print('Instantiating Carvekit HiInterface...')
models['carvekit'] = create_carvekit_interface()
if not isinstance(input_images, list):
    input_images = [input_images]
for raw_im in input_images:
    input_im = preprocess_image(models, raw_im, True)
    H, W = input_im.shape[:2]
    pre_images.append(Image.fromarray((input_im * 255.0).astype(np.uint8)))
input_images = pre_images

# infer pipeline, in original zero123 num_inference_steps=76
images = pipe(input_imgs=input_images, prompt_imgs=input_images, poses=query_poses, height=H, width=W,
              guidance_scale=3.0, num_images_per_prompt=num_images_per_prompt, num_inference_steps=50).images

# save imgs
log_dir = "logs"
os.makedirs(log_dir, exist_ok=True)
bs = len(input_images)
i = 0
for obj in range(bs):
    for idx in range(num_images_per_prompt):
        images[i].save(os.path.join(log_dir,f"obj{obj}_{idx}.jpg"))
        i += 1
```

2955
2956
### Stable Diffusion XL Reference

2957
This pipeline uses the Reference. Refer to the [Stable Diffusion Reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-reference) section for more information.
2958
2959
2960

```py
import torch
2961
# from diffusers import DiffusionPipeline
2962
2963
from diffusers.utils import load_image
from diffusers.schedulers import UniPCMultistepScheduler
2964

2965
2966
2967
from .stable_diffusion_xl_reference import StableDiffusionXLReferencePipeline

input_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg")
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984

# pipe = DiffusionPipeline.from_pretrained(
#     "stabilityai/stable-diffusion-xl-base-1.0",
#     custom_pipeline="stable_diffusion_xl_reference",
#     torch_dtype=torch.float16,
#     use_safetensors=True,
#     variant="fp16").to('cuda:0')

pipe = StableDiffusionXLReferencePipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    torch_dtype=torch.float16,
    use_safetensors=True,
    variant="fp16").to('cuda:0')

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

result_img = pipe(ref_image=input_image,
2985
      prompt="a dog",
2986
2987
2988
2989
2990
2991
2992
      num_inference_steps=20,
      reference_attn=True,
      reference_adain=True).images[0]
```

Reference Image

2993
![reference_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg)
2994

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2995
Output Image
2996

2997
`prompt: a dog`
2998

2999
3000
`reference_attn=False, reference_adain=True, num_inference_steps=20`
![Output_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_adain_dog.png)
3001
3002
3003
3004

Reference Image
![reference_image](https://github.com/huggingface/diffusers/assets/34944964/449bdab6-e744-4fb2-9620-d4068d9a741b)

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3005
Output Image
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019

`prompt: A dog`

`reference_attn=True, reference_adain=False, num_inference_steps=20`
![Output_image](https://github.com/huggingface/diffusers/assets/34944964/fff2f16f-6e91-434b-abcc-5259d866c31e)

Reference Image
![reference_image](https://github.com/huggingface/diffusers/assets/34944964/077ed4fe-2991-4b79-99a1-009f056227d1)

Output Image

`prompt: An astronaut riding a lion`

`reference_attn=True, reference_adain=True, num_inference_steps=20`
Shauray Singh's avatar
Shauray Singh committed
3020
3021
![output_image](https://github.com/huggingface/diffusers/assets/34944964/9b2f1aca-886f-49c3-89ec-d2031c8e3670)

3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
### Stable Diffusion XL ControlNet Reference

This pipeline uses the Reference Control and with ControlNet. Refer to the [Stable Diffusion ControlNet Reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-controlnet-reference) and [Stable Diffusion XL Reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-xl-reference) sections for more information.

```py
from diffusers import ControlNetModel, AutoencoderKL
from diffusers.schedulers import UniPCMultistepScheduler
from diffusers.utils import load_image
import numpy as np
import torch

import cv2
from PIL import Image

from .stable_diffusion_xl_controlnet_reference import StableDiffusionXLControlNetReferencePipeline

# download an image
canny_image = load_image(
    "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg"
)

ref_image = load_image(
    "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
)

# initialize the models and pipeline
controlnet_conditioning_scale = 0.5  # recommended for good generalization
controlnet = ControlNetModel.from_pretrained(
    "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetReferencePipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
).to("cuda:0")

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

# get canny image
image = np.array(canny_image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)

# generate image
image = pipe(
    prompt="a cat",
    num_inference_steps=20,
    controlnet_conditioning_scale=controlnet_conditioning_scale,
    image=canny_image,
    ref_image=ref_image,
    reference_attn=False,
    reference_adain=True,
    style_fidelity=1.0,
    generator=torch.Generator("cuda").manual_seed(42)
).images[0]
```

Canny ControlNet Image

![canny_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg)

Reference Image

![ref_image](https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png)

Output Image

`prompt: a cat`

`reference_attn=True, reference_adain=True, num_inference_steps=20, style_fidelity=1.0`

![Output_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_attn_adain_canny_cat.png)

`reference_attn=False, reference_adain=True, num_inference_steps=20, style_fidelity=1.0`

![Output_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_adain_canny_cat.png)

`reference_attn=True, reference_adain=False, num_inference_steps=20, style_fidelity=1.0`

![Output_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_attn_canny_cat.png)

Shauray Singh's avatar
Shauray Singh committed
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
### Stable diffusion fabric pipeline

FABRIC approach applicable to a wide range of popular diffusion models, which exploits
the self-attention layer present in the most widely used architectures to condition
the diffusion process on a set of feedback images.

```python
import requests
import torch
from PIL import Image
from io import BytesIO

co63oc's avatar
co63oc committed
3116
from diffusers import DiffusionPipeline
Shauray Singh's avatar
Shauray Singh committed
3117
3118
3119

# load the pipeline
# make sure you're logged in with `huggingface-cli login`
3120
model_id_or_path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
3121
# can also be used with dreamlike-art/dreamlike-photoreal-2.0
Shauray Singh's avatar
Shauray Singh committed
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
pipe = DiffusionPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16, custom_pipeline="pipeline_fabric").to("cuda")

# let's specify a prompt
prompt = "An astronaut riding an elephant"
negative_prompt = "lowres, cropped"

# call the pipeline
image = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.manual_seed(12)
).images[0]

image.save("horse_to_elephant.jpg")

# let's try another example with feedback
url = "https://raw.githubusercontent.com/ChenWu98/cycle-diffusion/main/data/dalle2/A%20black%20colored%20car.png"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")

prompt = "photo, A blue colored car, fish eye"
liked = [init_image]
## same goes with disliked

# call the pipeline
torch.manual_seed(0)
image = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
3152
    liked=liked,
Shauray Singh's avatar
Shauray Singh committed
3153
3154
3155
3156
3157
3158
3159
3160
    num_inference_steps=20,
).images[0]

image.save("black_to_blue.png")
```

*With enough feedbacks you can create very similar high quality images.*

3161
The original codebase can be found at [sd-fabric/fabric](https://github.com/sd-fabric/fabric), and available checkpoints are [dreamlike-art/dreamlike-photoreal-2.0](https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0), [stable-diffusion-v1-5/stable-diffusion-v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5), and [stabilityai/stable-diffusion-2-1](https://huggingface.co/stabilityai/stable-diffusion-2-1) (may give unexpected results).
Shauray Singh's avatar
Shauray Singh committed
3162

3163
Let's have a look at the images (_512X512_)
Shauray Singh's avatar
Shauray Singh committed
3164
3165
3166

| Without Feedback            | With Feedback  (1st image)          |
|---------------------|---------------------|
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3167
| ![Image 1](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/fabric_wo_feedback.jpg) | ![Feedback Image 1](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/fabric_w_feedback.png) |
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193

### Masked Im2Im Stable Diffusion Pipeline

This pipeline reimplements sketch inpaint feature from A1111 for non-inpaint models. The following code reads two images, original and one with mask painted over it. It computes mask as a difference of two images and does the inpainting in the area defined by the mask.

```python
img = PIL.Image.open("./mech.png")
# read image with mask painted over
img_paint = PIL.Image.open("./mech_painted.png")
neq = numpy.any(numpy.array(img) != numpy.array(img_paint), axis=-1)
mask = neq / neq.max()

pipeline = MaskedStableDiffusionImg2ImgPipeline.from_pretrained("frankjoshua/icbinpICantBelieveIts_v8")

# works best with EulerAncestralDiscreteScheduler
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config)
generator = torch.Generator(device="cpu").manual_seed(4)

prompt = "a man wearing a mask"
result = pipeline(prompt=prompt, image=img_paint, mask=mask, strength=0.75,
                  generator=generator)
result.images[0].save("result.png")
```

original image mech.png

3194
<img src=https://github.com/noskill/diffusers/assets/733626/10ad972d-d655-43cb-8de1-039e3d79e849 width="25%" >
3195
3196
3197

image with mask mech_painted.png

3198
<img src=https://github.com/noskill/diffusers/assets/733626/c334466a-67fe-4377-9ff7-f46021b9c224 width="25%" >
3199
3200
3201

result:

3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
<img src=https://github.com/noskill/diffusers/assets/733626/23a0a71d-51db-471e-926a-107ac62512a8 width="25%" >

### Masked Im2Im Stable Diffusion Pipeline XL

This pipeline implements sketch inpaint feature from A1111 for non-inpaint models. The following code reads two images, original and one with mask painted over it. It computes mask as a difference of two images and does the inpainting in the area defined by the mask. Latent code is initialized from the image with the mask by default so the color of the mask affects the result.

```
img = PIL.Image.open("./mech.png")
# read image with mask painted over
img_paint = PIL.Image.open("./mech_painted.png")

pipeline = MaskedStableDiffusionXLImg2ImgPipeline.from_pretrained("frankjoshua/juggernautXL_v8Rundiffusion", dtype=torch.float16)

pipeline.to('cuda')
pipeline.enable_xformers_memory_efficient_attention()

prompt = "a mech warrior wearing a mask"
seed = 8348273636437
for i in range(10):
    generator = torch.Generator(device="cuda").manual_seed(seed + i)
    print(seed + i)
    result = pipeline(prompt=prompt, blur=48, image=img_paint, original_image=img, strength=0.9,
                          generator=generator, num_inference_steps=60, num_images_per_prompt=1)
    im = result.images[0]
    im.save(f"result{i}.png")
```

original image mech.png

<img src=https://github.com/noskill/diffusers/assets/733626/10ad972d-d655-43cb-8de1-039e3d79e849 width="25%" >

image with mask mech_painted.png

<img src=https://github.com/noskill/diffusers/assets/733626/c334466a-67fe-4377-9ff7-f46021b9c224 width="25%" >

3237
result:
3238
3239

<img src=https://github.com/noskill/diffusers/assets/733626/5043fb57-a785-4606-a5ba-a36704f7cb42 width="25%" >
UmerHA's avatar
UmerHA committed
3240
3241
3242
3243

### Prompt2Prompt Pipeline

Prompt2Prompt allows the following edits:
3244

UmerHA's avatar
UmerHA committed
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
- ReplaceEdit (change words in prompt)
- ReplaceEdit with local blend (change words in prompt, keep image part unrelated to changes constant)
- RefineEdit (add words to prompt)
- RefineEdit with local blend (add words to prompt, keep image part unrelated to changes constant)
- ReweightEdit (modulate importance of words)

Here's a full example for `ReplaceEdit``:

```python
import torch
import numpy as np
import matplotlib.pyplot as plt
3257
from diffusers import DiffusionPipeline
UmerHA's avatar
UmerHA committed
3258

3259
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="pipeline_prompt2prompt").to("cuda")
UmerHA's avatar
UmerHA committed
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275

prompts = ["A turtle playing with a ball",
           "A monkey playing with a ball"]

cross_attention_kwargs = {
    "edit_type": "replace",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4
}

outputs = pipe(prompt=prompts, height=512, width=512, num_inference_steps=50, cross_attention_kwargs=cross_attention_kwargs)
```

And abbreviated examples for the other edits:

`ReplaceEdit with local blend`
3276

UmerHA's avatar
UmerHA committed
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
```python
prompts = ["A turtle playing with a ball",
           "A monkey playing with a ball"]

cross_attention_kwargs = {
    "edit_type": "replace",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4,
    "local_blend_words": ["turtle", "monkey"]
}
```

`RefineEdit`
3290

UmerHA's avatar
UmerHA committed
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
```python
prompts = ["A turtle",
           "A turtle in a forest"]

cross_attention_kwargs = {
    "edit_type": "refine",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4,
}
```

`RefineEdit with local blend`
3303

UmerHA's avatar
UmerHA committed
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
```python
prompts = ["A turtle",
           "A turtle in a forest"]

cross_attention_kwargs = {
    "edit_type": "refine",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4,
    "local_blend_words": ["in", "a" , "forest"]
}
```

`ReweightEdit`
3317

UmerHA's avatar
UmerHA committed
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
```python
prompts = ["A smiling turtle"] * 2

edit_kcross_attention_kwargswargs = {
    "edit_type": "reweight",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4,
    "equalizer_words": ["smiling"],
    "equalizer_strengths": [5]
}
```

Side note: See [this GitHub gist](https://gist.github.com/UmerHA/b65bb5fb9626c9c73f3ade2869e36164) if you want to visualize the attention maps.
3331
3332
3333

### Latent Consistency Pipeline

3334
Latent Consistency Models was proposed in [Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference](https://arxiv.org/abs/2310.04378) by _Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, Hang Zhao_ from Tsinghua University.
3335
3336
3337
3338
3339
3340
3341

The abstract of the paper reads as follows:

*Latent Diffusion models (LDMs) have achieved remarkable results in synthesizing high-resolution images. However, the iterative sampling process is computationally intensive and leads to slow generation. Inspired by Consistency Models (song et al.), we propose Latent Consistency Models (LCMs), enabling swift inference with minimal steps on any pre-trained LDMs, including Stable Diffusion (rombach et al). Viewing the guided reverse diffusion process as solving an augmented probability flow ODE (PF-ODE), LCMs are designed to directly predict the solution of such ODE in latent space, mitigating the need for numerous iterations and allowing rapid, high-fidelity sampling. Efficiently distilled from pre-trained classifier-free guided diffusion models, a high-quality 768 x 768 2~4-step LCM takes only 32 A100 GPU hours for training. Furthermore, we introduce Latent Consistency Fine-tuning (LCF), a novel method that is tailored for fine-tuning LCMs on customized image datasets. Evaluation on the LAION-5B-Aesthetics dataset demonstrates that LCMs achieve state-of-the-art text-to-image generation performance with few-step inference. Project Page: [this https URL](https://latent-consistency-models.github.io/)*

The model can be used with `diffusers` as follows:

3342
- *1. Load the model from the community pipeline.*
3343
3344
3345
3346
3347

```py
from diffusers import DiffusionPipeline
import torch

Andrei Filatov's avatar
Andrei Filatov committed
3348
pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main")
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358

# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)
```

- 2. Run inference with as little as 4 steps:

```py
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"

3359
# Can be set to 1~50 steps. LCM supports fast inference even <= 4 steps. Recommend: 1~8 steps.
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3360
num_inference_steps = 4
3361
3362
3363
3364
3365
3366
3367

images = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=8.0, lcm_origin_steps=50, output_type="pil").images
```

For any questions or feedback, feel free to reach out to [Simian Luo](https://github.com/luosiallen).

You can also try this pipeline directly in the [🚀 official spaces](https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model).
Logan's avatar
Logan committed
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390

### Latent Consistency Img2img Pipeline

This pipeline extends the Latent Consistency Pipeline to allow it to take an input image.

```py
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_img2img")

# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)
```

- 2. Run inference with as little as 4 steps:

```py
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"


input_image=Image.open("myimg.png")

3391
strength = 0.5  # strength =0 (no change) strength=1 (completely overwrite image)
Logan's avatar
Logan committed
3392

3393
# Can be set to 1~50 steps. LCM supports fast inference even <= 4 steps. Recommend: 1~8 steps.
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3394
num_inference_steps = 4
Logan's avatar
Logan committed
3395
3396
3397

images = pipe(prompt=prompt, image=input_image, strength=strength, num_inference_steps=num_inference_steps, guidance_scale=8.0, lcm_origin_steps=50, output_type="pil").images
```
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436

### Latent Consistency Interpolation Pipeline

This pipeline extends the Latent Consistency Pipeline to allow for interpolation of the latent space between multiple prompts. It is similar to the [Stable Diffusion Interpolate](https://github.com/huggingface/diffusers/blob/main/examples/community/interpolate_stable_diffusion.py) and [unCLIP Interpolate](https://github.com/huggingface/diffusers/blob/main/examples/community/unclip_text_interpolation.py) community pipelines.

```py
import torch
import numpy as np

from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_interpolate")

# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)

prompts = [
    "Self-portrait oil painting, a beautiful cyborg with golden hair, Margot Robbie, 8k",
    "Self-portrait oil painting, an extremely strong man, body builder, Huge Jackman, 8k",
    "An astronaut floating in space, renaissance art, realistic, high quality, 8k",
    "Oil painting of a cat, cute, dream-like",
    "Hugging face emoji, cute, realistic"
]
num_inference_steps = 4
num_interpolation_steps = 60
seed = 1337

torch.manual_seed(seed)
np.random.seed(seed)

images = pipe(
    prompt=prompts,
    height=512,
    width=512,
    num_inference_steps=num_inference_steps,
    num_interpolation_steps=num_interpolation_steps,
    guidance_scale=8.0,
    embedding_interpolation_type="lerp",
    latent_interpolation_type="slerp",
3437
    process_batch_size=4,  # Make it higher or lower based on your GPU memory
3438
3439
3440
3441
3442
    generator=torch.Generator(seed),
)

assert len(images) == (len(prompts) - 1) * num_interpolation_steps
```
3443

3444
3445
### StableDiffusionUpscaleLDM3D Pipeline

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3446
[LDM3D-VR](https://arxiv.org/pdf/2311.03226.pdf) is an extended version of LDM3D.
3447
3448
3449
3450
3451

The abstract from the paper is:
*Latent diffusion models have proven to be state-of-the-art in the creation and manipulation of visual outputs. However, as far as we know, the generation of depth maps jointly with RGB is still limited. We introduce LDM3D-VR, a suite of diffusion models targeting virtual reality development that includes LDM3D-pano and LDM3D-SR. These models enable the generation of panoramic RGBD based on textual prompts and the upscaling of low-resolution inputs to high-resolution RGBD, respectively. Our models are fine-tuned from existing pretrained models on datasets containing panoramic/high-resolution RGB images, depth maps and captions. Both models are evaluated in comparison to existing related methods*

Two checkpoints are available for use:
3452

3453
3454
3455
- [ldm3d-pano](https://huggingface.co/Intel/ldm3d-pano). This checkpoint enables the generation of panoramic images and requires the StableDiffusionLDM3DPipeline pipeline to be used.
- [ldm3d-sr](https://huggingface.co/Intel/ldm3d-sr). This checkpoint enables the upscaling of RGB and depth images. Can be used in cascade after the original LDM3D pipeline using the StableDiffusionUpscaleLDM3DPipeline pipeline.

3456
```py
3457
3458
3459
3460
3461
from PIL import Image
import os
import torch
from diffusers import StableDiffusionLDM3DPipeline, DiffusionPipeline

3462
3463
# Generate a rgb/depth output from LDM3D

3464
3465
3466
pipe_ldm3d = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d-4c")
pipe_ldm3d.to("cuda")

3467
prompt = "A picture of some lemons on a table"
3468
3469
output = pipe_ldm3d(prompt)
rgb_image, depth_image = output.rgb, output.depth
3470
3471
rgb_image[0].save("lemons_ldm3d_rgb.jpg")
depth_image[0].save("lemons_ldm3d_depth.png")
3472

3473
# Upscale the previous output to a resolution of (1024, 1024)
3474
3475
3476
3477
3478

pipe_ldm3d_upscale = DiffusionPipeline.from_pretrained("Intel/ldm3d-sr", custom_pipeline="pipeline_stable_diffusion_upscale_ldm3d")

pipe_ldm3d_upscale.to("cuda")

3479
3480
low_res_img = Image.open("lemons_ldm3d_rgb.jpg").convert("RGB")
low_res_depth = Image.open("lemons_ldm3d_depth.png").convert("L")
3481
3482
outputs = pipe_ldm3d_upscale(prompt="high quality high resolution uhd 4k image", rgb=low_res_img, depth=low_res_depth, num_inference_steps=50, target_res=[1024, 1024])

3483
3484
3485
3486
upscaled_rgb, upscaled_depth = outputs.rgb[0], outputs.depth[0]
upscaled_rgb.save("upscaled_lemons_rgb.png")
upscaled_depth.save("upscaled_lemons_depth.png")
```
3487

3488
### ControlNet + T2I Adapter Pipeline
3489

3490
3491
This pipeline combines both ControlNet and T2IAdapter into a single pipeline, where the forward pass is executed once.
It receives `control_image` and `adapter_image`, as well as `controlnet_conditioning_scale` and `adapter_conditioning_scale`, for the ControlNet and Adapter modules, respectively. Whenever `adapter_conditioning_scale=0` or `controlnet_conditioning_scale=0`, it will act as a full ControlNet module or as a full T2IAdapter module, respectively.
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556

```py
import cv2
import numpy as np
import torch
from controlnet_aux.midas import MidasDetector
from PIL import Image

from diffusers import AutoencoderKL, ControlNetModel, MultiAdapter, T2IAdapter
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.utils import load_image
from examples.community.pipeline_stable_diffusion_xl_controlnet_adapter import (
    StableDiffusionXLControlNetAdapterPipeline,
)

controlnet_depth = ControlNetModel.from_pretrained(
    "diffusers/controlnet-depth-sdxl-1.0",
    torch_dtype=torch.float16,
    variant="fp16",
    use_safetensors=True
)
adapter_depth = T2IAdapter.from_pretrained(
  "TencentARC/t2i-adapter-depth-midas-sdxl-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, use_safetensors=True)

pipe = StableDiffusionXLControlNetAdapterPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    controlnet=controlnet_depth,
    adapter=adapter_depth,
    vae=vae,
    variant="fp16",
    use_safetensors=True,
    torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
pipe.enable_xformers_memory_efficient_attention()
# pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
midas_depth = MidasDetector.from_pretrained(
  "valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large"
).to("cuda")

prompt = "a tiger sitting on a park bench"
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"

image = load_image(img_url).resize((1024, 1024))

depth_image = midas_depth(
  image, detect_resolution=512, image_resolution=1024
)

strength = 0.5

images = pipe(
    prompt,
    control_image=depth_image,
    adapter_image=depth_image,
    num_inference_steps=30,
    controlnet_conditioning_scale=strength,
    adapter_conditioning_scale=strength,
).images
images[0].save("controlnet_and_adapter.png")
```

### ControlNet + T2I Adapter + Inpainting Pipeline
3557

3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
```py
import cv2
import numpy as np
import torch
from controlnet_aux.midas import MidasDetector
from PIL import Image

from diffusers import AutoencoderKL, ControlNetModel, MultiAdapter, T2IAdapter
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.utils import load_image
from examples.community.pipeline_stable_diffusion_xl_controlnet_adapter_inpaint import (
    StableDiffusionXLControlNetAdapterInpaintPipeline,
)

controlnet_depth = ControlNetModel.from_pretrained(
    "diffusers/controlnet-depth-sdxl-1.0",
    torch_dtype=torch.float16,
    variant="fp16",
    use_safetensors=True
)
adapter_depth = T2IAdapter.from_pretrained(
  "TencentARC/t2i-adapter-depth-midas-sdxl-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, use_safetensors=True)

pipe = StableDiffusionXLControlNetAdapterInpaintPipeline.from_pretrained(
    "diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
    controlnet=controlnet_depth,
    adapter=adapter_depth,
    vae=vae,
    variant="fp16",
    use_safetensors=True,
    torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
pipe.enable_xformers_memory_efficient_attention()
# pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
midas_depth = MidasDetector.from_pretrained(
  "valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large"
).to("cuda")

prompt = "a tiger sitting on a park bench"
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

image = load_image(img_url).resize((1024, 1024))
mask_image = load_image(mask_url).resize((1024, 1024))

depth_image = midas_depth(
  image, detect_resolution=512, image_resolution=1024
)

strength = 0.4

images = pipe(
    prompt,
    image=image,
    mask_image=mask_image,
    control_image=depth_image,
    adapter_image=depth_image,
    num_inference_steps=30,
    controlnet_conditioning_scale=strength,
    adapter_conditioning_scale=strength,
    strength=0.7,
).images
images[0].save("controlnet_and_adapter_inpaint.png")
3624
3625
```

3626
### Regional Prompting Pipeline
3627

3628
This pipeline is a port of the [Regional Prompter extension](https://github.com/hako-mikan/sd-webui-regional-prompter) for [Stable Diffusion web UI](https://github.com/AUTOMATIC1111/stable-diffusion-webui) to `diffusers`.
3629
3630
3631
3632
3633
This code implements a pipeline for the Stable Diffusion model, enabling the division of the canvas into multiple regions, with different prompts applicable to each region. Users can specify regions in two ways: using `Cols` and `Rows` modes for grid-like divisions, or the `Prompt` mode for regions calculated based on prompts.

![sample](https://github.com/hako-mikan/sd-webui-regional-prompter/blob/imgs/rp_pipeline1.png)

### Usage
3634

3635
### Sample Code
3636

3637
3638
```py
from examples.community.regional_prompting_stable_diffusion import RegionalPromptingStableDiffusionPipeline
3639

3640
3641
3642
3643
3644
pipe = RegionalPromptingStableDiffusionPipeline.from_single_file(model_path, vae=vae)

rp_args = {
    "mode":"rows",
    "div": "1;1;1"
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3645
}
3646

3647
prompt = """
3648
3649
3650
3651
3652
3653
3654
3655
3656
green hair twintail BREAK
red blouse BREAK
blue skirt
"""

images = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    guidance_scale=7.5,
3657
3658
3659
3660
3661
3662
    height=768,
    width=512,
    num_inference_steps=20,
    num_images_per_prompt=1,
    rp_args=rp_args
    ).images
3663
3664
3665
3666
3667
3668
3669
3670

time = time.strftime(r"%Y%m%d%H%M%S")
i = 1
for image in images:
    i += 1
    fileName = f'img-{time}-{i+1}.png'
    image.save(fileName)
```
3671

3672
### Cols, Rows mode
3673

3674
3675
In the Cols, Rows mode, you can split the screen vertically and horizontally and assign prompts to each region. The split ratio can be specified by 'div', and you can set the division ratio like '3;3;2' or '0.1;0.5'. Furthermore, as will be described later, you can also subdivide the split Cols, Rows to specify more complex regions.

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3676
In this image, the image is divided into three parts, and a separate prompt is applied to each. The prompts are divided by 'BREAK', and each is applied to the respective region.
3677
![sample](https://github.com/hako-mikan/sd-webui-regional-prompter/blob/imgs/rp_pipeline2.png)
3678

3679
3680
3681
3682
3683
3684
3685
```
green hair twintail BREAK
red blouse BREAK
blue skirt
```

### 2-Dimentional division
3686

3687
The prompt consists of instructions separated by the term `BREAK` and is assigned to different regions of a two-dimensional space. The image is initially split in the main splitting direction, which in this case is rows, due to the presence of a single semicolon `;`, dividing the space into an upper and a lower section. Additional sub-splitting is then applied, indicated by commas. The upper row is split into ratios of `2:1:1`, while the lower row is split into a ratio of `4:6`. Rows themselves are split in a `1:2` ratio. According to the reference image, the blue sky is designated as the first region, green hair as the second, the bookshelf as the third, and so on, in a sequence based on their position from the top left. The terrarium is placed on the desk in the fourth region, and the orange dress and sofa are in the fifth region, conforming to their respective splits.
3688

3689
```py
3690
3691
3692
3693
3694
rp_args = {
    "mode":"rows",
    "div": "1,2,1,1;2,4,6"
}

3695
prompt = """
3696
3697
3698
blue sky BREAK
green hair BREAK
book shelf BREAK
3699
terrarium on the desk BREAK
3700
3701
3702
orange dress and sofa
"""
```
3703

3704
3705
3706
![sample](https://github.com/hako-mikan/sd-webui-regional-prompter/blob/imgs/rp_pipeline4.png)

### Prompt Mode
3707

3708
There are limitations to methods of specifying regions in advance. This is because specifying regions can be a hindrance when designating complex shapes or dynamic compositions. In the region specified by the prompt, the region is determined after the image generation has begun. This allows us to accommodate compositions and complex regions.
3709
For further infomagen, see [here](https://github.com/hako-mikan/sd-webui-regional-prompter/blob/main/prompt_en.md).
3710

3711
### Syntax
3712

3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
```
baseprompt target1 target2 BREAK
effect1, target1 BREAK
effect2 ,target2
```

First, write the base prompt. In the base prompt, write the words (target1, target2) for which you want to create a mask. Next, separate them with BREAK. Next, write the prompt corresponding to target1. Then enter a comma and write target1. The order of the targets in the base prompt and the order of the BREAK-separated targets can be back to back.

```
target2 baseprompt target1  BREAK
effect1, target1 BREAK
effect2 ,target2
```
3726

3727
3728
3729
is also effective.

### Sample
3730

3731
In this example, masks are calculated for shirt, tie, skirt, and color prompts are specified only for those regions.
3732

3733
```py
3734
rp_args = {
3735
3736
    "mode": "prompt-ex",
    "save_mask": True,
3737
3738
3739
    "th": "0.4,0.6,0.6",
}

3740
prompt = """
3741
3742
3743
a girl in street with shirt, tie, skirt BREAK
red, shirt BREAK
green, tie BREAK
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3744
blue , skirt
3745
3746
"""
```
3747

3748
![sample](https://github.com/hako-mikan/sd-webui-regional-prompter/blob/imgs/rp_pipeline3.png)
3749

3750
### Threshold
3751

3752
3753
3754
3755
3756
3757
3758
The threshold used to determine the mask created by the prompt. This can be set as many times as there are masks, as the range varies widely depending on the target prompt. If multiple regions are used, enter them separated by commas. For example, hair tends to be ambiguous and requires a small value, while face tends to be large and requires a small value. These should be ordered by BREAK.

```
a lady ,hair, face  BREAK
red, hair BREAK
tanned ,face
```
3759

3760
3761
3762
3763
`threshold : 0.4,0.6`
If only one input is given for multiple regions, they are all assumed to be the same value.

### Prompt and Prompt-EX
3764

3765
3766
3767
The difference is that in Prompt, duplicate regions are added, whereas in Prompt-EX, duplicate regions are overwritten sequentially. Since they are processed in order, setting a TARGET with a large regions first makes it easier for the effect of small regions to remain unmuffled.

### Accuracy
3768

3769
In the case of a 512x512 image, Attention mode reduces the size of the region to about 8x8 pixels deep in the U-Net, so that small regions get mixed up; Latent mode calculates 64*64, so that the region is exact.
3770

3771
3772
3773
3774
3775
3776
3777
```
girl hair twintail frills,ribbons, dress, face BREAK
girl, ,face
```

### Mask

3778
When an image is generated, the generated mask is displayed. It is generated at the same size as the image, but is actually used at a much smaller size.
3779
3780

### Use common prompt
3781

3782
You can attach the prompt up to ADDCOMM to all prompts by separating it first with ADDCOMM. This is useful when you want to include elements common to all regions. For example, when generating pictures of three people with different appearances, it's necessary to include the instruction of 'three people' in all regions. It's also useful when inserting quality tags and other things. "For example, if you write as follows:
3783

3784
3785
3786
3787
3788
3789
```
best quality, 3persons in garden, ADDCOMM
a girl white dress BREAK
a boy blue shirt BREAK
an old man red suit
```
3790

3791
If common is enabled, this prompt is converted to the following:
3792

3793
3794
3795
3796
3797
```
best quality, 3persons in garden, a girl white dress BREAK
best quality, 3persons in garden, a boy blue shirt BREAK
best quality, 3persons in garden, an old man red suit
```
3798

3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
### Use base prompt

You can use a base prompt to apply the prompt to all areas. You can set a base prompt by adding `ADDBASE` at the end. Base prompts can also be combined with common prompts, but the base prompt must be specified first.

```
2d animation style ADDBASE
masterpiece, high quality ADDCOMM
(blue sky)++ BREAK
green hair twintail BREAK
book shelf BREAK
messy desk BREAK
orange++ dress and sofa
```

3813
### Negative prompt
3814

3815
3816
3817
Negative prompts are equally effective across all regions, but it is possible to set region-specific prompts for negative prompts as well. The number of BREAKs must be the same as the number of prompts. If the number of prompts does not match, the negative prompts will be used without being divided into regions.

### Parameters
3818

3819
To activate Regional Prompter, it is necessary to enter settings in `rp_args`. The items that can be set are as follows. `rp_args` is a dictionary type.
3820
3821

### Input Parameters
3822

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3823
Parameters are specified through the `rp_arg`(dictionary type).
3824

3825
```py
3826
3827
3828
rp_args = {
    "mode":"rows",
    "div": "1;1;1"
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3829
}
3830

3831
pipe(prompt=prompt, rp_args=rp_args)
3832
3833
3834
```

### Required Parameters
3835

3836
- `mode`: Specifies the method for defining regions. Choose from `Cols`, `Rows`, `Prompt`, or `Prompt-Ex`. This parameter is case-insensitive.
3837
3838
3839
3840
- `divide`: Used in `Cols` and `Rows` modes. Details on how to specify this are provided under the respective `Cols` and `Rows` sections.
- `th`: Used in `Prompt` mode. The method of specification is detailed under the `Prompt` section.

### Optional Parameters
3841

3842
- `save_mask`: In `Prompt` mode, choose whether to output the generated mask along with the image. The default is `False`.
3843
- `base_ratio`: Used with `ADDBASE`. Sets the ratio of the base prompt; if base ratio is set to 0.2, then resulting images will consist of `20%*BASE_PROMPT + 80%*REGION_PROMPT`
3844
3845
3846

The Pipeline supports `compel` syntax. Input prompts using the `compel` structure will be automatically applied and processed.

3847
### Diffusion Posterior Sampling Pipeline
3848
3849
3850

- Reference paper

3851
    ```bibtex
3852
3853
3854
3855
3856
3857
3858
    @article{chung2022diffusion,
    title={Diffusion posterior sampling for general noisy inverse problems},
    author={Chung, Hyungjin and Kim, Jeongsol and Mccann, Michael T and Klasky, Marc L and Ye, Jong Chul},
    journal={arXiv preprint arXiv:2209.14687},
    year={2022}
    }
    ```
3859
3860
3861
3862

- This pipeline allows zero-shot conditional sampling from the posterior distribution $p(x|y)$, given observation on $y$, unconditional generative model $p(x)$ and differentiable operator $y=f(x)$.

- For example, $f(.)$ can be downsample operator, then $y$ is a downsampled image, and the pipeline becomes a super-resolution pipeline.
3863
- To use this pipeline, you need to know your operator $f(.)$ and corrupted image $y$, and pass them during the call. For example, as in the main function of `dps_pipeline.py`, you need to first define the Gaussian blurring operator $f(.)$. The operator should be a callable `nn.Module`, with all the parameter gradient disabled:
3864

3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
    ```python
    import torch.nn.functional as F
    import scipy
    from torch import nn

    # define the Gaussian blurring operator first
    class GaussialBlurOperator(nn.Module):
        def __init__(self, kernel_size, intensity):
            super().__init__()

            class Blurkernel(nn.Module):
                def __init__(self, blur_type='gaussian', kernel_size=31, std=3.0):
                    super().__init__()
                    self.blur_type = blur_type
                    self.kernel_size = kernel_size
                    self.std = std
                    self.seq = nn.Sequential(
                        nn.ReflectionPad2d(self.kernel_size//2),
                        nn.Conv2d(3, 3, self.kernel_size, stride=1, padding=0, bias=False, groups=3)
                    )
                    self.weights_init()

                def forward(self, x):
                    return self.seq(x)

                def weights_init(self):
                    if self.blur_type == "gaussian":
                        n = np.zeros((self.kernel_size, self.kernel_size))
3893
                        n[self.kernel_size // 2, self.kernel_size // 2] = 1
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
                        k = scipy.ndimage.gaussian_filter(n, sigma=self.std)
                        k = torch.from_numpy(k)
                        self.k = k
                        for name, f in self.named_parameters():
                            f.data.copy_(k)
                    elif self.blur_type == "motion":
                        k = Kernel(size=(self.kernel_size, self.kernel_size), intensity=self.std).kernelMatrix
                        k = torch.from_numpy(k)
                        self.k = k
                        for name, f in self.named_parameters():
                            f.data.copy_(k)

                def update_weights(self, k):
                    if not torch.is_tensor(k):
                        k = torch.from_numpy(k)
                    for name, f in self.named_parameters():
                        f.data.copy_(k)

                def get_kernel(self):
                    return self.k
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3914

3915
3916
3917
3918
3919
3920
3921
3922
            self.kernel_size = kernel_size
            self.conv = Blurkernel(blur_type='gaussian',
                                kernel_size=kernel_size,
                                std=intensity)
            self.kernel = self.conv.get_kernel()
            self.conv.update_weights(self.kernel.type(torch.float32))

            for param in self.parameters():
3923
                param.requires_grad = False
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933

        def forward(self, data, **kwargs):
            return self.conv(data)

        def transpose(self, data, **kwargs):
            return data

        def get_kernel(self):
            return self.kernel.view(1, 1, self.kernel_size, self.kernel_size)
    ```
3934
3935
3936

- Next, you should obtain the corrupted image $y$ by the operator. In this example, we generate $y$ from the source image $x$. However in practice, having the operator $f(.)$ and corrupted image $y$ is enough:

3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
    ```python
    # set up source image
    src = Image.open('sample.png')
    # read image into [1,3,H,W]
    src = torch.from_numpy(np.array(src, dtype=np.float32)).permute(2,0,1)[None]
    # normalize image to [-1,1]
    src = (src / 127.5) - 1.0
    src = src.to("cuda")

    # set up operator and measurement
    operator = GaussialBlurOperator(kernel_size=61, intensity=3.0).to("cuda")
    measurement = operator(src)

    # save the source and corrupted images
    save_image((src+1.0)/2.0, "dps_src.png")
    save_image((measurement+1.0)/2.0, "dps_mea.png")
    ```
3954
3955
3956
3957
3958
3959

- We provide an example pair of saved source and corrupted images, using the Gaussian blur operator above
  - Source image:
  - ![sample](https://github.com/tongdaxu/Images/assets/22267548/4d2a1216-08d1-4aeb-9ce3-7a2d87561d65)
  - Gaussian blurred image:
  - ![ddpm_generated_image](https://github.com/tongdaxu/Images/assets/22267548/65076258-344b-4ed8-b704-a04edaade8ae)
3960
  - You can download those images to run the example on your own.
3961
3962
3963

- Next, we need to define a loss function used for diffusion posterior sample. For most of the cases, the RMSE is fine:

3964
3965
3966
3967
    ```python
    def RMSELoss(yhat, y):
        return torch.sqrt(torch.sum((yhat-y)**2))
    ```
3968

3969
- And next, as any other diffusion models, we need the score estimator and scheduler. As we are working with $256x256$ face images, we use ddpm-celebahq-256:
3970

3971
3972
3973
3974
3975
3976
3977
3978
    ```python
    # set up scheduler
    scheduler = DDPMScheduler.from_pretrained("google/ddpm-celebahq-256")
    scheduler.set_timesteps(1000)

    # set up model
    model = UNet2DModel.from_pretrained("google/ddpm-celebahq-256").to("cuda")
    ```
3979
3980
3981

- And finally, run the pipeline:

3982
3983
3984
3985
    ```python
    # finally, the pipeline
    dpspipe = DPSPipeline(model, scheduler)
    image = dpspipe(
3986
3987
3988
3989
        measurement=measurement,
        operator=operator,
        loss_fn=RMSELoss,
        zeta=1.0,
3990
3991
3992
    ).images[0]
    image.save("dps_generated_image.png")
    ```
3993

3994
- The `zeta` is a hyperparameter that is in range of $[0,1]$. It needs to be tuned for best effect. By setting `zeta=1`, you should be able to have the reconstructed result:
3995
3996
3997
3998
  - Reconstructed image:
  - ![sample](https://github.com/tongdaxu/Images/assets/22267548/0ceb5575-d42e-4f0b-99c0-50e69c982209)

- The reconstruction is perceptually similar to the source image, but different in details.
3999
- In `dps_pipeline.py`, we also provide a super-resolution example, which should produce:
4000
4001
4002
4003
  - Downsampled image:
  - ![dps_mea](https://github.com/tongdaxu/Images/assets/22267548/ff6a33d6-26f0-42aa-88ce-f8a76ba45a13)
  - Reconstructed image:
  - ![dps_generated_image](https://github.com/tongdaxu/Images/assets/22267548/b74f084d-93f4-4845-83d8-44c0fa758a5f)
4004

4005
4006
4007
4008
4009
4010
### AnimateDiff ControlNet Pipeline

This pipeline combines AnimateDiff and ControlNet. Enjoy precise motion control for your videos! Refer to [this](https://github.com/huggingface/diffusers/issues/5866) issue for more details.

```py
import torch
4011
4012
from diffusers import AutoencoderKL, ControlNetModel, MotionAdapter, DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_gif
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
from PIL import Image

motion_id = "guoyww/animatediff-motion-adapter-v1-5-2"
adapter = MotionAdapter.from_pretrained(motion_id)
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)

model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = DiffusionPipeline.from_pretrained(
    model_id,
    motion_adapter=adapter,
    controlnet=controlnet,
    vae=vae,
    custom_pipeline="pipeline_animatediff_controlnet",
4027
4028
    torch_dtype=torch.float16,
).to(device="cuda")
4029
pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained(
4030
    model_id, subfolder="scheduler", beta_schedule="linear", clip_sample=False, timestep_spacing="linspace", steps_offset=1
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
)
pipe.enable_vae_slicing()

conditioning_frames = []
for i in range(1, 16 + 1):
    conditioning_frames.append(Image.open(f"frame_{i}.png"))

prompt = "astronaut in space, dancing"
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
result = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    width=512,
    height=768,
    conditioning_frames=conditioning_frames,
4046
    num_inference_steps=20,
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
).frames[0]

export_to_gif(result.frames[0], "result.gif")
```

<table>
  <tr><td colspan="2" align=center><b>Conditioning Frames</b></td></tr>
  <tr align=center>
    <td align=center><img src="https://user-images.githubusercontent.com/7365912/265043418-23291941-864d-495a-8ba8-d02e05756396.gif" alt="input-frames"></td>
  </tr>
  <tr><td colspan="2" align=center><b>AnimateDiff model: SG161222/Realistic_Vision_V5.1_noVAE</b></td></tr>
  <tr>
    <td align=center><img src="https://github.com/huggingface/diffusers/assets/72266394/baf301e2-d03c-4129-bd84-203a1de2b2be" alt="gif-1"></td>
    <td align=center><img src="https://github.com/huggingface/diffusers/assets/72266394/9f923475-ecaf-452b-92c8-4e42171182d8" alt="gif-2"></td>
  </tr>
  <tr><td colspan="2" align=center><b>AnimateDiff model: CardosAnime</b></td></tr>
  <tr>
    <td align=center><img src="https://github.com/huggingface/diffusers/assets/72266394/b2c41028-38a0-45d6-86ed-fec7446b87f7" alt="gif-1"></td>
    <td align=center><img src="https://github.com/huggingface/diffusers/assets/72266394/eb7d2952-72e4-44fa-b664-077c79b4fc70" alt="gif-2"></td>
  </tr>
</table>
4068

4069
4070
4071
4072
You can also use multiple controlnets at once!

```python
import torch
4073
4074
from diffusers import AutoencoderKL, ControlNetModel, MotionAdapter, DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_gif
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
from PIL import Image

motion_id = "guoyww/animatediff-motion-adapter-v1-5-2"
adapter = MotionAdapter.from_pretrained(motion_id)
controlnet1 = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch.float16)
controlnet2 = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)

model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = DiffusionPipeline.from_pretrained(
    model_id,
    motion_adapter=adapter,
    controlnet=[controlnet1, controlnet2],
    vae=vae,
    custom_pipeline="pipeline_animatediff_controlnet",
4090
4091
    torch_dtype=torch.float16,
).to(device="cuda")
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained(
    model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", steps_offset=1, beta_schedule="linear",
)
pipe.enable_vae_slicing()

def load_video(file_path: str):
    images = []

    if file_path.startswith(('http://', 'https://')):
        # If the file_path is a URL
        response = requests.get(file_path)
        response.raise_for_status()
        content = BytesIO(response.content)
        vid = imageio.get_reader(content)
    else:
        # Assuming it's a local file path
        vid = imageio.get_reader(file_path)

    for frame in vid:
        pil_image = Image.fromarray(frame)
        images.append(pil_image)

    return images

video = load_video("dance.gif")

# You need to install it using `pip install controlnet_aux`
from controlnet_aux.processor import Processor

p1 = Processor("openpose_full")
cn1 = [p1(frame) for frame in video]

p2 = Processor("canny")
cn2 = [p2(frame) for frame in video]

prompt = "astronaut in space, dancing"
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
result = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    width=512,
    height=768,
    conditioning_frames=[cn1, cn2],
    num_inference_steps=20,
)

export_to_gif(result.frames[0], "result.gif")
```

4141
### DemoFusion
4142

4143
4144
This pipeline is the official implementation of [DemoFusion: Democratising High-Resolution Image Generation With No $$$](https://arxiv.org/abs/2311.16973).
The original repo can be found at [repo](https://github.com/PRIS-CV/DemoFusion).
4145

4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
- `view_batch_size` (`int`, defaults to 16):
  The batch size for multiple denoising paths. Typically, a larger batch size can result in higher efficiency but comes with increased GPU memory requirements.

- `stride` (`int`, defaults to 64):
  The stride of moving local patches. A smaller stride is better for alleviating seam issues, but it also introduces additional computational overhead and inference time.

- `cosine_scale_1` (`float`, defaults to 3):
  Control the strength of skip-residual. For specific impacts, please refer to Appendix C in the DemoFusion paper.

- `cosine_scale_2` (`float`, defaults to 1):
  Control the strength of dilated sampling. For specific impacts, please refer to Appendix C in the DemoFusion paper.

- `cosine_scale_3` (`float`, defaults to 1):
  Control the strength of the Gaussian filter. For specific impacts, please refer to Appendix C in the DemoFusion paper.

- `sigma` (`float`, defaults to 1):
  The standard value of the Gaussian filter. Larger sigma promotes the global guidance of dilated sampling, but has the potential of over-smoothing.

- `multi_decoder` (`bool`, defaults to True):
  Determine whether to use a tiled decoder. Generally, when the resolution exceeds 3072x3072, a tiled decoder becomes necessary.

- `show_image` (`bool`, defaults to False):
  Determine whether to show intermediate results during generation.
4169

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4170
```py
Radamés Ajna's avatar
Radamés Ajna committed
4171
from diffusers import DiffusionPipeline
4172
import torch
4173

Radamés Ajna's avatar
Radamés Ajna committed
4174
4175
4176
4177
4178
4179
pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    custom_pipeline="pipeline_demofusion_sdxl",
    custom_revision="main",
    torch_dtype=torch.float16,
)
4180
4181
4182
4183
4184
4185
pipe = pipe.to("cuda")

prompt = "Envision a portrait of an elderly woman, her face a canvas of time, framed by a headscarf with muted tones of rust and cream. Her eyes, blue like faded denim. Her attire, simple yet dignified."
negative_prompt = "blurry, ugly, duplicate, poorly drawn, deformed, mosaic"

images = pipe(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4186
    prompt,
4187
    negative_prompt=negative_prompt,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4188
4189
4190
    height=3072,
    width=3072,
    view_batch_size=16,
4191
    stride=64,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4192
    num_inference_steps=50,
4193
    guidance_scale=7.5,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4194
4195
4196
    cosine_scale_1=3,
    cosine_scale_2=1,
    cosine_scale_3=1,
4197
    sigma=0.8,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4198
    multi_decoder=True,
4199
4200
4201
    show_image=True
)
```
4202

4203
You can display and save the generated images as:
4204

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4205
```py
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
def image_grid(imgs, save_path=None):

    w = 0
    for i, img in enumerate(imgs):
        h_, w_ = imgs[i].size
        w += w_
    h = h_
    grid = Image.new('RGB', size=(w, h))
    grid_w, grid_h = grid.size

    w = 0
    for i, img in enumerate(imgs):
        h_, w_ = imgs[i].size
        grid.paste(img, box=(w, h - h_))
        if save_path != None:
            img.save(save_path + "/img_{}.jpg".format((i + 1) * 1024))
        w += w_
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4223

4224
4225
4226
4227
    return grid

image_grid(images, save_path="./outputs/")
```
4228

4229
 ![output_example](https://github.com/PRIS-CV/DemoFusion/blob/main/output_example.png)
4230
4231
4232
4233
4234
4235
4236

### SDE Drag pipeline

This pipeline provides drag-and-drop image editing using stochastic differential equations. It enables image editing by inputting prompt, image, mask_image, source_points, and target_points.

![SDE Drag Image](https://github.com/huggingface/diffusers/assets/75928535/bd54f52f-f002-4951-9934-b2a4592771a5)

4237
See [paper](https://arxiv.org/abs/2311.01410), [paper page](https://ml-gsai.github.io/SDE-Drag-demo/), [original repo](https://github.com/ML-GSAI/SDE-Drag) for more information.
4238
4239
4240
4241

```py
import torch
from diffusers import DDIMScheduler, DiffusionPipeline
4242
4243
4244
4245
from PIL import Image
import requests
from io import BytesIO
import numpy as np
4246
4247

# Load the pipeline
4248
model_path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
4249
4250
4251
scheduler = DDIMScheduler.from_pretrained(model_path, subfolder="scheduler")
pipe = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler, custom_pipeline="sde_drag")

4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
# Ensure the model is moved to the GPU
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe.to(device)

# Function to load image from URL
def load_image_from_url(url):
    response = requests.get(url)
    return Image.open(BytesIO(response.content)).convert("RGB")

# Function to prepare mask
def prepare_mask(mask_image):
    # Convert to grayscale
    mask = mask_image.convert("L")
    return mask

# Function to convert numpy array to PIL Image
def array_to_pil(array):
    # Ensure the array is in uint8 format
    if array.dtype != np.uint8:
        if array.max() <= 1.0:
            array = (array * 255).astype(np.uint8)
        else:
            array = array.astype(np.uint8)
    
    # Handle different array shapes
    if len(array.shape) == 3:
        if array.shape[0] == 3:  # If channels first
            array = array.transpose(1, 2, 0)
        return Image.fromarray(array)
    elif len(array.shape) == 4:  # If batch dimension
        array = array[0]
        if array.shape[0] == 3:  # If channels first
            array = array.transpose(1, 2, 0)
        return Image.fromarray(array)
    else:
        raise ValueError(f"Unexpected array shape: {array.shape}")
4288

4289
4290
4291
# Image and mask URLs
image_url = 'https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png'
mask_url = 'https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png'
4292

4293
4294
4295
# Load the images
image = load_image_from_url(image_url)
mask_image = load_image_from_url(mask_url)
4296

4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
# Resize images to a size that's compatible with the model's latent space
image = image.resize((512, 512))
mask_image = mask_image.resize((512, 512))

# Prepare the mask (keep as PIL Image)
mask = prepare_mask(mask_image)

# Provide the prompt and points for drag editing
prompt = "A cute dog"
source_points = [[32, 32]]  # Adjusted for 512x512 image
target_points = [[64, 64]]  # Adjusted for 512x512 image

# Generate the output image
output_array = pipe(
    prompt=prompt,
    image=image,
    mask_image=mask,
    source_points=source_points,
    target_points=target_points
)

# Convert output array to PIL Image and save
output_image = array_to_pil(output_array)
4320
output_image.save("./output.png")
4321
4322
print("Output image saved as './output.png'")

4323
```
4324

4325
### Instaflow Pipeline
4326

4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
InstaFlow is an ultra-fast, one-step image generator that achieves image quality close to Stable Diffusion, significantly reducing the demand of computational resources. This efficiency is made possible through a recent [Rectified Flow](https://github.com/gnobitab/RectifiedFlow) technique, which trains probability flows with straight trajectories, hence inherently requiring only a single step for fast inference.

```python
from diffusers import DiffusionPipeline
import torch


pipe = DiffusionPipeline.from_pretrained("XCLIU/instaflow_0_9B_from_sd_1_5", torch_dtype=torch.float16, custom_pipeline="instaflow_one_step")
pipe.to("cuda")  ### if GPU is not available, comment this line
prompt = "A hyper-realistic photo of a cute cat."

images = pipe(prompt=prompt,
            num_inference_steps=1,
            guidance_scale=0.0).images
images[0].save("./image.png")
```
4343

4344
4345
![image1](https://huggingface.co/datasets/ayushtues/instaflow_images/resolve/main/instaflow_cat.png)

4346
You can also combine it with LORA out of the box, like <https://huggingface.co/artificialguybr/logo-redmond-1-5v-logo-lora-for-liberteredmond-sd-1-5>, to unlock cool use cases in single step!
4347
4348
4349
4350
4351

```python
from diffusers import DiffusionPipeline
import torch

4352
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
4353
4354

pipe = DiffusionPipeline.from_pretrained("XCLIU/instaflow_0_9B_from_sd_1_5", torch_dtype=torch.float16, custom_pipeline="instaflow_one_step")
4355
pipe.to(device)  ### if GPU is not available, comment this line
4356
4357
4358
4359
4360
4361
4362
pipe.load_lora_weights("artificialguybr/logo-redmond-1-5v-logo-lora-for-liberteredmond-sd-1-5")
prompt = "logo, A logo for a fitness app, dynamic running figure, energetic colors (red, orange) ),LogoRedAF ,"
images = pipe(prompt=prompt,
            num_inference_steps=1,
            guidance_scale=0.0).images
images[0].save("./image.png")
```
4363

4364
4365
![image0](https://huggingface.co/datasets/ayushtues/instaflow_images/resolve/main/instaflow_logo.png)

4366
4367
4368
### Null-Text Inversion pipeline

This pipeline provides null-text inversion for editing real images. It enables null-text optimization, and DDIM reconstruction via w, w/o null-text optimization. No prompt-to-prompt code is implemented as there is a Prompt2PromptPipeline.
4369
4370
4371

- Reference paper

4372
4373
4374
4375
4376
4377
    ```bibtex
    @article{hertz2022prompt,
    title={Prompt-to-prompt image editing with cross attention control},
    author={Hertz, Amir and Mokady, Ron and Tenenbaum, Jay and Aberman, Kfir and Pritch, Yael and Cohen-Or, Daniel},
    booktitle={arXiv preprint arXiv:2208.01626},
    year={2022}
4378
4379
4380
    ```}

```py
4381
from diffusers import DDIMScheduler
4382
4383
4384
4385
4386
4387
4388
4389
4390
from examples.community.pipeline_null_text_inversion import NullTextPipeline
import torch

device = "cuda"
# Provide invert_prompt and the image for null-text optimization.
invert_prompt = "A lying cat"
input_image = "siamese.jpg"
steps = 50

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4391
# Provide prompt used for generation. Same if reconstruction
4392
4393
4394
4395
prompt = "A lying cat"
# or different if editing.
prompt = "A lying dog"

4396
# Float32 is essential to a well optimization
4397
model_path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
4398
scheduler = DDIMScheduler(num_train_timesteps=1000, beta_start=0.00085, beta_end=0.0120, beta_schedule="scaled_linear")
4399
pipeline = NullTextPipeline.from_pretrained(model_path, scheduler=scheduler, torch_dtype=torch.float32).to(device)
4400

4401
4402
# Saves the inverted_latent to save time
inverted_latent, uncond = pipeline.invert(input_image, invert_prompt, num_inner_steps=10, early_stop_epsilon=1e-5, num_inference_steps=steps)
4403
pipeline(prompt, uncond, inverted_latent, guidance_scale=7.5, num_inference_steps=steps).images[0].save(input_image+".output.jpg")
4404
```
Aryan V S's avatar
Aryan V S committed
4405

pravdomil's avatar
pravdomil committed
4406
### Rerender A Video
4407

pravdomil's avatar
pravdomil committed
4408
This is the Diffusers implementation of zero-shot video-to-video translation pipeline [Rerender A Video](https://github.com/williamyang1991/Rerender_A_Video) (without Ebsynth postprocessing). To run the code, please install gmflow. Then modify the path in `gmflow_dir`. After that, you can run the pipeline with:
4409
4410

```py
pravdomil's avatar
pravdomil committed
4411
import sys
4412
gmflow_dir = "/path/to/gmflow"
pravdomil's avatar
pravdomil committed
4413
sys.path.insert(0, gmflow_dir)
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458

from diffusers import ControlNetModel, AutoencoderKL, DDIMScheduler
from diffusers.utils import export_to_video
import numpy as np
import torch

import cv2
from PIL import Image

def video_to_frame(video_path: str, interval: int):
    vidcap = cv2.VideoCapture(video_path)
    success = True

    count = 0
    res = []
    while success:
        count += 1
        success, image = vidcap.read()
        if count % interval != 1:
            continue
        if image is not None:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            res.append(image)

    vidcap.release()
    return res

input_video_path = 'path/to/video'
input_interval = 10
frames = video_to_frame(
    input_video_path, input_interval)

control_frames = []
# get canny image
for frame in frames:
    np_image = cv2.Canny(frame, 50, 100)
    np_image = np_image[:, :, None]
    np_image = np.concatenate([np_image, np_image, np_image], axis=2)
    canny_image = Image.fromarray(np_image)
    control_frames.append(canny_image)

# You can use any ControlNet here
controlnet = ControlNetModel.from_pretrained(
    "lllyasviel/sd-controlnet-canny").to('cuda')

4459
# You can use any finetuned SD here
4460
pipe = DiffusionPipeline.from_pretrained(
4461
    "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, custom_pipeline='rerender_a_video').to('cuda')
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484

# Optional: you can download vae-ft-mse-840000-ema-pruned.ckpt to enhance the results
# pipe.vae = AutoencoderKL.from_single_file(
#     "path/to/vae-ft-mse-840000-ema-pruned.ckpt").to('cuda')

pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)

generator = torch.manual_seed(0)
frames = [Image.fromarray(frame) for frame in frames]
output_frames = pipe(
    "a beautiful woman in CG style, best quality, extremely detailed",
    frames,
    control_frames,
    num_inference_steps=20,
    strength=0.75,
    controlnet_conditioning_scale=0.7,
    generator=generator,
    warp_start=0.0,
    warp_end=0.1,
    mask_start=0.5,
    mask_end=0.8,
    mask_strength=0.5,
    negative_prompt='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4485
).frames[0]
4486
4487
4488

export_to_video(
    output_frames, "/path/to/video.mp4", 5)
4489
4490
4491
4492
```

### StyleAligned Pipeline

Aryan V S's avatar
Aryan V S committed
4493
This pipeline is the implementation of [Style Aligned Image Generation via Shared Attention](https://arxiv.org/abs/2312.02133). You can find more results [here](https://github.com/huggingface/diffusers/pull/6489#issuecomment-1881209354).
4494
4495
4496
4497
4498
4499
4500

> Large-scale Text-to-Image (T2I) models have rapidly gained prominence across creative fields, generating visually compelling outputs from textual prompts. However, controlling these models to ensure consistent style remains challenging, with existing methods necessitating fine-tuning and manual intervention to disentangle content and style. In this paper, we introduce StyleAligned, a novel technique designed to establish style alignment among a series of generated images. By employing minimal `attention sharing' during the diffusion process, our method maintains style consistency across images within T2I models. This approach allows for the creation of style-consistent images using a reference style through a straightforward inversion operation. Our method's evaluation across diverse styles and text prompts demonstrates high-quality synthesis and fidelity, underscoring its efficacy in achieving consistent style across various inputs.

```python
from typing import List

import torch
4501
from diffusers import DiffusionPipeline
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
from PIL import Image

model_id = "a-r-r-o-w/dreamshaper-xl-turbo"
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", custom_pipeline="pipeline_sdxl_style_aligned")
pipe = pipe.to("cuda")

# Enable memory saving techniques
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()

prompt = [
  "a toy train. macro photo. 3d game asset",
  "a toy airplane. macro photo. 3d game asset",
  "a toy bicycle. macro photo. 3d game asset",
  "a toy car. macro photo. 3d game asset",
]
negative_prompt = "low quality, worst quality, "

# Enable StyleAligned
pipe.enable_style_aligned(
    share_group_norm=False,
    share_layer_norm=False,
    share_attention=True,
    adain_queries=True,
    adain_keys=True,
    adain_values=False,
    full_attention_share=False,
    shared_score_scale=1.0,
    shared_score_shift=0.0,
    only_self_level=0.0,
)

# Run inference
images = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    guidance_scale=2,
    height=1024,
    width=1024,
    num_inference_steps=10,
    generator=torch.Generator().manual_seed(42),
).images

# Disable StyleAligned if you do not wish to use it anymore
pipe.disable_style_aligned()
4547
4548
```

4549
4550
4551
4552
### AnimateDiff Image-To-Video Pipeline

This pipeline adds experimental support for the image-to-video task using AnimateDiff. Refer to [this](https://github.com/huggingface/diffusers/pull/6328) PR for more examples and results.

4553
4554
This pipeline relies on a "hack" discovered by the community that allows the generation of videos given an input image with AnimateDiff. It works by creating a copy of the image `num_frames` times and progressively adding more noise to the image based on the strength and latent interpolation method.

4555
4556
4557
4558
4559
```py
import torch
from diffusers import MotionAdapter, DiffusionPipeline, DDIMScheduler
from diffusers.utils import export_to_gif, load_image

4560
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
4561
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
4562
4563
pipe = DiffusionPipeline.from_pretrained(model_id, motion_adapter=adapter, custom_pipeline="pipeline_animatediff_img2video").to("cuda")
pipe.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", beta_schedule="linear", steps_offset=1)
4564
4565
4566
4567
4568
4569

image = load_image("snail.png")
output = pipe(
  image=image,
  prompt="A snail moving on the ground",
  strength=0.8,
4570
  latent_interpolation_method="slerp",  # can be lerp, slerp, or your own callback
4571
4572
4573
4574
4575
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
```

4576
### IP Adapter Face ID
4577

4578
4579
IP Adapter FaceID is an experimental IP Adapter model that uses image embeddings generated by `insightface`, so no image encoder needs to be loaded.
You need to install `insightface` and all its requirements to use this model.
4580
You must pass the image embedding tensor as `image_embeds` to the `DiffusionPipeline` instead of `ip_adapter_image`.
Aryan V S's avatar
Aryan V S committed
4581
You can find more results [here](https://github.com/huggingface/diffusers/pull/6276).
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612

```py
import torch
from diffusers.utils import load_image
import cv2
import numpy as np
from diffusers import DiffusionPipeline, AutoencoderKL, DDIMScheduler
from insightface.app import FaceAnalysis


noise_scheduler = DDIMScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
    steps_offset=1,
)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained(
    "SG161222/Realistic_Vision_V4.0_noVAE",
    torch_dtype=torch.float16,
    scheduler=noise_scheduler,
    vae=vae,
    custom_pipeline="ip_adapter_face_id"
)
pipeline.load_ip_adapter_face_id("h94/IP-Adapter-FaceID", "ip-adapter-faceid_sd15.bin")
pipeline.to("cuda")

generator = torch.Generator(device="cpu").manual_seed(42)
4613
num_images = 2
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624

image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ai_face2.png")

app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_BGR2RGB)
faces = app.get(image)
image = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
images = pipeline(
    prompt="A photo of a girl wearing a black dress, holding red roses in hand, upper body, behind is the Eiffel Tower",
    image_embeds=image,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4625
4626
    negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
    num_inference_steps=20, num_images_per_prompt=num_images, width=512, height=704,
4627
4628
4629
4630
4631
4632
    generator=generator
).images

for i in range(num_images):
    images[i].save(f"c{i}.png")
```
Haofan Wang's avatar
Haofan Wang committed
4633
4634
4635

### InstantID Pipeline

4636
InstantID is a new state-of-the-art tuning-free method to achieve ID-Preserving generation with only single image, supporting various downstream tasks. For any usage question, please refer to the [official implementation](https://github.com/InstantID/InstantID).
Haofan Wang's avatar
Haofan Wang committed
4637
4638

```py
4639
# !pip install diffusers opencv-python transformers accelerate insightface
Haofan Wang's avatar
Haofan Wang committed
4640
4641
import diffusers
from diffusers.utils import load_image
4642
from diffusers import ControlNetModel
Haofan Wang's avatar
Haofan Wang committed
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659

import cv2
import torch
import numpy as np
from PIL import Image

from insightface.app import FaceAnalysis
from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps

# prepare 'antelopev2' under ./models
# https://github.com/deepinsight/insightface/issues/1896#issuecomment-1023867304
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

# prepare models under ./checkpoints
# https://huggingface.co/InstantX/InstantID
from huggingface_hub import hf_hub_download
4660

Haofan Wang's avatar
Haofan Wang committed
4661
4662
4663
4664
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/diffusion_pytorch_model.safetensors", local_dir="./checkpoints")
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")

4665
4666
face_adapter = './checkpoints/ip-adapter.bin'
controlnet_path = './checkpoints/ControlNetModel'
Haofan Wang's avatar
Haofan Wang committed
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676

# load IdentityNet
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)

base_model = 'wangqixun/YamerMIX_v8'
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
    base_model,
    controlnet=controlnet,
    torch_dtype=torch.float16
)
4677
pipe.to("cuda")
Haofan Wang's avatar
Haofan Wang committed
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703

# load adapter
pipe.load_ip_adapter_instantid(face_adapter)

# load an image
face_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ai_face2.png")

# prepare face emb
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1]  # only use the maximum face
face_emb = face_info['embedding']
face_kps = draw_kps(face_image, face_info['kps'])

# prompt
prompt = "film noir style, ink sketch|vector, male man, highly detailed, sharp focus, ultra sharpness, monochrome, high contrast, dramatic shadows, 1940s style, mysterious, cinematic"
negative_prompt = "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, vibrant, colorful"

# generate image
pipe.set_ip_adapter_scale(0.8)
image = pipe(
    prompt,
    image_embeds=face_emb,
    image=face_kps,
    controlnet_conditioning_scale=0.8,
).images[0]
```
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732

### UFOGen Scheduler

[UFOGen](https://arxiv.org/abs/2311.09257) is a generative model designed for fast one-step text-to-image generation, trained via adversarial training starting from an initial pretrained diffusion model such as Stable Diffusion. `scheduling_ufogen.py` implements a onestep and multistep sampling algorithm for UFOGen models compatible with pipelines like `StableDiffusionPipeline`. A usage example is as follows:

```py
import torch
from diffusers import StableDiffusionPipeline

from scheduling_ufogen import UFOGenScheduler

# NOTE: currently, I am not aware of any publicly available UFOGen model checkpoints trained from SD v1.5.
ufogen_model_id_or_path = "/path/to/ufogen/model"
pipe = StableDiffusionPipeline(
    ufogen_model_id_or_path,
    torch_dtype=torch.float16,
)

# You can initialize a UFOGenScheduler as follows:
pipe.scheduler = UFOGenScheduler.from_config(pipe.scheduler.config)

prompt = "Three cats having dinner at a table at new years eve, cinematic shot, 8k."

# Onestep sampling
onestep_image = pipe(prompt, num_inference_steps=1).images[0]

# Multistep sampling
multistep_image = pipe(prompt, num_inference_steps=4).images[0]
```
4733

4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
### FRESCO

This is the Diffusers implementation of zero-shot video-to-video translation pipeline [FRESCO](https://github.com/williamyang1991/FRESCO) (without Ebsynth postprocessing and background smooth). To run the code, please install gmflow. Then modify the path in `gmflow_dir`. After that, you can run the pipeline with:

```py
from PIL import Image
import cv2
import torch
import numpy as np

4744
from diffusers import ControlNetModel, DDIMScheduler, DiffusionPipeline
4745
import sys
4746

4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
gmflow_dir = "/path/to/gmflow"
sys.path.insert(0, gmflow_dir)

def video_to_frame(video_path: str, interval: int):
    vidcap = cv2.VideoCapture(video_path)
    success = True

    count = 0
    res = []
    while success:
        count += 1
        success, image = vidcap.read()
        if count % interval != 1:
            continue
        if image is not None:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            res.append(image)
            if len(res) >= 8:
                break

    vidcap.release()
    return res


input_video_path = 'https://github.com/williamyang1991/FRESCO/raw/main/data/car-turn.mp4'
output_video_path = 'car.gif'

4774
# You can use any finetuned SD here
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
model_path = 'SG161222/Realistic_Vision_V2.0'

prompt = 'a red car turns in the winter'
a_prompt = ', RAW photo, subject, (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3, '
n_prompt = '(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation'

input_interval = 5
frames = video_to_frame(
    input_video_path, input_interval)

control_frames = []
# get canny image
for frame in frames:
    image = cv2.Canny(frame, 50, 100)
    np_image = np.array(image)
    np_image = np_image[:, :, None]
    np_image = np.concatenate([np_image, np_image, np_image], axis=2)
    canny_image = Image.fromarray(np_image)
    control_frames.append(canny_image)

# You can use any ControlNet here
controlnet = ControlNetModel.from_pretrained(
    "lllyasviel/sd-controlnet-canny").to('cuda')

pipe = DiffusionPipeline.from_pretrained(
    model_path, controlnet=controlnet, custom_pipeline='fresco_v2v').to('cuda')
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)

generator = torch.manual_seed(0)
frames = [Image.fromarray(frame) for frame in frames]

output_frames = pipe(
    prompt + a_prompt,
    frames,
    control_frames,
    num_inference_steps=20,
    strength=0.75,
    controlnet_conditioning_scale=0.7,
    generator=generator,
    negative_prompt=n_prompt
).images

output_frames[0].save(output_video_path, save_all=True,
                 append_images=output_frames[1:], duration=100, loop=0)
```

4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
### AnimateDiff on IPEX

This diffusion pipeline aims to accelerate the inference of AnimateDiff on Intel Xeon CPUs with BF16/FP32 precision using [IPEX](https://github.com/intel/intel-extension-for-pytorch).

To use this pipeline, you need to:
1. Install [IPEX](https://github.com/intel/intel-extension-for-pytorch)

**Note:** For each PyTorch release, there is a corresponding release of IPEX. Here is the mapping relationship. It is recommended to install Pytorch/IPEX2.3 to get the best performance.

|PyTorch Version|IPEX Version|
|--|--|
|[v2.3.\*](https://github.com/pytorch/pytorch/tree/v2.3.0 "v2.3.0")|[v2.3.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0+cpu)|
|[v1.13.\*](https://github.com/pytorch/pytorch/tree/v1.13.0 "v1.13.0")|[v1.13.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v1.13.100+cpu)|

You can simply use pip to install IPEX with the latest version.
```python
python -m pip install intel_extension_for_pytorch
```
**Note:** To install a specific version, run with the following command:
```
python -m pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
```
2. After pipeline initialization, `prepare_for_ipex()` should be called to enable IPEX accelaration. Supported inference datatypes are Float32 and BFloat16.

```python
pipe = AnimateDiffPipelineIpex.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
# For Float32
pipe.prepare_for_ipex(torch.float32, prompt="A girl smiling")
# For BFloat16
pipe.prepare_for_ipex(torch.bfloat16, prompt="A girl smiling")
```

Then you can use the ipex pipeline in a similar way to the default animatediff pipeline.
```python
# For Float32
output = pipe(prompt="A girl smiling", guidance_scale=1.0, num_inference_steps=step)
# For BFloat16
with torch.cpu.amp.autocast(enabled = True, dtype = torch.bfloat16):
    output = pipe(prompt="A girl smiling", guidance_scale=1.0, num_inference_steps=step)
```

The following code compares the performance of the original animatediff pipeline with the ipex-optimized pipeline.
By using this optimized pipeline, we can get about 1.5-2.2 times performance boost with BFloat16 on the fifth generation of Intel Xeon CPUs, code-named Emerald Rapids.

```python
import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, EulerDiscreteScheduler
from safetensors.torch import load_file
from pipeline_animatediff_ipex import AnimateDiffPipelineIpex
import time

device = "cpu"
dtype = torch.float32

prompt = "A girl smiling"
step = 8  # Options: [1,2,4,8]
repo = "ByteDance/AnimateDiff-Lightning"
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
base = "emilianJR/epiCRealism"  # Choose to your favorite base model.

adapter = MotionAdapter().to(device, dtype)
adapter.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device))

# Helper function for time evaluation
def elapsed_time(pipeline, nb_pass=3, num_inference_steps=1):
    # warmup
    for _ in range(2):
        output = pipeline(prompt = prompt, guidance_scale=1.0, num_inference_steps = num_inference_steps)
    #time evaluation
    start = time.time()
    for _ in range(nb_pass):
        pipeline(prompt = prompt, guidance_scale=1.0, num_inference_steps = num_inference_steps)
    end = time.time()
    return (end - start) / nb_pass

##############     bf16 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe = AnimateDiffPipelineIpex.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
pipe.prepare_for_ipex(torch.bfloat16, prompt = prompt)

# 2. Original Pipeline initialization
pipe2 = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe2.scheduler = EulerDiscreteScheduler.from_config(pipe2.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")

# 3. Compare performance between Original Pipeline and IPEX Pipeline
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
    latency = elapsed_time(pipe, num_inference_steps=step)
    print("Latency of AnimateDiffPipelineIpex--bf16", latency, "s for total", step, "steps")
    latency = elapsed_time(pipe2, num_inference_steps=step)
    print("Latency of AnimateDiffPipeline--bf16", latency, "s for total", step, "steps")

##############     fp32 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe3 = AnimateDiffPipelineIpex.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe3.scheduler = EulerDiscreteScheduler.from_config(pipe3.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
pipe3.prepare_for_ipex(torch.float32, prompt = prompt)

# 2. Original Pipeline initialization
pipe4 = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe4.scheduler = EulerDiscreteScheduler.from_config(pipe4.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")

# 3. Compare performance between Original Pipeline and IPEX Pipeline
latency = elapsed_time(pipe3, num_inference_steps=step)
print("Latency of AnimateDiffPipelineIpex--fp32", latency, "s for total", step, "steps")
latency = elapsed_time(pipe4, num_inference_steps=step)
print("Latency of AnimateDiffPipeline--fp32",latency, "s for total", step, "steps")
```
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
### HunyuanDiT with Differential Diffusion

#### Usage

```python
import torch
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import load_image
from PIL import Image
from torchvision import transforms

from pipeline_hunyuandit_differential_img2img import (
    HunyuanDiTDifferentialImg2ImgPipeline,
)


pipe = HunyuanDiTDifferentialImg2ImgPipeline.from_pretrained(
    "Tencent-Hunyuan/HunyuanDiT-Diffusers", torch_dtype=torch.float16
).to("cuda")


source_image = load_image(
    "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png"
)
map = load_image(
    "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask_2.png"
)
prompt = "a green pear"
negative_prompt = "blurry"

image = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    image=source_image,
    num_inference_steps=28,
    guidance_scale=4.5,
    strength=1.0,
    map=map,
).images[0]
```

| ![Gradient](https://github.com/user-attachments/assets/e38ce4d5-1ae6-4df0-ab43-adc1b45716b5) | ![Input](https://github.com/user-attachments/assets/9c95679c-e9d7-4f5a-90d6-560203acd6b3) | ![Output](https://github.com/user-attachments/assets/5313ff64-a0c4-418b-8b55-a38f1a5e7532) |
4973
4974
| -------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------ |
| Gradient                                                                                     | Input                                                                                     | Output                                                                                     |
4975
4976

A colab notebook demonstrating all results can be found [here](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing). Depth Maps have also been added in the same colab.
4977

4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
### 🪆Matryoshka Diffusion Models

![🪆Matryoshka Diffusion Models](https://github.com/user-attachments/assets/bf90b53b-48c3-4769-a805-d9dfe4a7c572)

The Abstract of the paper:
>Diffusion models are the _de-facto_ approach for generating high-quality images and videos but learning high-dimensional models remains a formidable task due to computational and optimization challenges. Existing methods often resort to training cascaded models in pixel space, or using a downsampled latent space of a separately trained auto-encoder. In this paper, we introduce Matryoshka Diffusion (MDM), **a novel framework for high-resolution image and video synthesis**. We propose a diffusion process that denoises inputs at multiple resolutions jointly and uses a **NestedUNet** architecture where features and parameters for small scale inputs are nested within those of the large scales. In addition, MDM enables a progressive training schedule from lower to higher resolutions which leads to significant improvements in optimization for high-resolution generation. We demonstrate the effectiveness of our approach on various benchmarks, including class-conditioned image generation, high-resolution text-to-image, and text-to-video applications. Remarkably, we can train a **_single pixel-space model_ at resolutions of up to 1024 × 1024 pixels**, demonstrating strong zero shot generalization using the **CC12M dataset, which contains only 12 million images**. Code and pre-trained checkpoints are released at https://github.com/apple/ml-mdm.

- `64×64, nesting_level=0`: 1.719 GiB. With `50` DDIM inference steps:

**64x64**
:-------------------------:
4989
| <img src="https://github.com/user-attachments/assets/032738eb-c6cd-4fd9-b4d7-a7317b4b6528" width="222" height="222" alt="bird_64_64"> |
4990
4991
4992
4993
4994

- `256×256, nesting_level=1`: 1.776 GiB. With `150` DDIM inference steps:

**64x64**             |  **256x256**
:-------------------------:|:-------------------------:
4995
| <img src="https://github.com/user-attachments/assets/21b9ad8b-eea6-4603-80a2-31180f391589" width="222" height="222" alt="bird_256_64"> | <img src="https://github.com/user-attachments/assets/fc411682-8a36-422c-9488-395b77d4406e" width="222" height="222" alt="bird_256_256"> |
4996

4997
- `1024×1024, nesting_level=2`: 1.792 GiB. As one can realize the cost of adding another layer is really negligible in this context! With `250` DDIM inference steps:
4998
4999
5000

**64x64**             |  **256x256**  |  **1024x1024**
:-------------------------:|:-------------------------:|:-------------------------:
5001
| <img src="https://github.com/user-attachments/assets/febf4b98-3dee-4a8e-9946-fd42e1f232e6" width="222" height="222" alt="bird_1024_64"> | <img src="https://github.com/user-attachments/assets/c5f85b40-5d6d-4267-a92a-c89dff015b9b" width="222" height="222" alt="bird_1024_256"> | <img src="https://github.com/user-attachments/assets/ad66b913-4367-4cb9-889e-bc06f4d96148" width="222" height="222" alt="bird_1024_1024"> |
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014

```py
from diffusers import DiffusionPipeline
from diffusers.utils import make_image_grid

# nesting_level=0 -> 64x64; nesting_level=1 -> 256x256 - 64x64; nesting_level=2 -> 1024x1024 - 256x256 - 64x64
pipe = DiffusionPipeline.from_pretrained("tolgacangoz/matryoshka-diffusion-models",
                                         nesting_level=0,
                                         trust_remote_code=False,  # One needs to give permission for this code to run
                                         ).to("cuda")

prompt0 = "a blue jay stops on the top of a helmet of Japanese samurai, background with sakura tree"
prompt = f"breathtaking {prompt0}. award-winning, professional, highly detailed"
5015
image = pipe(prompt, num_inference_steps=50).images
5016
5017
5018
5019
5020
5021
make_image_grid(image, rows=1, cols=len(image))

# pipe.change_nesting_level(<int>)  # 0, 1, or 2
# 50+, 100+, and 250+ num_inference_steps are recommended for nesting levels 0, 1, and 2 respectively.
```

5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
### Stable Diffusion XL Attentive Eraser Pipeline
<img src="https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/fenmian.png"  width="600" />

**Stable Diffusion XL Attentive Eraser Pipeline** is an advanced object removal pipeline that leverages SDXL for precise content suppression and seamless region completion. This pipeline uses **self-attention redirection guidance** to modify the model’s self-attention mechanism, allowing for effective removal and inpainting across various levels of mask precision, including semantic segmentation masks, bounding boxes, and hand-drawn masks. If you are interested in more detailed information and have any questions, please refer to the [paper](https://arxiv.org/abs/2412.12974) and [official implementation](https://github.com/Anonym0u3/AttentiveEraser).

#### Key features

- **Tuning-Free**: No additional training is required, making it easy to integrate and use.
- **Flexible Mask Support**: Works with different types of masks for targeted object removal.
- **High-Quality Results**: Utilizes the inherent generative power of diffusion models for realistic content completion.

#### Usage example
To use the Stable Diffusion XL Attentive Eraser Pipeline, you can initialize it as follows:
```py
import torch
from diffusers import DDIMScheduler, DiffusionPipeline
from diffusers.utils import load_image
import torch.nn.functional as F
from torchvision.transforms.functional import to_tensor, gaussian_blur

dtype = torch.float16
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") 

scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
pipeline = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    custom_pipeline="pipeline_stable_diffusion_xl_attentive_eraser",
    scheduler=scheduler,
    variant="fp16",
    use_safetensors=True,
    torch_dtype=dtype,
).to(device)


def preprocess_image(image_path, device):
    image = to_tensor((load_image(image_path)))
    image = image.unsqueeze_(0).float() * 2 - 1 # [0,1] --> [-1,1]
    if image.shape[1] != 3:
        image = image.expand(-1, 3, -1, -1)
        image = F.interpolate(image, (1024, 1024))
        image = image.to(dtype).to(device)
        return image

def preprocess_mask(mask_path, device):
    mask = to_tensor((load_image(mask_path, convert_method=lambda img: img.convert('L'))))
    mask = mask.unsqueeze_(0).float()  # 0 or 1
    mask = F.interpolate(mask, (1024, 1024))
    mask = gaussian_blur(mask, kernel_size=(77, 77))
    mask[mask < 0.1] = 0
    mask[mask >= 0.1] = 1
    mask = mask.to(dtype).to(device)
    return mask

prompt = "" # Set prompt to null
seed=123 
generator = torch.Generator(device=device).manual_seed(seed)
source_image_path = "https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/an1024.png"
mask_path = "https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/an1024_mask.png"
source_image = preprocess_image(source_image_path, device)
mask = preprocess_mask(mask_path, device)

image = pipeline(
    prompt=prompt, 
    image=source_image,
    mask_image=mask,
    height=1024,
    width=1024,
    AAS=True, # enable AAS
    strength=0.8, # inpainting strength
    rm_guidance_scale=9, # removal guidance scale
    ss_steps = 9, # similarity suppression steps
    ss_scale = 0.3, # similarity suppression scale
    AAS_start_step=0, # AAS start step
    AAS_start_layer=34, # AAS start layer
    AAS_end_layer=70, # AAS end layer
    num_inference_steps=50, # number of inference steps # AAS_end_step = int(strength*num_inference_steps)
    generator=generator,
    guidance_scale=1,
).images[0]
image.save('./removed_img.png')
print("Object removal completed")
```

| Source Image                                                                                   | Mask                                                                                        | Output                                                                                              |
| ---------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------- |
| ![Source Image](https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/an1024.png) | ![Mask](https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/an1024_mask.png) | ![Output](https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/AE_step40_layer34.png) |

5109
5110
5111
5112
# Perturbed-Attention Guidance

[Project](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) / [arXiv](https://arxiv.org/abs/2403.17377) / [GitHub](https://github.com/KU-CVLAB/Perturbed-Attention-Guidance)

5113
This implementation is based on [Diffusers](https://huggingface.co/docs/diffusers/index). `StableDiffusionPAGPipeline` is a modification of `StableDiffusionPipeline` to support Perturbed-Attention Guidance (PAG).
5114
5115
5116

## Example Usage

5117
```py
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
import os
import torch

from accelerate.utils import set_seed

from diffusers import StableDiffusionPipeline
from diffusers.utils import load_image, make_image_grid
from diffusers.utils.torch_utils import randn_tensor

pipe = StableDiffusionPipeline.from_pretrained(
5128
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
5129
5130
5131
5132
    custom_pipeline="hyoungwoncho/sd_perturbed_attention_guidance",
    torch_dtype=torch.float16
)

5133
device = "cuda"
5134
5135
5136
5137
5138
5139
pipe = pipe.to(device)

pag_scale = 5.0
pag_applied_layers_index = ['m0']

batch_size = 4
5140
seed = 10
5141
5142
5143
5144
5145
5146
5147
5148
5149

base_dir = "./results/"
grid_dir = base_dir + "/pag" + str(pag_scale) + "/"

if not os.path.exists(grid_dir):
    os.makedirs(grid_dir)

set_seed(seed)

5150
latent_input = randn_tensor(shape=(batch_size,4,64,64), generator=None, device=device, dtype=torch.float16)
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181

output_baseline = pipe(
    "",
    width=512,
    height=512,
    num_inference_steps=50,
    guidance_scale=0.0,
    pag_scale=0.0,
    pag_applied_layers_index=pag_applied_layers_index,
    num_images_per_prompt=batch_size,
    latents=latent_input
).images

output_pag = pipe(
    "",
    width=512,
    height=512,
    num_inference_steps=50,
    guidance_scale=0.0,
    pag_scale=5.0,
    pag_applied_layers_index=pag_applied_layers_index,
    num_images_per_prompt=batch_size,
    latents=latent_input
).images

grid_image = make_image_grid(output_baseline + output_pag, rows=2, cols=batch_size)
grid_image.save(grid_dir + "sample.png")
```

## PAG Parameters

5182
`pag_scale` : guidance scale of PAG (ex: 5.0)
5183

5184
`pag_applied_layers_index` : index of the layer to apply perturbation (ex: ['m0'])
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274

# PIXART-α Controlnet pipeline

[Project](https://pixart-alpha.github.io/) / [GitHub](https://github.com/PixArt-alpha/PixArt-alpha/blob/master/asset/docs/pixart_controlnet.md)

This the implementation of the controlnet model and the pipelne for the Pixart-alpha model, adapted to use the HuggingFace Diffusers.

## Example Usage

This example uses the Pixart HED Controlnet model, converted from the control net model as trained by the authors of the paper.

```py
import sys
import os
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as TF

from pipeline_pixart_alpha_controlnet import PixArtAlphaControlnetPipeline
from diffusers.utils import load_image

from diffusers.image_processor import PixArtImageProcessor

from controlnet_aux import HEDdetector

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from pixart.controlnet_pixart_alpha import PixArtControlNetAdapterModel

controlnet_repo_id = "raulc0399/pixart-alpha-hed-controlnet"

weight_dtype = torch.float16
image_size = 1024

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

torch.manual_seed(0)

# load controlnet
controlnet = PixArtControlNetAdapterModel.from_pretrained(
    controlnet_repo_id,
    torch_dtype=weight_dtype,
    use_safetensors=True,
).to(device)

pipe = PixArtAlphaControlnetPipeline.from_pretrained(
    "PixArt-alpha/PixArt-XL-2-1024-MS",
    controlnet=controlnet,
    torch_dtype=weight_dtype,
    use_safetensors=True,
).to(device)

images_path = "images"
control_image_file = "0_7.jpg"

prompt = "battleship in space, galaxy in background"

control_image_name = control_image_file.split('.')[0]

control_image = load_image(f"{images_path}/{control_image_file}")
print(control_image.size)
height, width = control_image.size

hed = HEDdetector.from_pretrained("lllyasviel/Annotators")

condition_transform = T.Compose([
    T.Lambda(lambda img: img.convert('RGB')),
    T.CenterCrop([image_size, image_size]),
])

control_image = condition_transform(control_image)
hed_edge = hed(control_image, detect_resolution=image_size, image_resolution=image_size)

hed_edge.save(f"{images_path}/{control_image_name}_hed.jpg")

# run pipeline
with torch.no_grad():
    out = pipe(
        prompt=prompt,
        image=hed_edge,
        num_inference_steps=14,
        guidance_scale=4.5,
        height=image_size,
        width=image_size,
    )

    out.images[0].save(f"{images_path}//{control_image_name}_output.jpg")
    
```

In the folder examples/pixart there is also a script that can be used to train new models.
5275
Please check the script `train_controlnet_hf_diffusers.sh` on how to start the training.
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311

# CogVideoX DDIM Inversion Pipeline

This implementation performs DDIM inversion on the video based on CogVideoX and uses guided attention to reconstruct or edit the inversion latents.

## Example Usage

```python
import torch

from examples.community.cogvideox_ddim_inversion import CogVideoXPipelineForDDIMInversion


# Load pretrained pipeline
pipeline = CogVideoXPipelineForDDIMInversion.from_pretrained(
    "THUDM/CogVideoX1.5-5B",
    torch_dtype=torch.bfloat16,
).to("cuda")

# Run DDIM inversion, and the videos will be generated in the output_path
output = pipeline_for_inversion(
    prompt="prompt that describes the edited video",
    video_path="path/to/input.mp4",
    guidance_scale=6.0,
    num_inference_steps=50,
    skip_frames_start=0,
    skip_frames_end=0,
    frame_sample_step=None,
    max_num_frames=81,
    width=720,
    height=480,
    seed=42,
)
pipeline.export_latents_to_video(output.inverse_latents[-1], "path/to/inverse_video.mp4", fps=8)
pipeline.export_latents_to_video(output.recon_latents[-1], "path/to/recon_video.mp4", fps=8)
```