README.md 259 KB
Newer Older
1
# Community Pipeline Examples
2

Patrick von Platen's avatar
Patrick von Platen committed
3
4
> **For more information about community pipelines, please have a look at [this issue](https://github.com/huggingface/diffusers/issues/841).**

5
6
7
8
9
**Community pipeline** examples consist pipelines that have been added by the community.
Please have a look at the following tables to get an overview of all community examples. Click on the **Code Example** to get a copy-and-paste ready code example that you can try out.
If a community pipeline doesn't work as expected, please open an issue and ping the author on it.

Please also check out our [Community Scripts](https://github.com/huggingface/diffusers/blob/main/examples/community/README_community_scripts.md) examples for tips and tricks that you can use with diffusers without having to run a community pipeline.
10

11
12
| Example                                                                                                                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Code Example                                                                              | Colab                                                                                                                                                                                                              |                                                        Author |
|:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:|
13
|Adaptive Mask Inpainting|Adaptive Mask Inpainting algorithm from [Beyond the Contact: Discovering Comprehensive Affordance for 3D Objects from Pre-trained 2D Diffusion Models](https://github.com/snuvclab/coma) (ECCV '24, Oral) provides a way to insert human inside the scene image without altering the background, by inpainting with adapting mask.|[Adaptive Mask Inpainting](#adaptive-mask-inpainting)|-|[Hyeonwoo Kim](https://sshowbiz.xyz),[Sookwan Han](https://jellyheadandrew.github.io)|
14
|Flux with CFG|[Flux with CFG](https://github.com/ToTheBeginning/PuLID/blob/main/docs/pulid_for_flux.md) provides an implementation of using CFG in [Flux](https://blackforestlabs.ai/announcing-black-forest-labs/).|[Flux with CFG](#flux-with-cfg)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/flux_with_cfg.ipynb)|[Linoy Tsaban](https://github.com/linoytsaban), [Apolinário](https://github.com/apolinario), and [Sayak Paul](https://github.com/sayakpaul)|
15
|Differential Diffusion|[Differential Diffusion](https://github.com/exx8/differential-diffusion) modifies an image according to a text prompt, and according to a map that specifies the amount of change in each region.|[Differential Diffusion](#differential-diffusion)|[![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/exx8/differential-diffusion) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/exx8/differential-diffusion/blob/main/examples/SD2.ipynb)|[Eran Levin](https://github.com/exx8) and [Ohad Fried](https://www.ohadf.com/)|
haikmanukyan's avatar
haikmanukyan committed
16
| HD-Painter                                                                                                                            | [HD-Painter](https://github.com/Picsart-AI-Research/HD-Painter) enables prompt-faithfull and high resolution (up to 2k) image inpainting upon any diffusion-based image inpainting method.                                                                                                                                                                                                                                                                                                               | [HD-Painter](#hd-painter)                                                                 | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/PAIR/HD-Painter)                                                                              | [Manukyan Hayk](https://github.com/haikmanukyan) and [Sargsyan Andranik](https://github.com/AndranikSargsyan) |
17
| Marigold Monocular Depth Estimation                                                                                                   | A universal monocular depth estimator, utilizing Stable Diffusion, delivering sharp predictions in the wild. (See the [project page](https://marigoldmonodepth.github.io) and [full codebase](https://github.com/prs-eth/marigold) for more details.)                                                                                                                                                                                                                                                        | [Marigold Depth Estimation](#marigold-depth-estimation)                                   | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/toshas/marigold) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/12G8reD13DdpMie5ZQlaFNo2WCGeNUH-u?usp=sharing) | [Bingxin Ke](https://github.com/markkua) and [Anton Obukhov](https://github.com/toshas) |
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
18
19
| LLM-grounded Diffusion (LMD+)                                                                                                         | LMD greatly improves the prompt following ability of text-to-image generation models by introducing an LLM as a front-end prompt parser and layout planner. [Project page.](https://llm-grounded-diffusion.github.io/) [See our full codebase (also with diffusers).](https://github.com/TonyLianLong/LLM-groundedDiffusion)                                                                                                                                                                                                                                                                                                                                                                                                                                   | [LLM-grounded Diffusion (LMD+)](#llm-grounded-diffusion)                             | [Huggingface Demo](https://huggingface.co/spaces/longlian/llm-grounded-diffusion) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1SXzMSeAB-LJYISb2yrUOdypLz4OYWUKj) |                [Long (Tony) Lian](https://tonylian.com/) |
| CLIP Guided Stable Diffusion                                                                                                          | Doing CLIP guidance for text to image generation with Stable Diffusion                                                                                                                                                                                                                                                                                                                                                                                                                                   | [CLIP Guided Stable Diffusion](#clip-guided-stable-diffusion)                             | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/CLIP_Guided_Stable_diffusion_with_diffusers.ipynb) |                [Suraj Patil](https://github.com/patil-suraj/) |
20
| One Step U-Net (Dummy)                                                                                                                | Example showcasing of how to use Community Pipelines (see <https://github.com/huggingface/diffusers/issues/841>)                                                                                                                                                                                                                                                                                                                                                                                           | [One Step U-Net](#one-step-unet)                                                          | -                                                                                                                                                                                                                  |    [Patrick von Platen](https://github.com/patrickvonplaten/) |
21
| Stable Diffusion Interpolation                                                                                                        | Interpolate the latent space of Stable Diffusion between different prompts/seeds                                                                                                                                                                                                                                                                                                                                                                                                                         | [Stable Diffusion Interpolation](#stable-diffusion-interpolation)                         | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_interpolation.ipynb)                                                                                                                                                           |                       [Nate Raw](https://github.com/nateraw/) |
22
| Stable Diffusion Mega                                                                                                                 | **One** Stable Diffusion Pipeline with all functionalities of [Text2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py), [Image2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py) and [Inpainting](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py) | [Stable Diffusion Mega](#stable-diffusion-mega)                                           | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_mega.ipynb)                                                                                                                                                                             |    [Patrick von Platen](https://github.com/patrickvonplaten/) |
23
| Long Prompt Weighting Stable Diffusion                                                                                                | **One** Stable Diffusion Pipeline without tokens length limit, and support parsing weighting in prompt.                                                                                                                                                                                                                                                                                                                                                                                                  | [Long Prompt Weighting Stable Diffusion](#long-prompt-weighting-stable-diffusion)         | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/long_prompt_weighting_stable_diffusion.ipynb)                                                                                        |                           [SkyTNT](https://github.com/SkyTNT) |
24
| Speech to Image                                                                                                                       | Using automatic-speech-recognition to transcribe text and Stable Diffusion to generate images                                                                                                                                                                                                                                                                                                                                                                                                            | [Speech to Image](#speech-to-image)                                                       |[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/speech_to_image.ipynb)                                                                                                                                                                                                   |             [Mikail Duzenli](https://github.com/MikailINTech)
25
| Wild Card Stable Diffusion                                                                                                            | Stable Diffusion Pipeline that supports prompts that contain wildcard terms (indicated by surrounding double underscores), with values instantiated randomly from a corresponding txt file or a dictionary of possible values                                                                                                                                                                                                                                                                            | [Wildcard Stable Diffusion](#wildcard-stable-diffusion)                                   | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/wildcard_stable_diffusion.ipynb)                                                                                                                                                                                 |              [Shyam Sudhakaran](https://github.com/shyamsn97) |
26
| [Composable Stable Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) | Stable Diffusion Pipeline that supports prompts that contain "&#124;" in prompts (as an AND condition) and weights (separated by "&#124;" as well) to positively / negatively weight prompts.                                                                                                                                                                                                                                                                                                            | [Composable Stable Diffusion](#composable-stable-diffusion)                               | -                                                                                                                                                                                                                  |                      [Mark Rich](https://github.com/MarkRich) |
27
28
| Seed Resizing Stable Diffusion                                                                                                        | Stable Diffusion Pipeline that supports resizing an image and retaining the concepts of the 512 by 512 generation.                                                                                                                                                                                                                                                                                                                                                                                       | [Seed Resizing](#seed-resizing)                                                           | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/seed_resizing.ipynb)                                                                                                                                                                                                                  |                      [Mark Rich](https://github.com/MarkRich) |
| Imagic Stable Diffusion                                                                                                               | Stable Diffusion Pipeline that enables writing a text prompt to edit an existing image                                                                                                                                                                                                                                                                                                                                                                                                                   | [Imagic Stable Diffusion](#imagic-stable-diffusion)                                       | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/imagic_stable_diffusion.ipynb)                                                                                                                                                                                                  |                      [Mark Rich](https://github.com/MarkRich) |
29
| Multilingual Stable Diffusion                                                                                                         | Stable Diffusion Pipeline that supports prompts in 50 different languages.                                                                                                                                                                                                                                                                                                                                                                                                                               | [Multilingual Stable Diffusion](#multilingual-stable-diffusion-pipeline)                  | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/multilingual_stable_diffusion.ipynb)                                                                                                                                                                             |          [Juan Carlos Piñeros](https://github.com/juancopi81) |
30
| GlueGen Stable Diffusion                                                                                                         | Stable Diffusion Pipeline that supports prompts in different languages using GlueGen adapter.                                                                                                                                                                                                                                                                                                                                                                                                                               | [GlueGen Stable Diffusion](#gluegen-stable-diffusion-pipeline)                  | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/gluegen_stable_diffusion.ipynb)                                                                                                                                                                                                                  |          [Phạm Hồng Vinh](https://github.com/rootonchair) |
31
| Image to Image Inpainting Stable Diffusion                                                                                            | Stable Diffusion Pipeline that enables the overlaying of two images and subsequent inpainting                                                                                                                                                                                                                                                                                                                                                                                                            | [Image to Image Inpainting Stable Diffusion](#image-to-image-inpainting-stable-diffusion) | -                                                                                                                                                                                                                  |                    [Alex McKinney](https://github.com/vvvm23) |
32
| Text Based Inpainting Stable Diffusion                                                                                                | Stable Diffusion Inpainting Pipeline that enables passing a text prompt to generate the mask for inpainting                                                                                                                                                                                                                                                                                                                                                                                              | [Text Based Inpainting Stable Diffusion](#text-based-inpainting-stable-diffusion)     | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/text_based_inpainting_stable_dffusion.ipynb)                                                                                                                                                                                                    |                   [Dhruv Karan](https://github.com/unography) |
33
34
| Bit Diffusion                                                                                                                         | Diffusion on discrete data                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [Bit Diffusion](#bit-diffusion)                                                           | -  |                       [Stuti R.](https://github.com/kingstut) |
| K-Diffusion Stable Diffusion                                                                                                          | Run Stable Diffusion with any of [K-Diffusion's samplers](https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py)                                                                                                                                                                                                                                                                                                                                                                  | [Stable Diffusion with K Diffusion](#stable-diffusion-with-k-diffusion)                   | -  |    [Patrick von Platen](https://github.com/patrickvonplaten/) |
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
35
| Checkpoint Merger Pipeline                                                                                                            | Diffusion Pipeline that enables merging of saved model checkpoints                                                                                                                                                                                                                                                                                                                                                                                                                                       | [Checkpoint Merger Pipeline](#checkpoint-merger-pipeline)                                 | -                                                                                                                                                                                                                  | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
36
| Stable Diffusion v1.1-1.4 Comparison                                                                                                  | Run all 4 model checkpoints for Stable Diffusion and compare their results together                                                                                                                                                                                                                                                                                                                                                                                                                      | [Stable Diffusion Comparison](#stable-diffusion-comparisons)                              | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_comparison.ipynb) |        [Suvaditya Mukherjee](https://github.com/suvadityamuk) |
37
| MagicMix                                                                                                                              | Diffusion Pipeline for semantic mixing of an image and a text prompt                                                                                                                                                                                                                                                                                                                                                                                                                                     | [MagicMix](#magic-mix)                                                                    | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/magic_mix.ipynb) |                    [Partho Das](https://github.com/daspartho) |
38
39
| Stable UnCLIP                                                                                                                         | Diffusion Pipeline for combining prior model (generate clip image embedding from text, UnCLIPPipeline `"kakaobrain/karlo-v1-alpha"`) and decoder pipeline (decode clip image embedding to image, StableDiffusionImageVariationPipeline `"lambdalabs/sd-image-variations-diffusers"` ).                                                                                                                                                                                                                   | [Stable UnCLIP](#stable-unclip)                                                           | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_unclip.ipynb)  |                                [Ray Wang](https://wrong.wang) |
| UnCLIP Text Interpolation Pipeline                                                                                                    | Diffusion Pipeline that allows passing two prompts and produces images while interpolating between the text-embeddings of the two prompts                                                                                                                                                                                                                                                                                                                                                                | [UnCLIP Text Interpolation Pipeline](#unclip-text-interpolation-pipeline)                 | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/unclip_text_interpolation.ipynb)| [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
40
| UnCLIP Image Interpolation Pipeline                                                                                                   | Diffusion Pipeline that allows passing two images/image_embeddings and produces images while interpolating between their image-embeddings                                                                                                                                                                                                                                                                                                                                                                | [UnCLIP Image Interpolation Pipeline](#unclip-image-interpolation-pipeline)               | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/unclip_image_interpolation.ipynb)| [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
41
| DDIM Noise Comparative Analysis Pipeline                                                                                              | Investigating how the diffusion models learn visual concepts from each noise level (which is a contribution of [P2 weighting (CVPR 2022)](https://arxiv.org/abs/2204.00227))                                                                                                                                                                                                                                                                                                                             | [DDIM Noise Comparative Analysis Pipeline](#ddim-noise-comparative-analysis-pipeline)     | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/ddim_noise_comparative_analysis.ipynb)|              [Aengus (Duc-Anh)](https://github.com/aengusng8) |
42
| CLIP Guided Img2Img Stable Diffusion Pipeline                                                                                         | Doing CLIP guidance for image to image generation with Stable Diffusion                                                                                                                                                                                                                                                                                                                                                                                                                                  | [CLIP Guided Img2Img Stable Diffusion](#clip-guided-img2img-stable-diffusion)             | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/clip_guided_img2img_stable_diffusion.ipynb) |               [Nipun Jindal](https://github.com/nipunjindal/) |
43
| TensorRT Stable Diffusion Text to Image Pipeline                                                                                                    | Accelerates the Stable Diffusion Text2Image Pipeline using TensorRT                                                                                                                                                                                                                                                                                                                                                                                                                                      | [TensorRT Stable Diffusion Text to Image Pipeline](#tensorrt-text2image-stable-diffusion-pipeline)      | - |              [Asfiya Baig](https://github.com/asfiyab-nvidia) |
44
45
| EDICT Image Editing Pipeline                                                                                                          | Diffusion pipeline for text-guided image editing                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [EDICT Image Editing Pipeline](#edict-image-editing-pipeline)                             | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/edict_image_pipeline.ipynb) |                    [Joqsan Azocar](https://github.com/Joqsan) |
| Stable Diffusion RePaint                                                                                                              | Stable Diffusion pipeline using [RePaint](https://arxiv.org/abs/2201.09865) for inpainting.                                                                                                                                                                                                                                                                                                                                                                                                               | [Stable Diffusion RePaint](#stable-diffusion-repaint )|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_repaint.ipynb)|                  [Markus Pobitzer](https://github.com/Markus-Pobitzer) |
46
| TensorRT Stable Diffusion Image to Image Pipeline                                                                                                    | Accelerates the Stable Diffusion Image2Image Pipeline using TensorRT                                                                                                                                                                                                                                                                                                                                                                                                                                      | [TensorRT Stable Diffusion Image to Image Pipeline](#tensorrt-image2image-stable-diffusion-pipeline)      | - |              [Asfiya Baig](https://github.com/asfiyab-nvidia) |
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
47
| Stable Diffusion IPEX Pipeline | Accelerate Stable Diffusion inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [Stable Diffusion on IPEX](#stable-diffusion-on-ipex) | - | [Yingjie Han](https://github.com/yingjie-han/) |
48
| CLIP Guided Images Mixing Stable Diffusion Pipeline | Сombine images using usual diffusion models. | [CLIP Guided Images Mixing Using Stable Diffusion](#clip-guided-images-mixing-with-stable-diffusion) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/clip_guided_images_mixing_with_stable_diffusion.ipynb) | [Karachev Denis](https://github.com/TheDenk) |
49
| TensorRT Stable Diffusion Inpainting Pipeline                                                                                                    | Accelerates the Stable Diffusion Inpainting Pipeline using TensorRT                                                                                                                                                                                                                                                                                                                                                                                                                                      | [TensorRT Stable Diffusion Inpainting Pipeline](#tensorrt-inpainting-stable-diffusion-pipeline)      | - |              [Asfiya Baig](https://github.com/asfiyab-nvidia) |
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
50
|   IADB Pipeline                                                                                                    | Implementation of [Iterative α-(de)Blending: a Minimalist Deterministic Diffusion Model](https://arxiv.org/abs/2305.03486)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [IADB Pipeline](#iadb-pipeline)      | - |              [Thomas Chambon](https://github.com/tchambon)
51
|   Zero1to3 Pipeline                                                                                                    | Implementation of [Zero-1-to-3: Zero-shot One Image to 3D Object](https://arxiv.org/abs/2303.11328)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Zero1to3 Pipeline](#zero1to3-pipeline)      | - |              [Xin Kong](https://github.com/kxhit) |
52
| Stable Diffusion XL Long Weighted Prompt Pipeline | A pipeline support unlimited length of prompt and negative prompt, use A1111 style of prompt weighting | [Stable Diffusion XL Long Weighted Prompt Pipeline](#stable-diffusion-xl-long-weighted-prompt-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1LsqilswLR40XLLcp6XFOl5nKb_wOe26W?usp=sharing) | [Andrew Zhu](https://xhinker.medium.com/) |
53
54
55
| Stable Diffusion Mixture Tiling Pipeline SD 1.5 | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending | [Stable Diffusion Mixture Tiling Pipeline SD 1.5](#stable-diffusion-mixture-tiling-pipeline-sd-15) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/albarji/mixture-of-diffusers) | [Álvaro B Jiménez](https://github.com/albarji/) |
| Stable Diffusion Mixture Canvas Pipeline SD 1.5 | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending. Works by defining a list of Text2Image region objects that detail the region of influence of each diffuser. | [Stable Diffusion Mixture Canvas Pipeline SD 1.5](#stable-diffusion-mixture-canvas-pipeline-sd-15) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/albarji/mixture-of-diffusers) | [Álvaro B Jiménez](https://github.com/albarji/) |
| Stable Diffusion Mixture Tiling Pipeline SDXL | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending | [Stable Diffusion Mixture Tiling Pipeline SDXL](#stable-diffusion-mixture-tiling-pipeline-sdxl) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/elismasilva/mixture-of-diffusers-sdxl-tiling) | [Eliseu Silva](https://github.com/DEVAIEXP/) |
56
| Stable Diffusion MoD ControlNet Tile SR Pipeline SDXL | This is an advanced pipeline that leverages ControlNet Tile and Mixture-of-Diffusers techniques, integrating tile diffusion directly into the latent space denoising process. Designed to overcome the limitations of conventional pixel-space tile processing, this pipeline delivers Super Resolution (SR) upscaling for higher-quality images, reduced processing time, and greater adaptability. | [Stable Diffusion MoD ControlNet Tile SR Pipeline SDXL](#stable-diffusion-mod-controlnet-tile-sr-pipeline-sdxl) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/elismasilva/mod-control-tile-upscaler-sdxl) | [Eliseu Silva](https://github.com/DEVAIEXP/) |
57
| FABRIC - Stable Diffusion with feedback Pipeline | pipeline supports feedback from liked and disliked images | [Stable Diffusion Fabric Pipeline](#stable-diffusion-fabric-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_fabric.ipynb)| [Shauray Singh](https://shauray8.github.io/about_shauray/) |
Aryan V S's avatar
Aryan V S committed
58
| sketch inpaint - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion Pipeline](#stable-diffusion-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
59
| sketch inpaint xl - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion XL Pipeline](#stable-diffusion-xl-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
Aryan V S's avatar
Aryan V S committed
60
| prompt-to-prompt | change parts of a prompt and retain image structure (see [paper page](https://prompt-to-prompt.github.io/)) | [Prompt2Prompt Pipeline](#prompt2prompt-pipeline) | - | [Umer H. Adil](https://twitter.com/UmerHAdil) |
61
|   Latent Consistency Pipeline                                                                                                    | Implementation of [Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference](https://arxiv.org/abs/2310.04378)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Latent Consistency Pipeline](#latent-consistency-pipeline)      | - |              [Simian Luo](https://github.com/luosiallen) |
Logan's avatar
Logan committed
62
|   Latent Consistency Img2img Pipeline                                                                                                    | Img2img pipeline for Latent Consistency Models                                                                                                                                                                                                                                                                                                                                                                                                                                    | [Latent Consistency Img2Img Pipeline](#latent-consistency-img2img-pipeline)      | - |              [Logan Zoellner](https://github.com/nagolinc) |
63
|   Latent Consistency Interpolation Pipeline                                                                                                    | Interpolate the latent space of Latent Consistency Models with multiple prompts                                                                                                                                                                                                                                                                                                                                                                                                                                    | [Latent Consistency Interpolation Pipeline](#latent-consistency-interpolation-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1pK3NrLWJSiJsBynLns1K1-IDTW9zbPvl?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
64
| SDE Drag Pipeline                                                                                                                         | The pipeline supports drag editing of images using stochastic differential equations                                                                                                                                                                                                                                                                                                                                                                                                                | [SDE Drag Pipeline](#sde-drag-pipeline)                                                     | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/sde_drag.ipynb) | [NieShen](https://github.com/NieShenRuc) [Fengqi Zhu](https://github.com/Monohydroxides) |
65
|   Regional Prompting Pipeline                                                                                               | Assign multiple prompts for different regions                                                                                                                                                                                                                                                                                                                                                    |  [Regional Prompting Pipeline](#regional-prompting-pipeline) | - | [hako-mikan](https://github.com/hako-mikan) |
66
| LDM3D-sr (LDM3D upscaler)                                                                                                             | Upscale low resolution RGB and depth inputs to high resolution                                                                                                                                                                                                                                                                                                                                                                                                                              | [StableDiffusionUpscaleLDM3D Pipeline](https://github.com/estelleafl/diffusers/tree/ldm3d_upscaler_community/examples/community#stablediffusionupscaleldm3d-pipeline)                                                                             | -                                                                                                                                                                                                             |                                                        [Estelle Aflalo](https://github.com/estelleafl) |
67
| AnimateDiff ControlNet Pipeline                                                                                                    | Combines AnimateDiff with precise motion control using ControlNets                                                                                                                                                                                                                                                                                                                                                                                                                                    | [AnimateDiff ControlNet Pipeline](#animatediff-controlnet-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1SKboYeGjEQmQPWoFC0aLYpBlYdHXkvAu?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) and [Edoardo Botta](https://github.com/EdoardoBotta) |
68
69
|   DemoFusion Pipeline                                                                                                    | Implementation of [DemoFusion: Democratising High-Resolution Image Generation With No $$$](https://arxiv.org/abs/2311.16973)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [DemoFusion Pipeline](#demofusion)      | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/demo_fusion.ipynb) |              [Ruoyi Du](https://github.com/RuoyiDu) |
|   Instaflow Pipeline                                                                                                    | Implementation of [InstaFlow! One-Step Stable Diffusion with Rectified Flow](https://arxiv.org/abs/2309.06380)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Instaflow Pipeline](#instaflow-pipeline)      | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/insta_flow.ipynb) |              [Ayush Mangal](https://github.com/ayushtues) |
70
|   Null-Text Inversion Pipeline  | Implement [Null-text Inversion for Editing Real Images using Guided Diffusion Models](https://arxiv.org/abs/2211.09794) as a pipeline.                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Null-Text Inversion](https://github.com/google/prompt-to-prompt/)      | - |              [Junsheng Luan](https://github.com/Junsheng121) |
71
|   Rerender A Video Pipeline                                                                                                    | Implementation of [[SIGGRAPH Asia 2023] Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation](https://arxiv.org/abs/2306.07954)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Rerender A Video Pipeline](#rerender-a-video)      | - |              [Yifan Zhou](https://github.com/SingleZombie) |
72
| StyleAligned Pipeline                                                                                                    | Implementation of [Style Aligned Image Generation via Shared Attention](https://arxiv.org/abs/2312.02133)                                                                                                                                                                                                                                                                                                                                                                                                                                   | [StyleAligned Pipeline](#stylealigned-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://drive.google.com/file/d/15X2E0jFPTajUIjS0FzX50OaHsCbP2lQ0/view?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
73
| AnimateDiff Image-To-Video Pipeline | Experimental Image-To-Video support for AnimateDiff (open to improvements) | [AnimateDiff Image To Video Pipeline](#animatediff-image-to-video-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://drive.google.com/file/d/1TvzCDPHhfFtdcJZe4RLloAwyoLKuttWK/view?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
74
|   IP Adapter FaceID Stable Diffusion                                                                                               | Stable Diffusion Pipeline that supports IP Adapter Face ID                                                                                                                                                                                                                                                                                                                                                  |  [IP Adapter Face ID](#ip-adapter-face-id) |[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/ip_adapter_face_id.ipynb)| [Fabio Rigano](https://github.com/fabiorigano) |
Aryan V S's avatar
Aryan V S committed
75
|   InstantID Pipeline                                                                                               | Stable Diffusion XL Pipeline that supports InstantID                                                                                                                                                                                                                                                                                                                                                 |  [InstantID Pipeline](#instantid-pipeline) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/InstantX/InstantID) | [Haofan Wang](https://github.com/haofanwang) |
76
|   UFOGen Scheduler                                                                                               | Scheduler for UFOGen Model (compatible with Stable Diffusion pipelines)                                                                                                                                                                                                                                                                                                                                                 |  [UFOGen Scheduler](#ufogen-scheduler) | - | [dg845](https://github.com/dg845) |
77
| Stable Diffusion XL IPEX Pipeline | Accelerate Stable Diffusion XL inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [Stable Diffusion XL on IPEX](#stable-diffusion-xl-on-ipex) | - | [Dan Li](https://github.com/ustcuna/) |
78
| Stable Diffusion BoxDiff Pipeline | Training-free controlled generation with bounding boxes using [BoxDiff](https://github.com/showlab/BoxDiff) | [Stable Diffusion BoxDiff Pipeline](#stable-diffusion-boxdiff) | - | [Jingyang Zhang](https://github.com/zjysteven/) |
79
|   FRESCO V2V Pipeline                                                                                                    | Implementation of [[CVPR 2024] FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation](https://arxiv.org/abs/2403.12962)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [FRESCO V2V Pipeline](#fresco)      | - |              [Yifan Zhou](https://github.com/SingleZombie) |
80
| AnimateDiff IPEX Pipeline | Accelerate AnimateDiff inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [AnimateDiff on IPEX](#animatediff-on-ipex) | - | [Dan Li](https://github.com/ustcuna/) |
81
PIXART-α Controlnet pipeline | Implementation of the controlnet model for pixart alpha and its diffusers pipeline | [PIXART-α Controlnet pipeline](#pixart-α-controlnet-pipeline) | - | [Raul Ciotescu](https://github.com/raulc0399/) |
82
83
| HunyuanDiT Differential Diffusion Pipeline | Applies [Differential Diffusion](https://github.com/exx8/differential-diffusion) to [HunyuanDiT](https://github.com/huggingface/diffusers/pull/8240). | [HunyuanDiT with Differential Diffusion](#hunyuandit-with-differential-diffusion) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing) | [Monjoy Choudhury](https://github.com/MnCSSJ4x) |
| [🪆Matryoshka Diffusion Models](https://huggingface.co/papers/2310.15111) | A diffusion process that denoises inputs at multiple resolutions jointly and uses a NestedUNet architecture where features and parameters for small scale inputs are nested within those of the large scales. See [original codebase](https://github.com/apple/ml-mdm). | [🪆Matryoshka Diffusion Models](#matryoshka-diffusion-models) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/pcuenq/mdm) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/tolgacangoz/1f54875fc7aeaabcf284ebde64820966/matryoshka_hf.ipynb) | [M. Tolga Cangöz](https://github.com/tolgacangoz) |
84
| Stable Diffusion XL Attentive Eraser Pipeline |[[AAAI2025 Oral] Attentive Eraser](https://github.com/Anonym0u3/AttentiveEraser) is a novel tuning-free method that enhances object removal capabilities in pre-trained diffusion models.|[Stable Diffusion XL Attentive Eraser Pipeline](#stable-diffusion-xl-attentive-eraser-pipeline)|-|[Wenhao Sun](https://github.com/Anonym0u3) and [Benlei Cui](https://github.com/Benny079)|
85
| Perturbed-Attention Guidance |StableDiffusionPAGPipeline is a modification of StableDiffusionPipeline to support Perturbed-Attention Guidance (PAG).|[Perturbed-Attention Guidance](#perturbed-attention-guidance)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/perturbed_attention_guidance.ipynb)|[Hyoungwon Cho](https://github.com/HyoungwonCho)|
86
| CogVideoX DDIM Inversion Pipeline | Implementation of DDIM inversion and guided attention-based editing denoising process on CogVideoX. | [CogVideoX DDIM Inversion Pipeline](#cogvideox-ddim-inversion-pipeline) | - | [LittleNyima](https://github.com/LittleNyima) |
87

88
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
Aryan V S's avatar
Aryan V S committed
89

90
```py
91
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", custom_pipeline="filename_in_the_community_folder")
92
93
```

Patrick von Platen's avatar
Patrick von Platen committed
94
95
## Example usages

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
### Adaptive Mask Inpainting

**Hyeonwoo Kim\*, Sookwan Han\*, Patrick Kwon, Hanbyul Joo**

**Seoul National University, Naver Webtoon**

Adaptive Mask Inpainting, presented in the ECCV'24 oral paper [*Beyond the Contact: Discovering Comprehensive Affordance for 3D Objects from Pre-trained 2D Diffusion Models*](https://snuvclab.github.io/coma), is an algorithm designed to insert humans into scene images without altering the background. Traditional inpainting methods often fail to preserve object geometry and details within the masked region, leading to false affordances. Adaptive Mask Inpainting addresses this issue by progressively specifying the inpainting region over diffusion timesteps, ensuring that the inserted human integrates seamlessly with the existing scene.

Here is the demonstration of Adaptive Mask Inpainting:

<video controls>
  <source src="https://snuvclab.github.io/coma/static/videos/adaptive_mask_inpainting_vis.mp4" type="video/mp4">
  Your browser does not support the video tag.
</video>

![teaser-img](https://snuvclab.github.io/coma/static/images/example_result_adaptive_mask_inpainting.png)


You can find additional information about Adaptive Mask Inpainting in the [paper](https://arxiv.org/pdf/2401.12978) or in the [project website](https://snuvclab.github.io/coma).

#### Usage example
First, clone the diffusers github repository, and run the following command to set environment.
```Shell
git clone https://github.com/huggingface/diffusers.git
cd diffusers

conda create --name ami python=3.9 -y
conda activate ami

conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge -y
python -m pip install detectron2==0.6 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu113/torch1.10/index.html
pip install easydict
pip install diffusers==0.20.2 accelerate safetensors transformers
pip install setuptools==59.5.0
pip install opencv-python
pip install numpy==1.24.1
```
Then, run the below code under 'diffusers' directory.
```python
import numpy as np
import torch
from PIL import Image

from diffusers import DDIMScheduler
from diffusers import DiffusionPipeline
from diffusers.utils import load_image

from examples.community.adaptive_mask_inpainting import download_file, AdaptiveMaskInpaintPipeline, AMI_INSTALL_MESSAGE

print(AMI_INSTALL_MESSAGE)

from easydict import EasyDict



if __name__ == "__main__":    
    """
    Download Necessary Files
    """
    download_file(
        url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/model_final_edd263.pkl?download=true",
        output_file = "model_final_edd263.pkl",
        exist_ok=True,
    )
    download_file(
        url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/pointrend_rcnn_R_50_FPN_3x_coco.yaml?download=true",
        output_file = "pointrend_rcnn_R_50_FPN_3x_coco.yaml",
        exist_ok=True,
    )
    download_file(
        url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/input_img.png?download=true",
        output_file = "input_img.png",
        exist_ok=True,
    )
    download_file(
        url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/input_mask.png?download=true",
        output_file = "input_mask.png",
        exist_ok=True,
    )
    download_file(
        url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/Base-PointRend-RCNN-FPN.yaml?download=true",
        output_file = "Base-PointRend-RCNN-FPN.yaml",
        exist_ok=True,
    )
    download_file(
        url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/Base-RCNN-FPN.yaml?download=true",
        output_file = "Base-RCNN-FPN.yaml",
        exist_ok=True,
    )
    
    """ 
    Prepare Adaptive Mask Inpainting Pipeline
    """
    # device
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    num_steps = 50
    
    # Scheduler
    scheduler = DDIMScheduler(
        beta_start=0.00085, 
        beta_end=0.012, 
        beta_schedule="scaled_linear", 
        clip_sample=False, 
        set_alpha_to_one=False
    )
    scheduler.set_timesteps(num_inference_steps=num_steps)

    ## load models as pipelines
    pipeline = AdaptiveMaskInpaintPipeline.from_pretrained(
        "Uminosachi/realisticVisionV51_v51VAE-inpainting", 
        scheduler=scheduler, 
        torch_dtype=torch.float16, 
        requires_safety_checker=False
    ).to(device)

    ## disable safety checker
    enable_safety_checker = False
    if not enable_safety_checker:
        pipeline.safety_checker = None
    
    """ 
    Run Adaptive Mask Inpainting 
    """
    default_mask_image = Image.open("./input_mask.png").convert("L")
    init_image = Image.open("./input_img.png").convert("RGB")
    
    
    seed = 59
    generator = torch.Generator(device=device)
    generator.manual_seed(seed)
    
    image = pipeline(
        prompt="a man sitting on a couch",
        negative_prompt="worst quality, normal quality, low quality, bad anatomy, artifacts, blurry, cropped, watermark, greyscale, nsfw",
        image=init_image,
        default_mask_image=default_mask_image,
        guidance_scale=11.0,
        strength=0.98,
        use_adaptive_mask=True,
        generator=generator,
        enforce_full_mask_ratio=0.0,
        visualization_save_dir="./ECCV2024_adaptive_mask_inpainting_demo", # DON'T CHANGE THIS!!!
        human_detection_thres=0.015,
    ).images[0]

    
    image.save(f'final_img.png')
```
#### [Troubleshooting]

If you run into an error `cannot import name 'cached_download' from 'huggingface_hub'` (issue [1851](https://github.com/easydiffusion/easydiffusion/issues/1851)), remove `cached_download` from the import line in the file `diffusers/utils/dynamic_modules_utils.py`. 

For example, change the import line from `.../env/lib/python3.8/site-packages/diffusers/utils/dynamic_modules_utils.py`.


251
252
### Flux with CFG

253
Know more about Flux [here](https://blackforestlabs.ai/announcing-black-forest-labs/). Since Flux doesn't use CFG, this implementation provides one, inspired by the [PuLID Flux adaptation](https://github.com/ToTheBeginning/PuLID/blob/main/docs/pulid_for_flux.md).
254
255
256
257
258

Example usage:

```py
from diffusers import DiffusionPipeline
259
import torch
260

261
262
263
264
265
model_name = "black-forest-labs/FLUX.1-dev"
prompt = "a watercolor painting of a unicorn"
negative_prompt = "pink"

# Load the diffusion pipeline
266
pipeline = DiffusionPipeline.from_pretrained(
267
    model_name,
268
    torch_dtype=torch.bfloat16,
269
270
271
272
    custom_pipeline="pipeline_flux_with_cfg"
)
pipeline.enable_model_cpu_offload()

273
# Generate the image
274
img = pipeline(
275
276
277
278
    prompt=prompt,
    negative_prompt=negative_prompt,
    true_cfg=1.5,
    guidance_scale=3.5,
279
280
    generator=torch.manual_seed(0)
).images[0]
281
282

# Save the generated image
283
img.save("cfg_flux.png")
284
print("Image generated and saved successfully.")
285
286
```

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
### Differential Diffusion

**Eran Levin, Ohad Fried**

**Tel Aviv University, Reichman University**

Diffusion models have revolutionized image generation and editing, producing state-of-the-art results in conditioned and unconditioned image synthesis. While current techniques enable user control over the degree of change in an image edit, the controllability is limited to global changes over an entire edited region. This paper introduces a novel framework that enables customization of the amount of change per pixel or per image region. Our framework can be integrated into any existing diffusion model, enhancing it with this capability. Such granular control on the quantity of change opens up a diverse array of new editing capabilities, such as control of the extent to which individual objects are modified, or the ability to introduce gradual spatial changes. Furthermore, we showcase the framework's effectiveness in soft-inpainting---the completion of portions of an image while subtly adjusting the surrounding areas to ensure seamless integration. Additionally, we introduce a new tool for exploring the effects of different change quantities. Our framework operates solely during inference, requiring no model training or fine-tuning. We demonstrate our method with the current open state-of-the-art models, and validate it via both quantitative and qualitative comparisons, and a user study.

![teaser-img](https://github.com/exx8/differential-diffusion/raw/main/assets/teaser.png)

You can find additional information about Differential Diffusion in the [paper](https://differential-diffusion.github.io/paper.pdf) or in the [project website](https://differential-diffusion.github.io/).

#### Usage example

```python
import torch
from torchvision import transforms

from diffusers import DPMSolverMultistepScheduler
from diffusers.utils import load_image
from examples.community.pipeline_stable_diffusion_xl_differential_img2img import (
    StableDiffusionXLDifferentialImg2ImgPipeline,
)


pipeline = StableDiffusionXLDifferentialImg2ImgPipeline.from_pretrained(
    "SG161222/RealVisXL_V4.0", torch_dtype=torch.float16, variant="fp16"
).to("cuda")
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, use_karras_sigmas=True)


def preprocess_image(image):
    image = image.convert("RGB")
    image = transforms.CenterCrop((image.size[1] // 64 * 64, image.size[0] // 64 * 64))(image)
    image = transforms.ToTensor()(image)
    image = image * 2 - 1
    image = image.unsqueeze(0).to("cuda")
    return image


def preprocess_map(map):
    map = map.convert("L")
    map = transforms.CenterCrop((map.size[1] // 64 * 64, map.size[0] // 64 * 64))(map)
    map = transforms.ToTensor()(map)
    map = map.to("cuda")
    return map


image = preprocess_image(
    load_image(
        "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true"
    )
)

mask = preprocess_map(
    load_image(
        "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true"
    )
)

prompt = "a green pear"
negative_prompt = "blurry"

image = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    guidance_scale=7.5,
    num_inference_steps=25,
    original_image=image,
    image=image,
    strength=1.0,
    map=mask,
).images[0]

image.save("result.png")
```

haikmanukyan's avatar
haikmanukyan committed
364
365
366
367
368
369
370
371
372
373
374
375
376
### HD-Painter

Implementation of [HD-Painter: High-Resolution and Prompt-Faithful Text-Guided Image Inpainting with Diffusion Models](https://arxiv.org/abs/2312.14091).

![teaser-img](https://raw.githubusercontent.com/Picsart-AI-Research/HD-Painter/main/__assets__/github/teaser.jpg)

The abstract from the paper is:

Recent progress in text-guided image inpainting, based on the unprecedented success of text-to-image diffusion models, has led to exceptionally realistic and visually plausible results.
However, there is still significant potential for improvement in current text-to-image inpainting models, particularly in better aligning the inpainted area with user prompts and performing high-resolution inpainting.
Therefore, in this paper we introduce _HD-Painter_, a completely **training-free** approach that **accurately follows to prompts** and coherently **scales to high-resolution** image inpainting.
To this end, we design the _Prompt-Aware Introverted Attention (PAIntA)_ layer enhancing self-attention scores by prompt information and resulting in better text alignment generations.
To further improve the prompt coherence we introduce the _Reweighting Attention Score Guidance (RASG)_ mechanism seamlessly integrating a post-hoc sampling strategy into general form of DDIM to prevent out-of-distribution latent shifts.
377
378
Moreover, HD-Painter allows extension to larger scales by introducing a specialized super-resolution technique customized for inpainting, enabling the completion of missing regions in images of up to 2K resolution.
Our experiments demonstrate that HD-Painter surpasses existing state-of-the-art approaches qualitatively and quantitatively, achieving an impressive generation accuracy improvement of **61.4** vs **51.9**.
haikmanukyan's avatar
haikmanukyan committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
We will make the codes publicly available.

You can find additional information about Text2Video-Zero in the [paper](https://arxiv.org/abs/2312.14091) or the [original codebase](https://github.com/Picsart-AI-Research/HD-Painter).

#### Usage example

```python
import torch
from diffusers import DiffusionPipeline, DDIMScheduler
from diffusers.utils import load_image, make_image_grid

pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-inpainting",
    custom_pipeline="hd_painter"
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)

prompt = "wooden boat"
init_image = load_image("https://raw.githubusercontent.com/Picsart-AI-Research/HD-Painter/main/__assets__/samples/images/2.jpg")
mask_image = load_image("https://raw.githubusercontent.com/Picsart-AI-Research/HD-Painter/main/__assets__/samples/masks/2.png")

400
image = pipe(prompt, init_image, mask_image, use_rasg=True, use_painta=True, generator=torch.manual_seed(12345)).images[0]
haikmanukyan's avatar
haikmanukyan committed
401
402
403
404

make_image_grid([init_image, mask_image, image], rows=1, cols=3)
```

405
406
407
408
409
410
411
412
413
414
### Marigold Depth Estimation

Marigold is a universal monocular depth estimator that delivers accurate and sharp predictions in the wild. Based on Stable Diffusion, it is trained exclusively with synthetic depth data and excels in zero-shot adaptation to real-world imagery. This pipeline is an official implementation of the inference process. More details can be found on our [project page](https://marigoldmonodepth.github.io) and [full codebase](https://github.com/prs-eth/marigold) (also implemented with diffusers).

![Marigold Teaser](https://marigoldmonodepth.github.io/images/teaser_collage_compressed.jpg)

This depth estimation pipeline processes a single input image through multiple diffusion denoising stages to estimate depth maps. These maps are subsequently merged to produce the final output. Below is an example code snippet, including optional arguments:

```python
import numpy as np
415
import torch
416
417
418
419
from PIL import Image
from diffusers import DiffusionPipeline
from diffusers.utils import load_image

420
# Original DDIM version (higher quality)
421
pipe = DiffusionPipeline.from_pretrained(
422
    "prs-eth/marigold-v1-0",
423
424
    custom_pipeline="marigold_depth_estimation"
    # torch_dtype=torch.float16,                # (optional) Run with half-precision (16-bit float).
425
426
427
428
429
    # variant="fp16",                           # (optional) Use with `torch_dtype=torch.float16`, to directly load fp16 checkpoint
)

# (New) LCM version (faster speed)
pipe = DiffusionPipeline.from_pretrained(
430
    "prs-eth/marigold-depth-lcm-v1-0",
431
432
433
    custom_pipeline="marigold_depth_estimation"
    # torch_dtype=torch.float16,                # (optional) Run with half-precision (16-bit float).
    # variant="fp16",                           # (optional) Use with `torch_dtype=torch.float16`, to directly load fp16 checkpoint
434
435
436
437
438
439
440
441
)

pipe.to("cuda")

img_path_or_url = "https://share.phys.ethz.ch/~pf/bingkedata/marigold/pipeline_example.jpg"
image: Image.Image = load_image(img_path_or_url)

pipeline_output = pipe(
442
443
    image,                    # Input image.
    # ----- recommended setting for DDIM version -----
444
445
    # denoising_steps=10,     # (optional) Number of denoising steps of each inference pass. Default: 10.
    # ensemble_size=10,       # (optional) Number of inference passes in the ensemble. Default: 10.
446
    # ------------------------------------------------
447

448
449
450
451
    # ----- recommended setting for LCM version ------
    # denoising_steps=4,
    # ensemble_size=5,
    # -------------------------------------------------
452

453
454
455
    # processing_res=768,     # (optional) Maximum resolution of processing. If set to 0: will not resize at all. Defaults to 768.
    # match_input_res=True,   # (optional) Resize depth prediction to match input resolution.
    # batch_size=0,           # (optional) Inference batch size, no bigger than `num_ensemble`. If set to 0, the script will automatically decide the proper batch size. Defaults to 0.
456
    # seed=2024,              # (optional) Random seed can be set to ensure additional reproducibility. Default: None (unseeded). Note: forcing --batch_size 1 helps to increase reproducibility. To ensure full reproducibility, deterministic mode needs to be used.
457
    # color_map="Spectral",   # (optional) Colormap used to colorize the depth map. Defaults to "Spectral". Set to `None` to skip colormap generation.
458
459
460
461
462
463
464
465
466
467
468
469
470
471
    # show_progress_bar=True, # (optional) If true, will show progress bars of the inference progress.
)

depth: np.ndarray = pipeline_output.depth_np                    # Predicted depth map
depth_colored: Image.Image = pipeline_output.depth_colored      # Colorized prediction

# Save as uint16 PNG
depth_uint16 = (depth * 65535.0).astype(np.uint16)
Image.fromarray(depth_uint16).save("./depth_map.png", mode="I;16")

# Save colorized depth map
depth_colored.save("./depth_colored.png")
```

472
473
474
475
476
477
478
479
480
481
482
483
### LLM-grounded Diffusion

LMD and LMD+ greatly improves the prompt understanding ability of text-to-image generation models by introducing an LLM as a front-end prompt parser and layout planner. It improves spatial reasoning, the understanding of negation, attribute binding, generative numeracy, etc. in a unified manner without explicitly aiming for each. LMD is completely training-free (i.e., uses SD model off-the-shelf). LMD+ takes in additional adapters for better control. This is a reproduction of LMD+ model used in our work. [Project page.](https://llm-grounded-diffusion.github.io/) [See our full codebase (also with diffusers).](https://github.com/TonyLianLong/LLM-groundedDiffusion)

![Main Image](https://llm-grounded-diffusion.github.io/main_figure.jpg)
![Visualizations: Enhanced Prompt Understanding](https://llm-grounded-diffusion.github.io/visualizations.jpg)

This pipeline can be used with an LLM or on its own. We provide a parser that parses LLM outputs to the layouts. You can obtain the prompt to input to the LLM for layout generation [here](https://github.com/TonyLianLong/LLM-groundedDiffusion/blob/main/prompt.py). After feeding the prompt to an LLM (e.g., GPT-4 on ChatGPT website), you can feed the LLM response into our pipeline.

The following code has been tested on 1x RTX 4090, but it should also support GPUs with lower GPU memory.

#### Use this pipeline with an LLM
484

485
486
487
488
489
```python
import torch
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
490
    "longlian/lmd_plus",
491
    custom_pipeline="llm_grounded_diffusion",
492
    custom_revision="main",
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    variant="fp16", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()

# Generate directly from a text prompt and an LLM response
prompt = "a waterfall and a modern high speed train in a beautiful forest with fall foliage"
phrases, boxes, bg_prompt, neg_prompt = pipe.parse_llm_response("""
[('a waterfall', [71, 105, 148, 258]), ('a modern high speed train', [255, 223, 181, 149])]
Background prompt: A beautiful forest with fall foliage
Negative prompt:
""")

images = pipe(
    prompt=prompt,
    negative_prompt=neg_prompt,
    phrases=phrases,
    boxes=boxes,
    gligen_scheduled_sampling_beta=0.4,
    output_type="pil",
    num_inference_steps=50,
    lmd_guidance_kwargs={}
).images

images[0].save("./lmd_plus_generation.jpg")
```

#### Use this pipeline on its own for layout generation
520

521
522
523
524
525
```python
import torch
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
526
    "longlian/lmd_plus",
527
    custom_pipeline="llm_grounded_diffusion",
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
    variant="fp16", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()

# Generate an image described by the prompt and
# insert objects described by text at the region defined by bounding boxes
prompt = "a waterfall and a modern high speed train in a beautiful forest with fall foliage"
boxes = [[0.1387, 0.2051, 0.4277, 0.7090], [0.4980, 0.4355, 0.8516, 0.7266]]
phrases = ["a waterfall", "a modern high speed train"]

images = pipe(
    prompt=prompt,
    phrases=phrases,
    boxes=boxes,
    gligen_scheduled_sampling_beta=0.4,
    output_type="pil",
    num_inference_steps=50,
    lmd_guidance_kwargs={}
).images

images[0].save("./lmd_plus_generation.jpg")
```

Patrick von Platen's avatar
Patrick von Platen committed
551
552
### CLIP Guided Stable Diffusion

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
553
CLIP guided stable diffusion can help to generate more realistic images
Patrick von Platen's avatar
Patrick von Platen committed
554
555
556
557
558
559
by guiding stable diffusion at every denoising step with an additional CLIP model.

The following code requires roughly 12GB of GPU RAM.

```python
from diffusers import DiffusionPipeline
560
from transformers import CLIPImageProcessor, CLIPModel
Patrick von Platen's avatar
Patrick von Platen committed
561
562
563
import torch


564
feature_extractor = CLIPImageProcessor.from_pretrained("laion/CLIP-ViT-B-32-laion2B-s34B-b79K")
Patrick von Platen's avatar
Patrick von Platen committed
565
566
567
568
clip_model = CLIPModel.from_pretrained("laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16)


guided_pipeline = DiffusionPipeline.from_pretrained(
569
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
Patrick von Platen's avatar
Patrick von Platen committed
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
    custom_pipeline="clip_guided_stable_diffusion",
    clip_model=clip_model,
    feature_extractor=feature_extractor,
    torch_dtype=torch.float16,
)
guided_pipeline.enable_attention_slicing()
guided_pipeline = guided_pipeline.to("cuda")

prompt = "fantasy book cover, full moon, fantasy forest landscape, golden vector elements, fantasy magic, dark light night, intricate, elegant, sharp focus, illustration, highly detailed, digital painting, concept art, matte, art by WLOP and Artgerm and Albert Bierstadt, masterpiece"

generator = torch.Generator(device="cuda").manual_seed(0)
images = []
for i in range(4):
    image = guided_pipeline(
        prompt,
        num_inference_steps=50,
        guidance_scale=7.5,
        clip_guidance_scale=100,
        num_cutouts=4,
        use_cutouts=False,
        generator=generator,
    ).images[0]
    images.append(image)
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
593

Patrick von Platen's avatar
Patrick von Platen committed
594
595
596
597
598
599
# save images locally
for i, img in enumerate(images):
    img.save(f"./clip_guided_sd/image_{i}.png")
```

The `images` list contains a list of PIL images that can be saved locally or displayed directly in a google colab.
600
Generated images tend to be of higher quality than natively using stable diffusion. E.g. the above script generates the following images:
Patrick von Platen's avatar
Patrick von Platen committed
601
602
603

![clip_guidance](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/clip_guidance/merged_clip_guidance.jpg).

604
### One Step Unet
Patrick von Platen's avatar
Patrick von Platen committed
605
606
607
608
609
610
611
612
613
614

The dummy "one-step-unet" can be run as follows:

```python
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeline="one_step_unet")
pipe()
```

615
**Note**: This community pipeline is not useful as a feature, but rather just serves as an example of how community pipelines can be added (see <https://github.com/huggingface/diffusers/issues/841>).
Patrick von Platen's avatar
Patrick von Platen committed
616
617
618
619
620
621
622
623
624
625
626

### Stable Diffusion Interpolation

The following code can be run on a GPU of at least 8GB VRAM and should take approximately 5 minutes.

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
627
    variant='fp16',
Patrick von Platen's avatar
Patrick von Platen committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
    torch_dtype=torch.float16,
    safety_checker=None,  # Very important for videos...lots of false positives while interpolating
    custom_pipeline="interpolate_stable_diffusion",
).to('cuda')
pipe.enable_attention_slicing()

frame_filepaths = pipe.walk(
    prompts=['a dog', 'a cat', 'a horse'],
    seeds=[42, 1337, 1234],
    num_interpolation_steps=16,
    output_dir='./dreams',
    batch_size=4,
    height=512,
    width=512,
    guidance_scale=8.5,
    num_inference_steps=50,
)
```

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
647
The output of the `walk(...)` function returns a list of images saved under the folder as defined in `output_dir`. You can use these images to create videos of stable diffusion.
Patrick von Platen's avatar
Patrick von Platen committed
648

649
> **Please have a look at <https://github.com/nateraw/stable-diffusion-videos> for more in-detail information on how to create videos using stable diffusion as well as more feature-complete functionality.**
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667

### Stable Diffusion Mega

The Stable Diffusion Mega Pipeline lets you use the main use cases of the stable diffusion pipeline in a single class.

```python
#!/usr/bin/env python3
from diffusers import DiffusionPipeline
import PIL
import requests
from io import BytesIO
import torch


def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")

668
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_mega", torch_dtype=torch.float16, variant="fp16")
669
670
671
672
673
674
675
676
677
678
679
680
pipe.to("cuda")
pipe.enable_attention_slicing()


### Text-to-Image
images = pipe.text2img("An astronaut riding a horse").images

### Image-to-Image
init_image = download_image("https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg")

prompt = "A fantasy landscape, trending on artstation"

681
images = pipe.img2img(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images
682
683
684
685
686
687
688
689

### Inpainting
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))

prompt = "a cat sitting on a bench"
690
images = pipe.inpaint(prompt=prompt, image=init_image, mask_image=mask_image, strength=0.75).images
691
692
693
694
```

As shown above this one pipeline can run all both "text-to-image", "image-to-image", and "inpainting" in one pipeline.

695
### Long Prompt Weighting Stable Diffusion
696

697
Features of this custom pipeline:
698

699
- Input a prompt without the 77 token length limit.
700
- Includes tx2img, img2img, and inpainting pipelines.
701
702
703
704
705
- Emphasize/weigh part of your prompt with parentheses as so: `a baby deer with (big eyes)`
- De-emphasize part of your prompt as so: `a [baby] deer with big eyes`
- Precisely weigh part of your prompt as so: `a baby deer with (big eyes:1.3)`

Prompt weighting equivalents:
706

707
708
709
710
711
712
- `a baby deer with` == `(a baby deer with:1.0)`
- `(big eyes)` == `(big eyes:1.1)`
- `((big eyes))` == `(big eyes:1.21)`
- `[big eyes]` == `(big eyes:0.91)`

You can run this custom pipeline as so:
713

714
#### PyTorch
715
716
717
718
719
720
721
722
723
724

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    'hakurei/waifu-diffusion',
    custom_pipeline="lpw_stable_diffusion",
    torch_dtype=torch.float16
)
725
pipe = pipe.to("cuda")
726
727
728
729

prompt = "best_quality (1girl:1.3) bow bride brown_hair closed_mouth frilled_bow frilled_hair_tubes frills (full_body:1.3) fox_ear hair_bow hair_tubes happy hood japanese_clothes kimono long_sleeves red_bow smile solo tabi uchikake white_kimono wide_sleeves cherry_blossoms"
neg_prompt = "lowres, bad_anatomy, error_body, error_hair, error_arm, error_hands, bad_hands, error_fingers, bad_fingers, missing_fingers, error_legs, bad_legs, multiple_legs, missing_legs, error_lighting, error_shadow, error_reflection, text, error, extra_digit, fewer_digits, cropped, worst_quality, low_quality, normal_quality, jpeg_artifacts, signature, watermark, username, blurry"

730
pipe.text2img(prompt, negative_prompt=neg_prompt, width=512, height=512, max_embeddings_multiples=3).images[0]
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
```

#### onnxruntime

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    'CompVis/stable-diffusion-v1-4',
    custom_pipeline="lpw_stable_diffusion_onnx",
    revision="onnx",
    provider="CUDAExecutionProvider"
)

prompt = "a photo of an astronaut riding a horse on mars, best quality"
neg_prompt = "lowres, bad anatomy, error body, error hair, error arm, error hands, bad hands, error fingers, bad fingers, missing fingers, error legs, bad legs, multiple legs, missing legs, error lighting, error shadow, error reflection, text, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry"

749
pipe.text2img(prompt, negative_prompt=neg_prompt, width=512, height=512, max_embeddings_multiples=3).images[0]
750
751
```

752
If you see `Token indices sequence length is longer than the specified maximum sequence length for this model ( *** > 77 ) . Running this sequence through the model will result in indexing errors`. Do not worry, it is normal.
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795

### Speech to Image

The following code can generate an image from an audio sample using pre-trained OpenAI whisper-small and Stable Diffusion.

```Python
import torch

import matplotlib.pyplot as plt
from datasets import load_dataset
from diffusers import DiffusionPipeline
from transformers import (
    WhisperForConditionalGeneration,
    WhisperProcessor,
)


device = "cuda" if torch.cuda.is_available() else "cpu"

ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")

audio_sample = ds[3]

text = audio_sample["text"].lower()
speech_data = audio_sample["audio"]["array"]

model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
processor = WhisperProcessor.from_pretrained("openai/whisper-small")

diffuser_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="speech_to_image_diffusion",
    speech_model=model,
    speech_processor=processor,
    torch_dtype=torch.float16,
)

diffuser_pipeline.enable_attention_slicing()
diffuser_pipeline = diffuser_pipeline.to(device)

output = diffuser_pipeline(speech_data)
plt.imshow(output.images[0])
```
796

797
798
799
This example produces the following image:

![image](https://user-images.githubusercontent.com/45072645/196901736-77d9c6fc-63ee-4072-90b0-dc8b903d63e3.png)
800
801

### Wildcard Stable Diffusion
802
803

Following the great examples from <https://github.com/jtkelm2/stable-diffusion-webui-1/blob/master/scripts/wildcards.py> and <https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts#wildcards>, here's a minimal implementation that allows for users to add "wildcards", denoted by `__wildcard__` to prompts that are used as placeholders for randomly sampled values given by either a dictionary or a `.txt` file. For example:
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

Say we have a prompt:

```
prompt = "__animal__ sitting on a __object__ wearing a __clothing__"
```

We can then define possible values to be sampled for `animal`, `object`, and `clothing`. These can either be from a `.txt` with the same name as the category.

The possible values can also be defined / combined by using a dictionary like: `{"animal":["dog", "cat", mouse"]}`.

The actual pipeline works just like `StableDiffusionPipeline`, except the `__call__` method takes in:

`wildcard_files`: list of file paths for wild card replacement
`wildcard_option_dict`: dict with key as `wildcard` and values as a list of possible replacements
`num_prompt_samples`: number of prompts to sample, uniformly sampling wildcards

A full example:

create `animal.txt`, with contents like:

```
dog
cat
mouse
```

create `object.txt`, with contents like:

```
chair
sofa
bench
```

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="wildcard_stable_diffusion",
    torch_dtype=torch.float16,
)
prompt = "__animal__ sitting on a __object__ wearing a __clothing__"
out = pipe(
    prompt,
    wildcard_option_dict={
        "clothing":["hat", "shirt", "scarf", "beret"]
    },
    wildcard_files=["object.txt", "animal.txt"],
    num_prompt_samples=1
)
857
858
out.images[0].save("image.png")
torch.cuda.empty_cache()
859
860
```

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
861
### Composable Stable diffusion
862

863
864
[Composable Stable Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) proposes conjunction and negation (negative prompts) operators for compositional generation with conditional diffusion models.

865
866
867
868
```python
import torch as th
import numpy as np
import torchvision.utils as tvu
869

870
871
from diffusers import DiffusionPipeline

872
873
874
875
876
877
878
879
880
881
882
883
884
import argparse

parser = argparse.ArgumentParser()
parser.add_argument("--prompt", type=str, default="mystical trees | A magical pond | dark",
                    help="use '|' as the delimiter to compose separate sentences.")
parser.add_argument("--steps", type=int, default=50)
parser.add_argument("--scale", type=float, default=7.5)
parser.add_argument("--weights", type=str, default="7.5 | 7.5 | -7.5")
parser.add_argument("--seed", type=int, default=2)
parser.add_argument("--model_path", type=str, default="CompVis/stable-diffusion-v1-4")
parser.add_argument("--num_images", type=int, default=1)
args = parser.parse_args()

885
886
887
has_cuda = th.cuda.is_available()
device = th.device('cpu' if not has_cuda else 'cuda')

888
889
890
891
prompt = args.prompt
scale = args.scale
steps = args.steps

892
pipe = DiffusionPipeline.from_pretrained(
893
    args.model_path,
894
895
896
    custom_pipeline="composable_stable_diffusion",
).to(device)

897
pipe.safety_checker = None
898
899

images = []
900
901
902
903
904
905
906
generator = th.Generator("cuda").manual_seed(args.seed)
for i in range(args.num_images):
    image = pipe(prompt, guidance_scale=scale, num_inference_steps=steps,
                 weights=args.weights, generator=generator).images[0]
    images.append(th.from_numpy(np.array(image)).permute(2, 0, 1) / 255.)
grid = tvu.make_grid(th.stack(images, dim=0), nrow=4, padding=0)
tvu.save_image(grid, f'{prompt}_{args.weights}' + '.png')
907
```
908
909

### Imagic Stable Diffusion
910

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
911
Allows you to edit an image using stable diffusion.
912
913
914
915
916
917

```python
import requests
from PIL import Image
from io import BytesIO
import torch
918
import os
919
from diffusers import DiffusionPipeline, DDIMScheduler
920

921
922
923
924
has_cuda = torch.cuda.is_available()
device = torch.device('cpu' if not has_cuda else 'cuda')
pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
925
    safety_checker=None,
926
    custom_pipeline="imagic_stable_diffusion",
927
    scheduler=DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
928
).to(device)
Dhruv Naik's avatar
Dhruv Naik committed
929
generator = torch.Generator("cuda").manual_seed(0)
930
931
932
933
934
935
936
937
seed = 0
prompt = "A photo of Barack Obama smiling with a big grin"
url = 'https://www.dropbox.com/s/6tlwzr73jd1r9yk/obama.png?dl=1'
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((512, 512))
res = pipe.train(
    prompt,
938
    image=init_image,
939
    generator=generator)
Dhruv Naik's avatar
Dhruv Naik committed
940
res = pipe(alpha=1, guidance_scale=7.5, num_inference_steps=50)
941
os.makedirs("imagic", exist_ok=True)
942
943
image = res.images[0]
image.save('./imagic/imagic_image_alpha_1.png')
Dhruv Naik's avatar
Dhruv Naik committed
944
res = pipe(alpha=1.5, guidance_scale=7.5, num_inference_steps=50)
945
946
image = res.images[0]
image.save('./imagic/imagic_image_alpha_1_5.png')
Dhruv Naik's avatar
Dhruv Naik committed
947
res = pipe(alpha=2, guidance_scale=7.5, num_inference_steps=50)
948
949
950
951
image = res.images[0]
image.save('./imagic/imagic_image_alpha_2.png')
```

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
952
### Seed Resizing
953

954
955
956
Test seed resizing. Originally generate an image in 512 by 512, then generate image with same seed at 512 by 592 using seed resizing. Finally, generate 512 by 592 using original stable diffusion pipeline.

```python
957
import os
958
959
960
961
import torch as th
import numpy as np
from diffusers import DiffusionPipeline

962
963
964
965
# Ensure the save directory exists or create it
save_dir = './seed_resize/'
os.makedirs(save_dir, exist_ok=True)

966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
has_cuda = th.cuda.is_available()
device = th.device('cpu' if not has_cuda else 'cuda')

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="seed_resize_stable_diffusion"
).to(device)

def dummy(images, **kwargs):
    return images, False

pipe.safety_checker = dummy

images = []
th.manual_seed(0)
generator = th.Generator("cuda").manual_seed(0)

seed = 0
prompt = "A painting of a futuristic cop"

width = 512
height = 512

res = pipe(
    prompt,
    guidance_scale=7.5,
    num_inference_steps=50,
    height=height,
    width=width,
    generator=generator)
image = res.images[0]
997
image.save(os.path.join(save_dir, 'seed_resize_{w}_{h}_image.png'.format(w=width, h=height)))
998
999
1000
1001
1002
1003

th.manual_seed(0)
generator = th.Generator("cuda").manual_seed(0)

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
1004
    custom_pipeline="seed_resize_stable_diffusion"
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
).to(device)

width = 512
height = 592

res = pipe(
    prompt,
    guidance_scale=7.5,
    num_inference_steps=50,
    height=height,
    width=width,
    generator=generator)
image = res.images[0]
1018
image.save(os.path.join(save_dir, 'seed_resize_{w}_{h}_image.png'.format(w=width, h=height)))
1019
1020
1021

pipe_compare = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
1022
    custom_pipeline="seed_resize_stable_diffusion"
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
).to(device)

res = pipe_compare(
    prompt,
    guidance_scale=7.5,
    num_inference_steps=50,
    height=height,
    width=width,
    generator=generator
)

image = res.images[0]
1035
image.save(os.path.join(save_dir, 'seed_resize_{w}_{h}_image_compare.png'.format(w=width, h=height)))
1036
```
1037

1038
1039
### Multilingual Stable Diffusion Pipeline

1040
The following code can generate images from texts in different languages using the pre-trained [mBART-50 many-to-one multilingual machine translation model](https://huggingface.co/facebook/mbart-large-50-many-to-one-mmt) and Stable Diffusion.
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089

```python
from PIL import Image

import torch

from diffusers import DiffusionPipeline
from transformers import (
    pipeline,
    MBart50TokenizerFast,
    MBartForConditionalGeneration,
)
device = "cuda" if torch.cuda.is_available() else "cpu"
device_dict = {"cuda": 0, "cpu": -1}

# helper function taken from: https://huggingface.co/blog/stable_diffusion
def image_grid(imgs, rows, cols):
    assert len(imgs) == rows*cols

    w, h = imgs[0].size
    grid = Image.new('RGB', size=(cols*w, rows*h))
    grid_w, grid_h = grid.size

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i%cols*w, i//cols*h))
    return grid

# Add language detection pipeline
language_detection_model_ckpt = "papluca/xlm-roberta-base-language-detection"
language_detection_pipeline = pipeline("text-classification",
                                       model=language_detection_model_ckpt,
                                       device=device_dict[device])

# Add model for language translation
trans_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-one-mmt")
trans_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-one-mmt").to(device)

diffuser_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="multilingual_stable_diffusion",
    detection_pipeline=language_detection_pipeline,
    translation_model=trans_model,
    translation_tokenizer=trans_tokenizer,
    torch_dtype=torch.float16,
)

diffuser_pipeline.enable_attention_slicing()
diffuser_pipeline = diffuser_pipeline.to(device)

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1090
prompt = ["a photograph of an astronaut riding a horse",
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
          "Una casa en la playa",
          "Ein Hund, der Orange isst",
          "Un restaurant parisien"]

output = diffuser_pipeline(prompt)

images = output.images

grid = image_grid(images, rows=2, cols=2)
```

This example produces the following images:
![image](https://user-images.githubusercontent.com/4313860/198328706-295824a4-9856-4ce5-8e66-278ceb42fd29.png)

1105
### GlueGen Stable Diffusion Pipeline
1106

1107
GlueGen is a minimal adapter that allows alignment between any encoder (Text Encoder of different language, Multilingual Roberta, AudioClip) and CLIP text encoder used in standard Stable Diffusion model. This method allows easy language adaptation to available english Stable Diffusion checkpoints without the need of an image captioning dataset as well as long training hours.
1108

1109
Make sure you downloaded `gluenet_French_clip_overnorm_over3_noln.ckpt` for French (there are also pre-trained weights for Chinese, Italian, Japanese, Spanish or train your own) at [GlueGen's official repo](https://github.com/salesforce/GlueGen/tree/main).
1110
1111

```python
1112
1113
1114
import os
import gc
import urllib.request
1115
import torch
1116
1117
from transformers import XLMRobertaTokenizer, XLMRobertaForMaskedLM, CLIPTokenizer, CLIPTextModel
from diffusers import DiffusionPipeline
1118

1119
1120
1121
1122
1123
1124
1125
1126
1127
# Download checkpoints
CHECKPOINTS = [
    "https://storage.googleapis.com/sfr-gluegen-data-research/checkpoints_all/gluenet_checkpoint/gluenet_Chinese_clip_overnorm_over3_noln.ckpt",
    "https://storage.googleapis.com/sfr-gluegen-data-research/checkpoints_all/gluenet_checkpoint/gluenet_French_clip_overnorm_over3_noln.ckpt",
    "https://storage.googleapis.com/sfr-gluegen-data-research/checkpoints_all/gluenet_checkpoint/gluenet_Italian_clip_overnorm_over3_noln.ckpt",
    "https://storage.googleapis.com/sfr-gluegen-data-research/checkpoints_all/gluenet_checkpoint/gluenet_Japanese_clip_overnorm_over3_noln.ckpt",
    "https://storage.googleapis.com/sfr-gluegen-data-research/checkpoints_all/gluenet_checkpoint/gluenet_Spanish_clip_overnorm_over3_noln.ckpt",
    "https://storage.googleapis.com/sfr-gluegen-data-research/checkpoints_all/gluenet_checkpoint/gluenet_sound2img_audioclip_us8k.ckpt"
]
1128

1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
LANGUAGE_PROMPTS = {
    "French": "une voiture sur la plage",
    #"Chinese": "海滩上的一辆车",
    #"Italian": "una macchina sulla spiaggia",
    #"Japanese": "浜辺の車",
    #"Spanish": "un coche en la playa"
}

def download_checkpoints(checkpoint_dir):
    os.makedirs(checkpoint_dir, exist_ok=True)
    for url in CHECKPOINTS:
        filename = os.path.join(checkpoint_dir, os.path.basename(url))
        if not os.path.exists(filename):
            print(f"Downloading {filename}...")
            urllib.request.urlretrieve(url, filename)
            print(f"Downloaded {filename}")
        else:
            print(f"Checkpoint {filename} already exists, skipping download.")
    return checkpoint_dir

def load_checkpoint(pipeline, checkpoint_path, device):
    state_dict = torch.load(checkpoint_path, map_location=device)
    state_dict = state_dict.get("state_dict", state_dict)
    missing_keys, unexpected_keys = pipeline.unet.load_state_dict(state_dict, strict=False)
    return pipeline

def generate_image(pipeline, prompt, device, output_path):
    with torch.inference_mode():
        image = pipeline(
            prompt,
            generator=torch.Generator(device=device).manual_seed(42),
            num_inference_steps=50
        ).images[0]
        image.save(output_path)
        print(f"Image saved to {output_path}")

checkpoint_dir = download_checkpoints("./checkpoints_all/gluenet_checkpoint")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")

tokenizer = XLMRobertaTokenizer.from_pretrained("xlm-roberta-base", use_fast=False)
model = XLMRobertaForMaskedLM.from_pretrained("xlm-roberta-base").to(device)
inputs = tokenizer("Ceci est une phrase incomplète avec un [MASK].", return_tensors="pt").to(device)
with torch.inference_mode():
    _ = model(**inputs)
1174
1175


1176
1177
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
clip_text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14").to(device)
1178

1179
1180
1181
1182
1183
1184
1185
1186
# Initialize pipeline
pipeline = DiffusionPipeline.from_pretrained(
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
    text_encoder=clip_text_encoder,
    tokenizer=clip_tokenizer,
    custom_pipeline="gluegen",
    safety_checker=None
).to(device)
1187

1188
os.makedirs("outputs", exist_ok=True)
1189

1190
1191
# Generate images
for language, prompt in LANGUAGE_PROMPTS.items():
1192

1193
1194
1195
1196
1197
1198
1199
1200
1201
    checkpoint_file = f"gluenet_{language}_clip_overnorm_over3_noln.ckpt"
    checkpoint_path = os.path.join(checkpoint_dir, checkpoint_file)
    try:
        pipeline = load_checkpoint(pipeline, checkpoint_path, device)
        output_path = f"outputs/gluegen_output_{language.lower()}.png"
        generate_image(pipeline, prompt, device, output_path)
    except Exception as e:
        print(f"Error processing {language} model: {e}")
        continue
1202

1203
1204
1205
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()
1206
```
1207

1208
1209
1210
1211
Which will produce:

![output_image](https://github.com/rootonchair/diffusers/assets/23548268/db43ffb6-8667-47c1-8872-26f85dc0a57f)

1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
### Image to Image Inpainting Stable Diffusion

Similar to the standard stable diffusion inpainting example, except with the addition of an `inner_image` argument.

`image`, `inner_image`, and `mask` should have the same dimensions. `inner_image` should have an alpha (transparency) channel.

The aim is to overlay two images, then mask out the boundary between `image` and `inner_image` to allow stable diffusion to make the connection more seamless.
For example, this could be used to place a logo on a shirt and make it blend seamlessly.

```python
import PIL
import torch

1225
from diffusers import DiffusionPipeline
1226
1227
1228
1229
1230
1231
1232
1233
1234

image_path = "./path-to-image.png"
inner_image_path = "./path-to-inner-image.png"
mask_path = "./path-to-mask.png"

init_image = PIL.Image.open(image_path).convert("RGB").resize((512, 512))
inner_image = PIL.Image.open(inner_image_path).convert("RGBA").resize((512, 512))
mask_image = PIL.Image.open(mask_path).convert("RGB").resize((512, 512))

1235
pipe = DiffusionPipeline.from_pretrained(
1236
    "runwayml/stable-diffusion-inpainting",
1237
1238
    custom_pipeline="img2img_inpainting",
    torch_dtype=torch.float16
1239
1240
1241
1242
1243
)
pipe = pipe.to("cuda")

prompt = "Your prompt here!"
image = pipe(prompt=prompt, image=init_image, inner_image=inner_image, mask_image=mask_image).images[0]
1244
```
1245

1246
1247
![2 by 2 grid demonstrating image to image inpainting.](https://user-images.githubusercontent.com/44398246/203506577-ec303be4-887e-4ebd-a773-c83fcb3dd01a.png)

1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
### Text Based Inpainting Stable Diffusion

Use a text prompt to generate the mask for the area to be inpainted.
Currently uses the CLIPSeg model for mask generation, then calls the standard Stable Diffusion Inpainting pipeline to perform the inpainting.

```python
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
from diffusers import DiffusionPipeline
from PIL import Image
import requests
1258
import torch
1259

1260
# Load CLIPSeg model and processor
1261
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
1262
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to("cuda")
1263

1264
# Load Stable Diffusion Inpainting Pipeline with custom pipeline
1265
1266
1267
1268
1269
pipe = DiffusionPipeline.from_pretrained(
    "runwayml/stable-diffusion-inpainting",
    custom_pipeline="text_inpainting",
    segmentation_model=model,
    segmentation_processor=processor
1270
).to("cuda")
1271

1272
# Load input image
1273
url = "https://github.com/timojl/clipseg/blob/master/example_image.jpg?raw=true"
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
image = Image.open(requests.get(url, stream=True).raw)

# Step 1: Resize input image for CLIPSeg (224x224)
segmentation_input = image.resize((224, 224))

# Step 2: Generate segmentation mask
text = "a glass"  # Object to mask
inputs = processor(text=text, images=segmentation_input, return_tensors="pt").to("cuda")

with torch.no_grad():
    mask = model(**inputs).logits.sigmoid()  # Get segmentation mask
1285

1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
# Resize mask back to 512x512 for SD inpainting
mask = torch.nn.functional.interpolate(mask.unsqueeze(0), size=(512, 512), mode="bilinear").squeeze(0)

# Step 3: Resize input image for Stable Diffusion
image = image.resize((512, 512))

# Step 4: Run inpainting with Stable Diffusion
prompt = "a cup"  # The masked-out region will be replaced with this
result = pipe(image=image, mask=mask, prompt=prompt,text=text).images[0]

# Save output
result.save("inpainting_output.png")
print("Inpainting completed. Image saved as 'inpainting_output.png'.")
1299
```
Stuti R's avatar
Stuti R committed
1300

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1301
### Bit Diffusion
1302

1303
Based <https://arxiv.org/abs/2208.04202>, this is used for diffusion on discrete data - eg, discrete image data, DNA sequence data. An unconditional discrete image can be generated like this:
Stuti R's avatar
Stuti R committed
1304
1305
1306

```python
from diffusers import DiffusionPipeline
1307

Stuti R's avatar
Stuti R committed
1308
1309
pipe = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeline="bit_diffusion")
image = pipe().images[0]
1310
1311
1312
1313
```

### Stable Diffusion with K Diffusion

1314
Make sure you have @crowsonkb's <https://github.com/crowsonkb/k-diffusion> installed:
1315

1316
```sh
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
pip install k-diffusion
```

You can use the community pipeline as follows:

```python
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="sd_text2img_k_diffusion")
pipe = pipe.to("cuda")

prompt = "an astronaut riding a horse on mars"
1329
pipe.set_scheduler("sample_heun")
1330
1331
1332
1333
1334
1335
1336
1337
1338
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=20).images[0]

image.save("./astronaut_heun_k_diffusion.png")
```

To make sure that K Diffusion and `diffusers` yield the same results:

**Diffusers**:
1339

1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
```python
from diffusers import DiffusionPipeline, EulerDiscreteScheduler

seed = 33

pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")

generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=50).images[0]
```

![diffusers_euler](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/k_diffusion/astronaut_euler.png)

**K Diffusion**:
1356

1357
1358
1359
1360
1361
1362
1363
1364
1365
```python
from diffusers import DiffusionPipeline, EulerDiscreteScheduler

seed = 33

pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="sd_text2img_k_diffusion")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")

1366
pipe.set_scheduler("sample_euler")
1367
1368
1369
1370
1371
1372
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=50).images[0]
```

![diffusers_euler](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/k_diffusion/astronaut_euler_k_diffusion.png)

1373
### Checkpoint Merger Pipeline
1374

1375
Based on the AUTOMATIC1111/webui for checkpoint merging. This is a custom pipeline that merges up to 3 pretrained model checkpoints as long as they are in the HuggingFace model_index.json format.
1376

1377
1378
The checkpoint merging is currently memory intensive as it modifies the weights of a DiffusionPipeline object in place. Expect at least 13GB RAM usage on Kaggle GPU kernels and
on Colab you might run out of the 12GB memory even while merging two checkpoints.
1379
1380

Usage:-
1381

1382
1383
1384
```python
from diffusers import DiffusionPipeline

1385
1386
1387
# Return a CheckpointMergerPipeline class that allows you to merge checkpoints.
# The checkpoint passed here is ignored. But still pass one of the checkpoints you plan to
# merge for convenience
1388
1389
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="checkpoint_merger")

1390
1391
# There are multiple possible scenarios:
# The pipeline with the merged checkpoints is returned in all the scenarios
1392

1393
1394
# Compatible checkpoints a.k.a matched model_index.json files. Ignores the meta attributes in model_index.json during comparison.( attrs with _ as prefix )
merged_pipe = pipe.merge(["CompVis/stable-diffusion-v1-4"," CompVis/stable-diffusion-v1-2"], interp="sigmoid", alpha=0.4)
1395

1396
1397
# Incompatible checkpoints in model_index.json but merge might be possible. Use force=True to ignore model_index.json compatibility
merged_pipe_1 = pipe.merge(["CompVis/stable-diffusion-v1-4", "hakurei/waifu-diffusion"], force=True, interp="sigmoid", alpha=0.4)
1398

1399
1400
# Three checkpoint merging. Only "add_difference" method actually works on all three checkpoints. Using any other options will ignore the 3rd checkpoint.
merged_pipe_2 = pipe.merge(["CompVis/stable-diffusion-v1-4", "hakurei/waifu-diffusion", "prompthero/openjourney"], force=True, interp="add_difference", alpha=0.4)
1401
1402
1403
1404
1405

prompt = "An astronaut riding a horse on Mars"

image = merged_pipe(prompt).images[0]
```
1406

1407
1408
Some examples along with the merge details:

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1409
1. "CompVis/stable-diffusion-v1-4" + "hakurei/waifu-diffusion" ; Sigmoid interpolation; alpha = 0.8
1410
1411
1412

![Stable plus Waifu Sigmoid 0.8](https://huggingface.co/datasets/NagaSaiAbhinay/CheckpointMergerSamples/resolve/main/stability_v1_4_waifu_sig_0.8.png)

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1413
2. "hakurei/waifu-diffusion" + "prompthero/openjourney" ; Inverse Sigmoid interpolation; alpha = 0.8
1414

1415
![Waifu plus openjourney Sigmoid 0.8](https://huggingface.co/datasets/NagaSaiAbhinay/CheckpointMergerSamples/resolve/main/waifu_openjourney_inv_sig_0.8.png)
1416

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1417
3. "CompVis/stable-diffusion-v1-4" + "hakurei/waifu-diffusion" + "prompthero/openjourney"; Add Difference interpolation; alpha = 0.5
1418
1419

![Stable plus Waifu plus openjourney add_diff 0.5](https://huggingface.co/datasets/NagaSaiAbhinay/CheckpointMergerSamples/resolve/main/stable_waifu_openjourney_add_diff_0.5.png)
1420
1421
1422
1423

### Stable Diffusion Comparisons

This Community Pipeline enables the comparison between the 4 checkpoints that exist for Stable Diffusion. They can be found through the following links:
1424

1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1. [Stable Diffusion v1.1](https://huggingface.co/CompVis/stable-diffusion-v1-1)
2. [Stable Diffusion v1.2](https://huggingface.co/CompVis/stable-diffusion-v1-2)
3. [Stable Diffusion v1.3](https://huggingface.co/CompVis/stable-diffusion-v1-3)
4. [Stable Diffusion v1.4](https://huggingface.co/CompVis/stable-diffusion-v1-4)

```python
from diffusers import DiffusionPipeline
import matplotlib.pyplot as plt

pipe = DiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4', custom_pipeline='suvadityamuk/StableDiffusionComparison')
pipe.enable_attention_slicing()
pipe = pipe.to('cuda')
prompt = "an astronaut riding a horse on mars"
output = pipe(prompt)

plt.subplots(2,2,1)
plt.imshow(output.images[0])
plt.title('Stable Diffusion v1.1')
plt.axis('off')
plt.subplots(2,2,2)
plt.imshow(output.images[1])
plt.title('Stable Diffusion v1.2')
plt.axis('off')
plt.subplots(2,2,3)
plt.imshow(output.images[2])
plt.title('Stable Diffusion v1.3')
plt.axis('off')
plt.subplots(2,2,4)
plt.imshow(output.images[3])
plt.title('Stable Diffusion v1.4')
plt.axis('off')

plt.show()
Partho's avatar
Partho committed
1458
1459
1460
1461
1462
1463
1464
1465
1466
```

As a result, you can look at a grid of all 4 generated images being shown together, that captures a difference the advancement of the training between the 4 checkpoints.

### Magic Mix

Implementation of the [MagicMix: Semantic Mixing with Diffusion Models](https://arxiv.org/abs/2210.16056) paper. This is a Diffusion Pipeline for semantic mixing of an image and a text prompt to create a new concept while preserving the spatial layout and geometry of the subject in the image. The pipeline takes an image that provides the layout semantics and a prompt that provides the content semantics for the mixing process.

There are 3 parameters for the method-
1467

Partho's avatar
Partho committed
1468
1469
1470
1471
1472
- `mix_factor`: It is the interpolation constant used in the layout generation phase. The greater the value of `mix_factor`, the greater the influence of the prompt on the layout generation process.
- `kmax` and `kmin`: These determine the range for the layout and content generation process. A higher value of kmax results in loss of more information about the layout of the original image and a higher value of kmin results in more steps for content generation process.

Here is an example usage-

1473
```python
1474
import requests
Partho's avatar
Partho committed
1475
1476
from diffusers import DiffusionPipeline, DDIMScheduler
from PIL import Image
1477
from io import BytesIO
Partho's avatar
Partho committed
1478
1479
1480
1481

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="magic_mix",
1482
    scheduler=DDIMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler"),
Partho's avatar
Partho committed
1483
1484
).to('cuda')

1485
1486
1487
url = "https://user-images.githubusercontent.com/59410571/209578593-141467c7-d831-4792-8b9a-b17dc5e47816.jpg"
response = requests.get(url)
image = Image.open(BytesIO(response.content)).convert("RGB")  # Convert to RGB to avoid issues
Partho's avatar
Partho committed
1488
mix_img = pipe(
1489
    image,
1490
1491
1492
1493
    prompt='bed',
    kmin=0.3,
    kmax=0.5,
    mix_factor=0.5,
Partho's avatar
Partho committed
1494
1495
1496
    )
mix_img.save('phone_bed_mix.jpg')
```
1497

Partho's avatar
Partho committed
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
The `mix_img` is a PIL image that can be saved locally or displayed directly in a google colab. Generated image is a mix of the layout semantics of the given image and the content semantics of the prompt.

E.g. the above script generates the following image:

`phone.jpg`

![206903102-34e79b9f-9ed2-4fac-bb38-82871343c655](https://user-images.githubusercontent.com/59410571/209578593-141467c7-d831-4792-8b9a-b17dc5e47816.jpg)

`phone_bed_mix.jpg`

![206903104-913a671d-ef53-4ae4-919d-64c3059c8f67](https://user-images.githubusercontent.com/59410571/209578602-70f323fa-05b7-4dd6-b055-e40683e37914.jpg)
1509

Partho's avatar
Partho committed
1510
For more example generations check out this [demo notebook](https://github.com/daspartho/MagicMix/blob/main/demo.ipynb).
1511
1512
1513

### Stable UnCLIP

1514
1515
UnCLIPPipeline("kakaobrain/karlo-v1-alpha") provides a prior model that can generate clip image embedding from text.
StableDiffusionImageVariationPipeline("lambdalabs/sd-image-variations-diffusers") provides a decoder model than can generate images from clip image embedding.
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555

```python
import torch
from diffusers import DiffusionPipeline

device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")

pipeline = DiffusionPipeline.from_pretrained(
    "kakaobrain/karlo-v1-alpha",
    torch_dtype=torch.float16,
    custom_pipeline="stable_unclip",
    decoder_pipe_kwargs=dict(
        image_encoder=None,
    ),
)
pipeline.to(device)

prompt = "a shiba inu wearing a beret and black turtleneck"
random_generator = torch.Generator(device=device).manual_seed(1000)
output = pipeline(
    prompt=prompt,
    width=512,
    height=512,
    generator=random_generator,
    prior_guidance_scale=4,
    prior_num_inference_steps=25,
    decoder_guidance_scale=8,
    decoder_num_inference_steps=50,
)

image = output.images[0]
image.save("./shiba-inu.jpg")

# debug

# `pipeline.decoder_pipe` is a regular StableDiffusionImageVariationPipeline instance.
# It is used to convert clip image embedding to latents, then fed into VAE decoder.
print(pipeline.decoder_pipe.__class__)
# <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_image_variation.StableDiffusionImageVariationPipeline'>

1556
# this pipeline only uses prior module in "kakaobrain/karlo-v1-alpha"
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
# It is used to convert clip text embedding to clip image embedding.
print(pipeline)
# StableUnCLIPPipeline {
#   "_class_name": "StableUnCLIPPipeline",
#   "_diffusers_version": "0.12.0.dev0",
#   "prior": [
#     "diffusers",
#     "PriorTransformer"
#   ],
#   "prior_scheduler": [
#     "diffusers",
#     "UnCLIPScheduler"
#   ],
#   "text_encoder": [
#     "transformers",
#     "CLIPTextModelWithProjection"
#   ],
#   "tokenizer": [
#     "transformers",
#     "CLIPTokenizer"
#   ]
# }

# pipeline.prior_scheduler is the scheduler used for prior in UnCLIP.
print(pipeline.prior_scheduler)
# UnCLIPScheduler {
#   "_class_name": "UnCLIPScheduler",
#   "_diffusers_version": "0.12.0.dev0",
#   "clip_sample": true,
#   "clip_sample_range": 5.0,
#   "num_train_timesteps": 1000,
#   "prediction_type": "sample",
#   "variance_type": "fixed_small_log"
# }
```

`shiba-inu.jpg`

![shiba-inu](https://user-images.githubusercontent.com/16448529/209185639-6e5ec794-ce9d-4883-aa29-bd6852a2abad.jpg)

1597
1598
### UnCLIP Text Interpolation Pipeline

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1599
This Diffusion Pipeline takes two prompts and interpolates between the two input prompts using spherical interpolation ( slerp ). The input prompts are converted to text embeddings by the pipeline's text_encoder and the interpolation is done on the resulting text_embeddings over the number of steps specified. Defaults to 5 steps.
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615

```python
import torch
from diffusers import DiffusionPipeline

device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")

pipe = DiffusionPipeline.from_pretrained(
    "kakaobrain/karlo-v1-alpha",
    torch_dtype=torch.float16,
    custom_pipeline="unclip_text_interpolation"
)
pipe.to(device)

start_prompt = "A photograph of an adult lion"
end_prompt = "A photograph of a lion cub"
1616
# For best results keep the prompts close in length to each other. Of course, feel free to try out with differing lengths.
1617
1618
generator = torch.Generator(device=device).manual_seed(42)

1619
output = pipe(start_prompt, end_prompt, steps=6, generator=generator, enable_sequential_cpu_offload=False)
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632

for i,image in enumerate(output.images):
    img.save('result%s.jpg' % i)
```

The resulting images in order:-

![result_0](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_0.png)
![result_1](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_1.png)
![result_2](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_2.png)
![result_3](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_3.png)
![result_4](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_4.png)
![result_5](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_5.png)
1633
1634
1635

### UnCLIP Image Interpolation Pipeline

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1636
This Diffusion Pipeline takes two images or an image_embeddings tensor of size 2 and interpolates between their embeddings using spherical interpolation ( slerp ). The input images/image_embeddings are converted to image embeddings by the pipeline's image_encoder and the interpolation is done on the resulting image_embeddings over the number of steps specified. Defaults to 5 steps.
1637
1638
1639
1640
1641

```python
import torch
from diffusers import DiffusionPipeline
from PIL import Image
1642
1643
import requests
from io import BytesIO
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654

device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")
dtype = torch.float16 if torch.cuda.is_available() else torch.bfloat16

pipe = DiffusionPipeline.from_pretrained(
    "kakaobrain/karlo-v1-alpha-image-variations",
    torch_dtype=dtype,
    custom_pipeline="unclip_image_interpolation"
)
pipe.to(device)

1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
# List of image URLs
image_urls = [
    'https://camo.githubusercontent.com/ef13c8059b12947c0d5e8d3ea88900de6bf1cd76bbf61ace3928e824c491290e/68747470733a2f2f68756767696e67666163652e636f2f64617461736574732f4e616761536169416268696e61792f556e434c4950496d616765496e746572706f6c6174696f6e53616d706c65732f7265736f6c76652f6d61696e2f7374617272795f6e696768742e6a7067',
    'https://camo.githubusercontent.com/d1947ab7c49ae3f550c28409d5e8b120df48e456559cf4557306c0848337702c/68747470733a2f2f68756767696e67666163652e636f2f64617461736574732f4e616761536169416268696e61792f556e434c4950496d616765496e746572706f6c6174696f6e53616d706c65732f7265736f6c76652f6d61696e2f666c6f776572732e6a7067'
]

# Open images from URLs
images = []
for url in image_urls:
    response = requests.get(url)
    img = Image.open(BytesIO(response.content))
    images.append(img)

1668
# For best results keep the prompts close in length to each other. Of course, feel free to try out with differing lengths.
1669
1670
generator = torch.Generator(device=device).manual_seed(42)

1671
output = pipe(image=images, steps=6, generator=generator)
1672

1673
for i, image in enumerate(output.images):
1674
1675
    image.save('starry_to_flowers_%s.jpg' % i)
```
1676

1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
The original images:-

![starry](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_night.jpg)
![flowers](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/flowers.jpg)

The resulting images in order:-

![result0](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_0.png)
![result1](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_1.png)
![result2](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_2.png)
![result3](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_3.png)
![result4](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_4.png)
![result5](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_5.png)

1691
### DDIM Noise Comparative Analysis Pipeline
1692

1693
#### **Research question: What visual concepts do the diffusion models learn from each noise level during training?**
1694

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1695
The [P2 weighting (CVPR 2022)](https://arxiv.org/abs/2204.00227) paper proposed an approach to answer the above question, which is their second contribution.
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
The approach consists of the following steps:

1. The input is an image x0.
2. Perturb it to xt using a diffusion process q(xt|x0).
    - `strength` is a value between 0.0 and 1.0, that controls the amount of noise that is added to the input image. Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input.
3. Reconstruct the image with the learned denoising process pθ(ˆx0|xt).
4. Compare x0 and ˆx0 among various t to show how each step contributes to the sample.
The authors used [openai/guided-diffusion](https://github.com/openai/guided-diffusion) model to denoise images in FFHQ dataset. This pipeline extends their second contribution by investigating DDIM on any input image.

```python
import torch
from PIL import Image
import numpy as np

1710
image_path = "path/to/your/image"  # images from CelebA-HQ might be better
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
image_pil = Image.open(image_path)
image_name = image_path.split("/")[-1].split(".")[0]

device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")
pipe = DiffusionPipeline.from_pretrained(
    "google/ddpm-ema-celebahq-256",
    custom_pipeline="ddim_noise_comparative_analysis",
)
pipe = pipe.to(device)

for strength in np.linspace(0.1, 1, 25):
    denoised_image, latent_timestep = pipe(
        image_pil, strength=strength, return_dict=False
    )
    denoised_image = denoised_image[0]
    denoised_image.save(
        f"noise_comparative_analysis_{image_name}_{latent_timestep}.png"
    )
```

Here is the result of this pipeline (which is DDIM) on CelebA-HQ dataset.
1732

1733
![noise-comparative-analysis](https://user-images.githubusercontent.com/67547213/224677066-4474b2ed-56ab-4c27-87c6-de3c0255eb9c.jpeg)
1734
1735
1736

### CLIP Guided Img2Img Stable Diffusion

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1737
CLIP guided Img2Img stable diffusion can help to generate more realistic images with an initial image
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
by guiding stable diffusion at every denoising step with an additional CLIP model.

The following code requires roughly 12GB of GPU RAM.

```python
from io import BytesIO
import requests
import torch
from diffusers import DiffusionPipeline
from PIL import Image
1748
from transformers import CLIPImageProcessor, CLIPModel
1749

1750
# Load CLIP model and feature extractor
1751
feature_extractor = CLIPImageProcessor.from_pretrained(
1752
1753
1754
1755
1756
    "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
)
clip_model = CLIPModel.from_pretrained(
    "laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16
)
1757
1758

# Load guided pipeline
1759
1760
guided_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
1761
    custom_pipeline="clip_guided_stable_diffusion_img2img",
1762
1763
1764
1765
1766
1767
    clip_model=clip_model,
    feature_extractor=feature_extractor,
    torch_dtype=torch.float16,
)
guided_pipeline.enable_attention_slicing()
guided_pipeline = guided_pipeline.to("cuda")
1768
1769

# Define prompt and fetch image
1770
1771
1772
prompt = "fantasy book cover, full moon, fantasy forest landscape, golden vector elements, fantasy magic, dark light night, intricate, elegant, sharp focus, illustration, highly detailed, digital painting, concept art, matte, art by WLOP and Artgerm and Albert Bierstadt, masterpiece"
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
1773
1774
1775
edit_image = Image.open(BytesIO(response.content)).convert("RGB")

# Run the pipeline
1776
1777
image = guided_pipeline(
    prompt=prompt,
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
    height=512,  # Height of the output image
    width=512,   # Width of the output image
    image=edit_image,  # Input image to guide the diffusion
    strength=0.75,  # How much to transform the input image
    num_inference_steps=30,  # Number of diffusion steps
    guidance_scale=7.5,  # Scale of the classifier-free guidance
    clip_guidance_scale=100,  # Scale of the CLIP guidance
    num_images_per_prompt=1,  # Generate one image per prompt
    eta=0.0,  # Noise scheduling parameter
    num_cutouts=4,  # Number of cutouts for CLIP guidance
    use_cutouts=False,  # Whether to use cutouts
    output_type="pil",  # Output as PIL image
1790
).images[0]
1791
1792
1793
1794

# Display the generated image
image.show()

1795
1796
1797
1798
1799
1800
1801
1802
1803
```

Init Image

![img2img_init_clip_guidance](https://huggingface.co/datasets/njindal/images/resolve/main/clip_guided_img2img_init.jpg)

Output Image

![img2img_clip_guidance](https://huggingface.co/datasets/njindal/images/resolve/main/clip_guided_img2img.jpg)
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813

### TensorRT Text2Image Stable Diffusion Pipeline

The TensorRT Pipeline can be used to accelerate the Text2Image Stable Diffusion Inference run.

NOTE: The ONNX conversions and TensorRT engine build may take up to 30 minutes.

```python
import torch
from diffusers import DDIMScheduler
1814
from diffusers.pipelines import DiffusionPipeline
1815
1816

# Use the DDIMScheduler scheduler here instead
1817
scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="scheduler")
1818

1819
1820
1821
1822
1823
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1",
    custom_pipeline="stable_diffusion_tensorrt_txt2img",
    variant='fp16',
    torch_dtype=torch.float16,
    scheduler=scheduler,)
1824
1825

# re-use cached folder to save ONNX models and TensorRT Engines
1826
pipe.set_cached_folder("stabilityai/stable-diffusion-2-1", variant='fp16',)
1827
1828
1829
1830
1831
1832
1833

pipe = pipe.to("cuda")

prompt = "a beautiful photograph of Mt. Fuji during cherry blossom"
image = pipe(prompt).images[0]
image.save('tensorrt_mt_fuji.png')
```
1834
1835
1836
1837

### EDICT Image Editing Pipeline

This pipeline implements the text-guided image editing approach from the paper [EDICT: Exact Diffusion Inversion via Coupled Transformations](https://arxiv.org/abs/2211.12446). You have to pass:
1838

1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
- (`PIL`) `image` you want to edit.
- `base_prompt`: the text prompt describing the current image (before editing).
- `target_prompt`: the text prompt describing with the edits.

```python
from diffusers import DiffusionPipeline, DDIMScheduler
from transformers import CLIPTextModel
import torch, PIL, requests
from io import BytesIO
from IPython.display import display

def center_crop_and_resize(im):

    width, height = im.size
    d = min(width, height)
    left = (width - d) / 2
    upper = (height - d) / 2
    right = (width + d) / 2
    lower = (height + d) / 2

    return im.crop((left, upper, right, lower)).resize((512, 512))

torch_dtype = torch.float16
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# scheduler and text_encoder param values as in the paper
scheduler = DDIMScheduler(
        num_train_timesteps=1000,
        beta_start=0.00085,
        beta_end=0.012,
        beta_schedule="scaled_linear",
        set_alpha_to_one=False,
        clip_sample=False,
)

text_encoder = CLIPTextModel.from_pretrained(
    pretrained_model_name_or_path="openai/clip-vit-large-patch14",
    torch_dtype=torch_dtype,
)

# initialize pipeline
pipeline = DiffusionPipeline.from_pretrained(
    pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4",
    custom_pipeline="edict_pipeline",
1883
    variant="fp16",
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
    scheduler=scheduler,
    text_encoder=text_encoder,
    leapfrog_steps=True,
    torch_dtype=torch_dtype,
).to(device)

# download image
image_url = "https://huggingface.co/datasets/Joqsan/images/resolve/main/imagenet_dog_1.jpeg"
response = requests.get(image_url)
image = PIL.Image.open(BytesIO(response.content))

# preprocess it
cropped_image = center_crop_and_resize(image)

# define the prompts
base_prompt = "A dog"
target_prompt = "A golden retriever"

# run the pipeline
result_image = pipeline(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1904
1905
      base_prompt=base_prompt,
      target_prompt=target_prompt,
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
      image=cropped_image,
)

display(result_image)
```

Init Image

![img2img_init_edict_text_editing](https://huggingface.co/datasets/Joqsan/images/resolve/main/imagenet_dog_1.jpeg)

Output Image

![img2img_edict_text_editing](https://huggingface.co/datasets/Joqsan/images/resolve/main/imagenet_dog_1_cropped_generated.png)
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936

### Stable Diffusion RePaint

This pipeline uses the [RePaint](https://arxiv.org/abs/2201.09865) logic on the latent space of stable diffusion. It can
be used similarly to other image inpainting pipelines but does not rely on a specific inpainting model. This means you can use
models that are not specifically created for inpainting.

Make sure to use the ```RePaintScheduler``` as shown in the example below.

Disclaimer: The mask gets transferred into latent space, this may lead to unexpected changes on the edge of the masked part.
The inference time is a lot slower.

```py
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionPipeline, RePaintScheduler
1937

1938
1939
1940
1941
1942
1943
1944
1945
def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
mask_image = PIL.ImageOps.invert(mask_image)
1946
pipe = StableDiffusionPipeline.from_pretrained(
1947
1948
1949
1950
1951
1952
    "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16, custom_pipeline="stable_diffusion_repaint",
)
pipe.scheduler = RePaintScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
1953
```
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966

### TensorRT Image2Image Stable Diffusion Pipeline

The TensorRT Pipeline can be used to accelerate the Image2Image Stable Diffusion Inference run.

NOTE: The ONNX conversions and TensorRT engine build may take up to 30 minutes.

```python
import requests
from io import BytesIO
from PIL import Image
import torch
from diffusers import DDIMScheduler
1967
from diffusers import DiffusionPipeline
1968
1969
1970
1971
1972

# Use the DDIMScheduler scheduler here instead
scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1",
                                            subfolder="scheduler")

1973
1974
1975
1976
1977
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1",
                                            custom_pipeline="stable_diffusion_tensorrt_img2img",
                                            variant='fp16',
                                            torch_dtype=torch.float16,
                                            scheduler=scheduler,)
1978
1979

# re-use cached folder to save ONNX models and TensorRT Engines
1980
pipe.set_cached_folder("stabilityai/stable-diffusion-2-1", variant='fp16',)
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

pipe = pipe.to("cuda")

url = "https://pajoca.com/wp-content/uploads/2022/09/tekito-yamakawa-1.png"
response = requests.get(url)
input_image = Image.open(BytesIO(response.content)).convert("RGB")
prompt = "photorealistic new zealand hills"
image = pipe(prompt, image=input_image, strength=0.75,).images[0]
image.save('tensorrt_img2img_new_zealand_hills.png')
```
1991

1992
### Stable Diffusion BoxDiff
1993
BoxDiff is a training-free method for controlled generation with bounding box coordinates. It should work with any Stable Diffusion model. Below shows an example with `stable-diffusion-2-1-base`.
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
```py
import torch
from PIL import Image, ImageDraw
from copy import deepcopy

from examples.community.pipeline_stable_diffusion_boxdiff import StableDiffusionBoxDiffPipeline

def draw_box_with_text(img, boxes, names):
    colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"]
    img_new = deepcopy(img)
    draw = ImageDraw.Draw(img_new)

    W, H = img.size
    for bid, box in enumerate(boxes):
        draw.rectangle([box[0] * W, box[1] * H, box[2] * W, box[3] * H], outline=colors[bid % len(colors)], width=4)
        draw.text((box[0] * W, box[1] * H), names[bid], fill=colors[bid % len(colors)])
    return img_new

pipe = StableDiffusionBoxDiffPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-1-base",
    torch_dtype=torch.float16,
)
pipe.to("cuda")

# example 1
prompt = "as the aurora lights up the sky, a herd of reindeer leisurely wanders on the grassy meadow, admiring the breathtaking view, a serene lake quietly reflects the magnificent display, and in the distance, a snow-capped mountain stands majestically, fantasy, 8k, highly detailed"
phrases = [
    "aurora",
    "reindeer",
    "meadow",
    "lake",
    "mountain"
]
boxes = [[1,3,512,202], [75,344,421,495], [1,327,508,507], [2,217,507,341], [1,135,509,242]]

# example 2
# prompt = "A rabbit wearing sunglasses looks very proud"
# phrases = ["rabbit", "sunglasses"]
# boxes = [[67,87,366,512], [66,130,364,262]]

boxes = [[x / 512 for x in box] for box in boxes]

images = pipe(
    prompt,
    boxdiff_phrases=phrases,
    boxdiff_boxes=boxes,
    boxdiff_kwargs={
        "attention_res": 16,
        "normalize_eot": True
    },
    num_inference_steps=50,
    guidance_scale=7.5,
    generator=torch.manual_seed(42),
    safety_checker=None
).images

draw_box_with_text(images[0], boxes, phrases).save("output.png")
```


2054
2055
### Stable Diffusion Reference

2056
This pipeline uses the Reference Control. Refer to the [sd-webui-controlnet discussion: Reference-only Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1236)[sd-webui-controlnet discussion: Reference-adain Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1280).
2057

2058
Based on [this issue](https://github.com/huggingface/diffusers/issues/3566),
2059

2060
- `EulerAncestralDiscreteScheduler` got poor results.
2061
2062
2063
2064
2065
2066
2067
2068
2069

```py
import torch
from diffusers import UniPCMultistepScheduler
from diffusers.utils import load_image

input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")

pipe = StableDiffusionReferencePipeline.from_pretrained(
2070
       "stable-diffusion-v1-5/stable-diffusion-v1-5",
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
       safety_checker=None,
       torch_dtype=torch.float16
       ).to('cuda:0')

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

result_img = pipe(ref_image=input_image,
      prompt="1girl",
      num_inference_steps=20,
      reference_attn=True,
      reference_adain=True).images[0]
```

Reference Image

![reference_image](https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png)

Output Image of `reference_attn=True` and `reference_adain=False`

![output_image](https://github.com/huggingface/diffusers/assets/24734142/813b5c6a-6d89-46ba-b7a4-2624e240eea5)

Output Image of `reference_attn=False` and `reference_adain=True`

![output_image](https://github.com/huggingface/diffusers/assets/24734142/ffc90339-9ef0-4c4d-a544-135c3e5644da)

Output Image of `reference_attn=True` and `reference_adain=True`

![output_image](https://github.com/huggingface/diffusers/assets/24734142/3c5255d6-867d-4d35-b202-8dfd30cc6827)
2099

2100
2101
2102
2103
### Stable Diffusion ControlNet Reference

This pipeline uses the Reference Control with ControlNet. Refer to the [sd-webui-controlnet discussion: Reference-only Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1236)[sd-webui-controlnet discussion: Reference-adain Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1280).

2104
Based on [this issue](https://github.com/huggingface/diffusers/issues/3566),
2105

2106
2107
- `EulerAncestralDiscreteScheduler` got poor results.
- `guess_mode=True` works well for ControlNet v1.1
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126

```py
import cv2
import torch
import numpy as np
from PIL import Image
from diffusers import UniPCMultistepScheduler
from diffusers.utils import load_image

input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")

# get canny image
image = cv2.Canny(np.array(input_image), 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)

controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetReferencePipeline.from_pretrained(
2127
       "stable-diffusion-v1-5/stable-diffusion-v1-5",
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
       controlnet=controlnet,
       safety_checker=None,
       torch_dtype=torch.float16
       ).to('cuda:0')

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

result_img = pipe(ref_image=input_image,
      prompt="1girl",
      image=canny_image,
      num_inference_steps=20,
      reference_attn=True,
      reference_adain=True).images[0]
```

Reference Image

![reference_image](https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png)

Output Image

![output_image](https://github.com/huggingface/diffusers/assets/24734142/7b9a5830-f173-4b92-b0cf-73d0e9c01d60)

2151
2152
### Stable Diffusion on IPEX

2153
This diffusion pipeline aims to accelerate the inference of Stable-Diffusion on Intel Xeon CPUs with BF16/FP32 precision using [IPEX](https://github.com/intel/intel-extension-for-pytorch).
2154
2155

To use this pipeline, you need to:
2156

2157
2158
1. Install [IPEX](https://github.com/intel/intel-extension-for-pytorch)

2159
**Note:** For each PyTorch release, there is a corresponding release of the IPEX. Here is the mapping relationship. It is recommended to install PyTorch/IPEX2.0 to get the best performance.
2160
2161
2162
2163
2164
2165
2166

|PyTorch Version|IPEX Version|
|--|--|
|[v2.0.\*](https://github.com/pytorch/pytorch/tree/v2.0.1 "v2.0.1")|[v2.0.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.100+cpu)|
|[v1.13.\*](https://github.com/pytorch/pytorch/tree/v1.13.0 "v1.13.0")|[v1.13.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v1.13.100+cpu)|

You can simply use pip to install IPEX with the latest version.
2167

2168
```sh
2169
2170
python -m pip install intel_extension_for_pytorch
```
2171

2172
**Note:** To install a specific version, run with the following command:
2173

2174
```sh
2175
2176
2177
python -m pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
```

2178
2. After pipeline initialization, `prepare_for_ipex()` should be called to enable IPEX acceleration. Supported inference datatypes are Float32 and BFloat16.
2179
2180

**Note:** The setting of generated image height/width for `prepare_for_ipex()` should be same as the setting of pipeline inference.
2181

2182
```python
2183
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_ipex")
2184
# For Float32
2185
pipe.prepare_for_ipex(prompt, dtype=torch.float32, height=512, width=512) # value of image height/width should be consistent with the pipeline inference
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2186
# For BFloat16
2187
pipe.prepare_for_ipex(prompt, dtype=torch.bfloat16, height=512, width=512) # value of image height/width should be consistent with the pipeline inference
2188
2189
2190
```

Then you can use the ipex pipeline in a similar way to the default stable diffusion pipeline.
2191

2192
2193
```python
# For Float32
2194
image = pipe(prompt, num_inference_steps=20, height=512, width=512).images[0] # value of image height/width should be consistent with 'prepare_for_ipex()'
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2195
# For BFloat16
2196
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
2197
    image = pipe(prompt, num_inference_steps=20, height=512, width=512).images[0] # value of image height/width should be consistent with 'prepare_for_ipex()'
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
```

The following code compares the performance of the original stable diffusion pipeline with the ipex-optimized pipeline.

```python
import torch
import intel_extension_for_pytorch as ipex
from diffusers import StableDiffusionPipeline
import time

prompt = "sailing ship in storm by Rembrandt"
2209
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
2210
2211
2212
2213
2214
# Helper function for time evaluation
def elapsed_time(pipeline, nb_pass=3, num_inference_steps=20):
    # warmup
    for _ in range(2):
        images = pipeline(prompt, num_inference_steps=num_inference_steps, height=512, width=512).images
2215
    # time evaluation
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
    start = time.time()
    for _ in range(nb_pass):
        pipeline(prompt, num_inference_steps=num_inference_steps, height=512, width=512)
    end = time.time()
    return (end - start) / nb_pass

##############     bf16 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe = DiffusionPipeline.from_pretrained(model_id, custom_pipeline="stable_diffusion_ipex")
pipe.prepare_for_ipex(prompt, dtype=torch.bfloat16, height=512, width=512)

# 2. Original Pipeline initialization
pipe2 = StableDiffusionPipeline.from_pretrained(model_id)

# 3. Compare performance between Original Pipeline and IPEX Pipeline
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
    latency = elapsed_time(pipe)
    print("Latency of StableDiffusionIPEXPipeline--bf16", latency)
    latency = elapsed_time(pipe2)
2236
    print("Latency of StableDiffusionPipeline--bf16", latency)
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250

##############     fp32 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe3 = DiffusionPipeline.from_pretrained(model_id, custom_pipeline="stable_diffusion_ipex")
pipe3.prepare_for_ipex(prompt, dtype=torch.float32, height=512, width=512)

# 2. Original Pipeline initialization
pipe4 = StableDiffusionPipeline.from_pretrained(model_id)

# 3. Compare performance between Original Pipeline and IPEX Pipeline
latency = elapsed_time(pipe3)
print("Latency of StableDiffusionIPEXPipeline--fp32", latency)
latency = elapsed_time(pipe4)
2251
print("Latency of StableDiffusionPipeline--fp32", latency)
2252
```
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2253

2254
2255
### Stable Diffusion XL on IPEX

2256
This diffusion pipeline aims to accelerate the inference of Stable-Diffusion XL on Intel Xeon CPUs with BF16/FP32 precision using [IPEX](https://github.com/intel/intel-extension-for-pytorch).
2257
2258

To use this pipeline, you need to:
2259

2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
1. Install [IPEX](https://github.com/intel/intel-extension-for-pytorch)

**Note:** For each PyTorch release, there is a corresponding release of IPEX. Here is the mapping relationship. It is recommended to install Pytorch/IPEX2.0 to get the best performance.

|PyTorch Version|IPEX Version|
|--|--|
|[v2.0.\*](https://github.com/pytorch/pytorch/tree/v2.0.1 "v2.0.1")|[v2.0.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.100+cpu)|
|[v1.13.\*](https://github.com/pytorch/pytorch/tree/v1.13.0 "v1.13.0")|[v1.13.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v1.13.100+cpu)|

You can simply use pip to install IPEX with the latest version.
2270

2271
```sh
2272
2273
python -m pip install intel_extension_for_pytorch
```
2274

2275
**Note:** To install a specific version, run with the following command:
2276

2277
```sh
2278
2279
2280
python -m pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
```

2281
2. After pipeline initialization, `prepare_for_ipex()` should be called to enable IPEX acceleration. Supported inference datatypes are Float32 and BFloat16.
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294

**Note:** The values of `height` and `width` used during preparation with `prepare_for_ipex()` should be the same when running inference with the prepared pipeline.

```python
pipe = StableDiffusionXLPipelineIpex.from_pretrained("stabilityai/sdxl-turbo", low_cpu_mem_usage=True, use_safetensors=True)
# value of image height/width should be consistent with the pipeline inference
# For Float32
pipe.prepare_for_ipex(torch.float32, prompt, height=512, width=512)
# For BFloat16
pipe.prepare_for_ipex(torch.bfloat16, prompt, height=512, width=512)
```

Then you can use the ipex pipeline in a similar way to the default stable diffusion xl pipeline.
2295

2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
```python
# value of image height/width should be consistent with 'prepare_for_ipex()'
# For Float32
image = pipe(prompt, num_inference_steps=num_inference_steps, height=512, width=512, guidance_scale=guidance_scale).images[0]
# For BFloat16
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
    image = pipe(prompt, num_inference_steps=num_inference_steps, height=512, width=512, guidance_scale=guidance_scale).images[0]
```

The following code compares the performance of the original stable diffusion xl pipeline with the ipex-optimized pipeline.
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2306
By using this optimized pipeline, we can get about 1.4-2 times performance boost with BFloat16 on fourth generation of Intel Xeon CPUs,
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
code-named Sapphire Rapids.

```python
import torch
from diffusers import StableDiffusionXLPipeline
from pipeline_stable_diffusion_xl_ipex import StableDiffusionXLPipelineIpex
import time

prompt = "sailing ship in storm by Rembrandt"
model_id = "stabilityai/sdxl-turbo"
steps = 4

# Helper function for time evaluation
def elapsed_time(pipeline, nb_pass=3, num_inference_steps=1):
    # warmup
    for _ in range(2):
        images = pipeline(prompt, num_inference_steps=num_inference_steps, height=512, width=512, guidance_scale=0.0).images
2324
    # time evaluation
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
    start = time.time()
    for _ in range(nb_pass):
        pipeline(prompt, num_inference_steps=num_inference_steps, height=512, width=512, guidance_scale=0.0)
    end = time.time()
    return (end - start) / nb_pass

##############     bf16 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe = StableDiffusionXLPipelineIpex.from_pretrained(model_id, low_cpu_mem_usage=True, use_safetensors=True)
pipe.prepare_for_ipex(torch.bfloat16, prompt, height=512, width=512)

# 2. Original Pipeline initialization
pipe2 = StableDiffusionXLPipeline.from_pretrained(model_id, low_cpu_mem_usage=True, use_safetensors=True)

# 3. Compare performance between Original Pipeline and IPEX Pipeline
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
    latency = elapsed_time(pipe, num_inference_steps=steps)
    print("Latency of StableDiffusionXLPipelineIpex--bf16", latency, "s for total", steps, "steps")
    latency = elapsed_time(pipe2, num_inference_steps=steps)
    print("Latency of StableDiffusionXLPipeline--bf16", latency, "s for total", steps, "steps")

##############     fp32 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe3 = StableDiffusionXLPipelineIpex.from_pretrained(model_id, low_cpu_mem_usage=True, use_safetensors=True)
pipe3.prepare_for_ipex(torch.float32, prompt, height=512, width=512)

# 2. Original Pipeline initialization
pipe4 = StableDiffusionXLPipeline.from_pretrained(model_id, low_cpu_mem_usage=True, use_safetensors=True)

# 3. Compare performance between Original Pipeline and IPEX Pipeline
latency = elapsed_time(pipe3, num_inference_steps=steps)
print("Latency of StableDiffusionXLPipelineIpex--fp32", latency, "s for total", steps, "steps")
latency = elapsed_time(pipe4, num_inference_steps=steps)
2360
print("Latency of StableDiffusionXLPipeline--fp32", latency, "s for total", steps, "steps")
2361
2362
```

2363
2364
2365
2366
### CLIP Guided Images Mixing With Stable Diffusion

![clip_guided_images_mixing_examples](https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/main.png)

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2367
2368
CLIP guided stable diffusion images mixing pipeline allows to combine two images using standard diffusion models.
This approach is using (optional) CoCa model to avoid writing image description.
2369
2370
[More code examples](https://github.com/TheDenk/images_mixing)

2371
### Example Images Mixing (with CoCa)
2372

2373
2374
2375
```python
import PIL
import torch
2376
import requests
2377
2378
import open_clip
from open_clip import SimpleTokenizer
2379
from io import BytesIO
2380
from diffusers import DiffusionPipeline
2381
from transformers import CLIPImageProcessor, CLIPModel
2382
2383
2384
2385
2386
2387
2388


def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")

# Loading additional models
2389
feature_extractor = CLIPImageProcessor.from_pretrained(
2390
2391
2392
2393
2394
2395
2396
2397
2398
    "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
)
clip_model = CLIPModel.from_pretrained(
    "laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16
)
coca_model = open_clip.create_model('coca_ViT-L-14', pretrained='laion2B-s13B-b90k').to('cuda')
coca_model.dtype = torch.float16
coca_transform = open_clip.image_transform(
    coca_model.visual.image_size,
2399
2400
2401
    is_train=False,
    mean=getattr(coca_model.visual, 'image_mean', None),
    std=getattr(coca_model.visual, 'image_std', None),
2402
2403
2404
)
coca_tokenizer = SimpleTokenizer()

2405
# Pipeline creating
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
mixing_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="clip_guided_images_mixing_stable_diffusion",
    clip_model=clip_model,
    feature_extractor=feature_extractor,
    coca_model=coca_model,
    coca_tokenizer=coca_tokenizer,
    coca_transform=coca_transform,
    torch_dtype=torch.float16,
)
mixing_pipeline.enable_attention_slicing()
mixing_pipeline = mixing_pipeline.to("cuda")

2419
# Pipeline running
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2420
generator = torch.Generator(device="cuda").manual_seed(17)
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441

def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")

content_image = download_image("https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/boromir.jpg")
style_image = download_image("https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/gigachad.jpg")

pipe_images = mixing_pipeline(
    num_inference_steps=50,
    content_image=content_image,
    style_image=style_image,
    noise_strength=0.65,
    slerp_latent_style_strength=0.9,
    slerp_prompt_style_strength=0.1,
    slerp_clip_image_style_strength=0.1,
    guidance_scale=9.0,
    batch_size=1,
    clip_guidance_scale=100,
    generator=generator,
).images
2442
2443
2444
2445

output_path = "mixed_output.jpg"
pipe_images[0].save(output_path)
print(f"Image saved successfully at {output_path}")
2446
2447
2448
```

![image_mixing_result](https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/boromir_gigachad.png)
2449

2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
### Stable Diffusion XL Long Weighted Prompt Pipeline

This SDXL pipeline supports unlimited length prompt and negative prompt, compatible with A1111 prompt weighted style.

You can provide both `prompt` and `prompt_2`. If only one prompt is provided, `prompt_2` will be a copy of the provided `prompt`. Here is a sample code to use this pipeline.

```python
from diffusers import DiffusionPipeline
from diffusers.utils import load_image
import torch

pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0"
    , torch_dtype       = torch.float16
    , use_safetensors   = True
    , variant           = "fp16"
    , custom_pipeline   = "lpw_stable_diffusion_xl",
)

prompt = "photo of a cute (white) cat running on the grass" * 20
prompt2 = "chasing (birds:1.5)" * 20
prompt = f"{prompt},{prompt2}"
neg_prompt = "blur, low quality, carton, animate"

pipe.to("cuda")

# text2img
t2i_images = pipe(
    prompt=prompt,
    negative_prompt=neg_prompt,
).images  # alternatively, you can call the .text2img() function

# img2img
input_image = load_image("/path/to/local/image.png")  # or URL to your input image
i2i_images = pipe.img2img(
  prompt=prompt,
  negative_prompt=neg_prompt,
  image=input_image,
  strength=0.8,  # higher strength will result in more variation compared to original image
).images

# inpaint
input_mask = load_image("/path/to/local/mask.png")  # or URL to your input inpainting mask
inpaint_images = pipe.inpaint(
  prompt="photo of a cute (black) cat running on the grass" * 20,
  negative_prompt=neg_prompt,
  image=input_image,
  mask=input_mask,
  strength=0.6,  # higher strength will result in more variation compared to original image
).images

pipe.to("cpu")
torch.cuda.empty_cache()

from IPython.display import display  # assuming you are using this code in a notebook
display(t2i_images[0])
display(i2i_images[0])
display(inpaint_images[0])
```

In the above code, the `prompt2` is appended to the `prompt`, which is more than 77 tokens. "birds" are showing up in the result.
![Stable Diffusion XL Long Weighted Prompt Pipeline sample](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_long_weighted_prompt.png)

For more results, checkout [PR #6114](https://github.com/huggingface/diffusers/pull/6114).

2515
### Stable Diffusion Mixture Tiling Pipeline SD 1.5
2516
2517

This pipeline uses the Mixture. Refer to the [Mixture](https://arxiv.org/abs/2302.02412) paper for more details.
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2518

2519
```python
2520
from diffusers import LMSDiscreteScheduler, DiffusionPipeline
2521

2522
# Create scheduler and model (similar to StableDiffusionPipeline)
2523
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
2524
2525
pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", scheduler=scheduler, custom_pipeline="mixture_tiling")
pipeline.to("cuda")
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542

# Mixture of Diffusers generation
image = pipeline(
    prompt=[[
        "A charming house in the countryside, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
        "A dirt road in the countryside crossing pastures, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
        "An old and rusty giant robot lying on a dirt road, by jakub rozalski, dark sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece"
    ]],
    tile_height=640,
    tile_width=640,
    tile_row_overlap=0,
    tile_col_overlap=256,
    guidance_scale=8,
    seed=7178915308,
    num_inference_steps=50,
)["images"][0]
```
2543

2544
2545
![mixture_tiling_results](https://huggingface.co/datasets/kadirnar/diffusers_readme_images/resolve/main/mixture_tiling.png)

2546
### Stable Diffusion Mixture Canvas Pipeline SD 1.5
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580

This pipeline uses the Mixture. Refer to the [Mixture](https://arxiv.org/abs/2302.02412) paper for more details.

```python
from PIL import Image
from diffusers import LMSDiscreteScheduler, DiffusionPipeline
from diffusers.pipelines.pipeline_utils import Image2ImageRegion, Text2ImageRegion, preprocess_image


# Load and preprocess guide image
iic_image = preprocess_image(Image.open("input_image.png").convert("RGB"))

# Create scheduler and model (similar to StableDiffusionPipeline)
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", scheduler=scheduler).to("cuda:0", custom_pipeline="mixture_canvas")
pipeline.to("cuda")

# Mixture of Diffusers generation
output = pipeline(
    canvas_height=800,
    canvas_width=352,
    regions=[
        Text2ImageRegion(0, 800, 0, 352, guidance_scale=8,
            prompt=f"best quality, masterpiece, WLOP, sakimichan, art contest winner on pixiv, 8K, intricate details, wet effects, rain drops, ethereal, mysterious, futuristic, UHD, HDR, cinematic lighting, in a beautiful forest, rainy day, award winning, trending on artstation, beautiful confident cheerful young woman, wearing a futuristic sleeveless dress, ultra beautiful detailed  eyes, hyper-detailed face, complex,  perfect, model,  textured,  chiaroscuro, professional make-up, realistic, figure in frame, "),
        Image2ImageRegion(352-800, 352, 0, 352, reference_image=iic_image, strength=1.0),
    ],
    num_inference_steps=100,
    seed=5525475061,
)["images"][0]
```

![Input_Image](https://huggingface.co/datasets/kadirnar/diffusers_readme_images/resolve/main/input_image.png)
![mixture_canvas_results](https://huggingface.co/datasets/kadirnar/diffusers_readme_images/resolve/main/canvas.png)

2581
### Stable Diffusion Mixture Tiling Pipeline SDXL
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626

This pipeline uses the Mixture. Refer to the [Mixture](https://arxiv.org/abs/2302.02412) paper for more details.

```python
import torch
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler, AutoencoderKL

device="cuda"

# Load fixed vae (optional)
vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to(device)

# Create scheduler and model (similar to StableDiffusionPipeline)
model_id="stablediffusionapi/yamermix-v8-vae"
scheduler = DPMSolverMultistepScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
pipe = DiffusionPipeline.from_pretrained(
    model_id,
    torch_dtype=torch.float16,
    vae=vae,
    custom_pipeline="mixture_tiling_sdxl",
    scheduler=scheduler,
    use_safetensors=False    
).to(device)

pipe.enable_model_cpu_offload()
pipe.enable_vae_tiling()
pipe.enable_vae_slicing()

generator = torch.Generator(device).manual_seed(297984183)

# Mixture of Diffusers generation
image = pipe(
    prompt=[[
        "A charming house in the countryside, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
        "A dirt road in the countryside crossing pastures, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",        
        "An old and rusty giant robot lying on a dirt road, by jakub rozalski, dark sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece"
    ]],
    tile_height=1024,
    tile_width=1280,
    tile_row_overlap=0,
    tile_col_overlap=256,
    guidance_scale_tiles=[[7, 7, 7]], # or guidance_scale=7 if is the same for all prompts
    height=1024,
2627
    width=3840,    
2628
2629
2630
2631
2632
    generator=generator,
    num_inference_steps=30,
)["images"][0]
```

2633
![mixture_tiling_results](https://huggingface.co/datasets/elismasilva/results/resolve/main/mixture_of_diffusers_sdxl_1.png)
2634

2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
### Stable Diffusion MoD ControlNet Tile SR Pipeline SDXL

This pipeline implements the [MoD (Mixture-of-Diffusers)]("https://arxiv.org/pdf/2408.06072") tiled diffusion technique and combines it with SDXL's ControlNet Tile process to generate SR images.

This works better with 4x scales, but you can try adjusts parameters to higher scales.

````python
import torch
from diffusers import DiffusionPipeline, ControlNetUnionModel, AutoencoderKL, UniPCMultistepScheduler, UNet2DConditionModel
from diffusers.utils import load_image
from PIL import Image

device = "cuda"

# Initialize the models and pipeline
controlnet = ControlNetUnionModel.from_pretrained(
    "brad-twinkl/controlnet-union-sdxl-1.0-promax", torch_dtype=torch.float16
).to(device=device)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to(device=device)

model_id = "SG161222/RealVisXL_V5.0"
pipe = DiffusionPipeline.from_pretrained(
    model_id,
    torch_dtype=torch.float16,
    vae=vae,
    controlnet=controlnet,
    custom_pipeline="mod_controlnet_tile_sr_sdxl",    
    use_safetensors=True,
    variant="fp16",
).to(device)

unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet", variant="fp16", use_safetensors=True)

#pipe.enable_model_cpu_offload()  # << Enable this if you have limited VRAM
pipe.enable_vae_tiling() # << Enable this if you have limited VRAM
pipe.enable_vae_slicing() # << Enable this if you have limited VRAM

# Set selected scheduler
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

# Load image
control_image = load_image("https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/1.jpg")
original_height = control_image.height
original_width = control_image.width
print(f"Current resolution: H:{original_height} x W:{original_width}")

# Pre-upscale image for tiling
resolution = 4096
tile_gaussian_sigma = 0.3
max_tile_size = 1024 # or 1280

current_size = max(control_image.size)
scale_factor = max(2, resolution / current_size)
new_size = (int(control_image.width * scale_factor), int(control_image.height * scale_factor))
image = control_image.resize(new_size, Image.LANCZOS)

# Update target height and width
target_height = image.height
target_width = image.width
print(f"Target resolution: H:{target_height} x W:{target_width}")

# Calculate overlap size
normal_tile_overlap, border_tile_overlap = pipe.calculate_overlap(target_width, target_height)

# Set other params
tile_weighting_method = pipe.TileWeightingMethod.COSINE.value
guidance_scale = 4
num_inference_steps = 35
denoising_strenght = 0.65
controlnet_strength = 1.0
prompt = "high-quality, noise-free edges, high quality, 4k, hd, 8k"
negative_prompt = "blurry, pixelated, noisy, low resolution, artifacts, poor details"

# Image generation
generated_image = pipe(
    image=image,
    control_image=control_image,
    control_mode=[6],
    controlnet_conditioning_scale=float(controlnet_strength),
    prompt=prompt,
    negative_prompt=negative_prompt,
    normal_tile_overlap=normal_tile_overlap,
    border_tile_overlap=border_tile_overlap,
    height=target_height,
    width=target_width,
    original_size=(original_width, original_height),
    target_size=(target_width, target_height),
    guidance_scale=guidance_scale,        
    strength=float(denoising_strenght),
    tile_weighting_method=tile_weighting_method,
    max_tile_size=max_tile_size,
    tile_gaussian_sigma=float(tile_gaussian_sigma),
    num_inference_steps=num_inference_steps,
)["images"][0]
````
![Upscaled](https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/1_input_4x.png)

2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
### TensorRT Inpainting Stable Diffusion Pipeline

The TensorRT Pipeline can be used to accelerate the Inpainting Stable Diffusion Inference run.

NOTE: The ONNX conversions and TensorRT engine build may take up to 30 minutes.

```python
import requests
from io import BytesIO
from PIL import Image
import torch
from diffusers import PNDMScheduler
2744
from diffusers.pipelines import DiffusionPipeline
2745
2746
2747
2748

# Use the PNDMScheduler scheduler here instead
scheduler = PNDMScheduler.from_pretrained("stabilityai/stable-diffusion-2-inpainting", subfolder="scheduler")

2749
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-inpainting",
2750
    custom_pipeline="stable_diffusion_tensorrt_inpaint",
2751
    variant='fp16',
2752
2753
2754
2755
2756
    torch_dtype=torch.float16,
    scheduler=scheduler,
    )

# re-use cached folder to save ONNX models and TensorRT Engines
2757
pipe.set_cached_folder("stabilityai/stable-diffusion-2-inpainting", variant='fp16',)
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771

pipe = pipe.to("cuda")

url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
response = requests.get(url)
input_image = Image.open(BytesIO(response.content)).convert("RGB")

mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
response = requests.get(mask_url)
mask_image = Image.open(BytesIO(response.content)).convert("RGB")

prompt = "a mecha robot sitting on a bench"
image = pipe(prompt, image=input_image, mask_image=mask_image, strength=0.75,).images[0]
image.save('tensorrt_inpaint_mecha_robot.png')
2772
2773
```

2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
### IADB pipeline

This pipeline is the implementation of the [α-(de)Blending: a Minimalist Deterministic Diffusion Model](https://arxiv.org/abs/2305.03486) paper.
It is a simple and minimalist diffusion model.

The following code shows how to use the IADB pipeline to generate images using a pretrained celebahq-256 model.

```python
pipeline_iadb = DiffusionPipeline.from_pretrained("thomasc4/iadb-celebahq-256", custom_pipeline='iadb')

pipeline_iadb = pipeline_iadb.to('cuda')

2786
output = pipeline_iadb(batch_size=4, num_inference_steps=128)
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
for i in range(len(output[0])):
    plt.imshow(output[0][i])
    plt.show()
```

Sampling with the IADB formulation is easy, and can be done in a few lines (the pipeline already implements it):

```python
def sample_iadb(model, x0, nb_step):
    x_alpha = x0
    for t in range(nb_step):
        alpha = (t/nb_step)
        alpha_next =((t+1)/nb_step)

        d = model(x_alpha, torch.tensor(alpha, device=x_alpha.device))['sample']
        x_alpha = x_alpha + (alpha_next-alpha)*d

    return x_alpha
```

The training loop is also straightforward:

```python
# Training loop
while True:
    x0 = sample_noise()
    x1 = sample_dataset()

    alpha = torch.rand(batch_size)

    # Blend
    x_alpha = (1-alpha) * x0 + alpha * x1

    # Loss
    loss = torch.sum((D(x_alpha, alpha)- (x1-x0))**2)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839

### Zero1to3 pipeline

This pipeline is the implementation of the [Zero-1-to-3: Zero-shot One Image to 3D Object](https://arxiv.org/abs/2303.11328) paper.
The original pytorch-lightning [repo](https://github.com/cvlab-columbia/zero123) and a diffusers [repo](https://github.com/kxhit/zero123-hf).

The following code shows how to use the Zero1to3 pipeline to generate novel view synthesis images using a pretrained stable diffusion model.

```python
import os
import torch
from pipeline_zero1to3 import Zero1to3StableDiffusionPipeline
from diffusers.utils import load_image

2840
model_id = "kxic/zero123-165000"  # zero123-105000, zero123-165000, zero123-xl
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851

pipe = Zero1to3StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)

pipe.enable_xformers_memory_efficient_attention()
pipe.enable_vae_tiling()
pipe.enable_attention_slicing()
pipe = pipe.to("cuda")

num_images_per_prompt = 4

# test inference pipeline
2852
# x y z, Polar angle (vertical rotation in degrees)  Azimuth angle (horizontal rotation in degrees)  Zoom (relative distance from center)
2853
2854
2855
2856
2857
2858
2859
2860
query_pose1 = [-75.0, 100.0, 0.0]
query_pose2 = [-20.0, 125.0, 0.0]
query_pose3 = [-55.0, 90.0, 0.0]

# load image
# H, W = (256, 256) # H, W = (512, 512)   # zero123 training is 256,256

# for batch input
2861
2862
2863
input_image1 = load_image("./demo/4_blackarm.png")  # load_image("https://cvlab-zero123-live.hf.space/file=/home/user/app/configs/4_blackarm.png")
input_image2 = load_image("./demo/8_motor.png")  # load_image("https://cvlab-zero123-live.hf.space/file=/home/user/app/configs/8_motor.png")
input_image3 = load_image("./demo/7_london.png")  # load_image("https://cvlab-zero123-live.hf.space/file=/home/user/app/configs/7_london.png")
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
input_images = [input_image1, input_image2, input_image3]
query_poses = [query_pose1, query_pose2, query_pose3]

# # for single input
# H, W = (256, 256)
# input_images = [input_image2.resize((H, W), PIL.Image.NEAREST)]
# query_poses = [query_pose2]


# better do preprocessing
from gradio_new import preprocess_image, create_carvekit_interface
import numpy as np
import PIL.Image as Image

pre_images = []
models = dict()
print('Instantiating Carvekit HiInterface...')
models['carvekit'] = create_carvekit_interface()
if not isinstance(input_images, list):
    input_images = [input_images]
for raw_im in input_images:
    input_im = preprocess_image(models, raw_im, True)
    H, W = input_im.shape[:2]
    pre_images.append(Image.fromarray((input_im * 255.0).astype(np.uint8)))
input_images = pre_images

# infer pipeline, in original zero123 num_inference_steps=76
images = pipe(input_imgs=input_images, prompt_imgs=input_images, poses=query_poses, height=H, width=W,
              guidance_scale=3.0, num_images_per_prompt=num_images_per_prompt, num_inference_steps=50).images

# save imgs
log_dir = "logs"
os.makedirs(log_dir, exist_ok=True)
bs = len(input_images)
i = 0
for obj in range(bs):
    for idx in range(num_images_per_prompt):
        images[i].save(os.path.join(log_dir,f"obj{obj}_{idx}.jpg"))
        i += 1
```

2905
2906
### Stable Diffusion XL Reference

2907
This pipeline uses the Reference. Refer to the [Stable Diffusion Reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-reference) section for more information.
2908
2909
2910

```py
import torch
2911
# from diffusers import DiffusionPipeline
2912
2913
from diffusers.utils import load_image
from diffusers.schedulers import UniPCMultistepScheduler
2914

2915
2916
2917
from .stable_diffusion_xl_reference import StableDiffusionXLReferencePipeline

input_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg")
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934

# pipe = DiffusionPipeline.from_pretrained(
#     "stabilityai/stable-diffusion-xl-base-1.0",
#     custom_pipeline="stable_diffusion_xl_reference",
#     torch_dtype=torch.float16,
#     use_safetensors=True,
#     variant="fp16").to('cuda:0')

pipe = StableDiffusionXLReferencePipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    torch_dtype=torch.float16,
    use_safetensors=True,
    variant="fp16").to('cuda:0')

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

result_img = pipe(ref_image=input_image,
2935
      prompt="a dog",
2936
2937
2938
2939
2940
2941
2942
      num_inference_steps=20,
      reference_attn=True,
      reference_adain=True).images[0]
```

Reference Image

2943
![reference_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg)
2944

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2945
Output Image
2946

2947
`prompt: a dog`
2948

2949
2950
`reference_attn=False, reference_adain=True, num_inference_steps=20`
![Output_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_adain_dog.png)
2951
2952
2953
2954

Reference Image
![reference_image](https://github.com/huggingface/diffusers/assets/34944964/449bdab6-e744-4fb2-9620-d4068d9a741b)

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2955
Output Image
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

`prompt: A dog`

`reference_attn=True, reference_adain=False, num_inference_steps=20`
![Output_image](https://github.com/huggingface/diffusers/assets/34944964/fff2f16f-6e91-434b-abcc-5259d866c31e)

Reference Image
![reference_image](https://github.com/huggingface/diffusers/assets/34944964/077ed4fe-2991-4b79-99a1-009f056227d1)

Output Image

`prompt: An astronaut riding a lion`

`reference_attn=True, reference_adain=True, num_inference_steps=20`
Shauray Singh's avatar
Shauray Singh committed
2970
2971
![output_image](https://github.com/huggingface/diffusers/assets/34944964/9b2f1aca-886f-49c3-89ec-d2031c8e3670)

2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
### Stable Diffusion XL ControlNet Reference

This pipeline uses the Reference Control and with ControlNet. Refer to the [Stable Diffusion ControlNet Reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-controlnet-reference) and [Stable Diffusion XL Reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-xl-reference) sections for more information.

```py
from diffusers import ControlNetModel, AutoencoderKL
from diffusers.schedulers import UniPCMultistepScheduler
from diffusers.utils import load_image
import numpy as np
import torch

import cv2
from PIL import Image

from .stable_diffusion_xl_controlnet_reference import StableDiffusionXLControlNetReferencePipeline

# download an image
canny_image = load_image(
    "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg"
)

ref_image = load_image(
    "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
)

# initialize the models and pipeline
controlnet_conditioning_scale = 0.5  # recommended for good generalization
controlnet = ControlNetModel.from_pretrained(
    "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetReferencePipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
).to("cuda:0")

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

# get canny image
image = np.array(canny_image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)

# generate image
image = pipe(
    prompt="a cat",
    num_inference_steps=20,
    controlnet_conditioning_scale=controlnet_conditioning_scale,
    image=canny_image,
    ref_image=ref_image,
    reference_attn=False,
    reference_adain=True,
    style_fidelity=1.0,
    generator=torch.Generator("cuda").manual_seed(42)
).images[0]
```

Canny ControlNet Image

![canny_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg)

Reference Image

![ref_image](https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png)

Output Image

`prompt: a cat`

`reference_attn=True, reference_adain=True, num_inference_steps=20, style_fidelity=1.0`

![Output_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_attn_adain_canny_cat.png)

`reference_attn=False, reference_adain=True, num_inference_steps=20, style_fidelity=1.0`

![Output_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_adain_canny_cat.png)

`reference_attn=True, reference_adain=False, num_inference_steps=20, style_fidelity=1.0`

![Output_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_attn_canny_cat.png)

Shauray Singh's avatar
Shauray Singh committed
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
### Stable diffusion fabric pipeline

FABRIC approach applicable to a wide range of popular diffusion models, which exploits
the self-attention layer present in the most widely used architectures to condition
the diffusion process on a set of feedback images.

```python
import requests
import torch
from PIL import Image
from io import BytesIO

co63oc's avatar
co63oc committed
3066
from diffusers import DiffusionPipeline
Shauray Singh's avatar
Shauray Singh committed
3067
3068
3069

# load the pipeline
# make sure you're logged in with `huggingface-cli login`
3070
model_id_or_path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
3071
# can also be used with dreamlike-art/dreamlike-photoreal-2.0
Shauray Singh's avatar
Shauray Singh committed
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
pipe = DiffusionPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16, custom_pipeline="pipeline_fabric").to("cuda")

# let's specify a prompt
prompt = "An astronaut riding an elephant"
negative_prompt = "lowres, cropped"

# call the pipeline
image = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.manual_seed(12)
).images[0]

image.save("horse_to_elephant.jpg")

# let's try another example with feedback
url = "https://raw.githubusercontent.com/ChenWu98/cycle-diffusion/main/data/dalle2/A%20black%20colored%20car.png"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")

prompt = "photo, A blue colored car, fish eye"
liked = [init_image]
## same goes with disliked

# call the pipeline
torch.manual_seed(0)
image = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
3102
    liked=liked,
Shauray Singh's avatar
Shauray Singh committed
3103
3104
3105
3106
3107
3108
3109
3110
    num_inference_steps=20,
).images[0]

image.save("black_to_blue.png")
```

*With enough feedbacks you can create very similar high quality images.*

3111
The original codebase can be found at [sd-fabric/fabric](https://github.com/sd-fabric/fabric), and available checkpoints are [dreamlike-art/dreamlike-photoreal-2.0](https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0), [stable-diffusion-v1-5/stable-diffusion-v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5), and [stabilityai/stable-diffusion-2-1](https://huggingface.co/stabilityai/stable-diffusion-2-1) (may give unexpected results).
Shauray Singh's avatar
Shauray Singh committed
3112

3113
Let's have a look at the images (_512X512_)
Shauray Singh's avatar
Shauray Singh committed
3114
3115
3116

| Without Feedback            | With Feedback  (1st image)          |
|---------------------|---------------------|
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3117
| ![Image 1](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/fabric_wo_feedback.jpg) | ![Feedback Image 1](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/fabric_w_feedback.png) |
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143

### Masked Im2Im Stable Diffusion Pipeline

This pipeline reimplements sketch inpaint feature from A1111 for non-inpaint models. The following code reads two images, original and one with mask painted over it. It computes mask as a difference of two images and does the inpainting in the area defined by the mask.

```python
img = PIL.Image.open("./mech.png")
# read image with mask painted over
img_paint = PIL.Image.open("./mech_painted.png")
neq = numpy.any(numpy.array(img) != numpy.array(img_paint), axis=-1)
mask = neq / neq.max()

pipeline = MaskedStableDiffusionImg2ImgPipeline.from_pretrained("frankjoshua/icbinpICantBelieveIts_v8")

# works best with EulerAncestralDiscreteScheduler
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config)
generator = torch.Generator(device="cpu").manual_seed(4)

prompt = "a man wearing a mask"
result = pipeline(prompt=prompt, image=img_paint, mask=mask, strength=0.75,
                  generator=generator)
result.images[0].save("result.png")
```

original image mech.png

3144
<img src=https://github.com/noskill/diffusers/assets/733626/10ad972d-d655-43cb-8de1-039e3d79e849 width="25%" >
3145
3146
3147

image with mask mech_painted.png

3148
<img src=https://github.com/noskill/diffusers/assets/733626/c334466a-67fe-4377-9ff7-f46021b9c224 width="25%" >
3149
3150
3151

result:

3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
<img src=https://github.com/noskill/diffusers/assets/733626/23a0a71d-51db-471e-926a-107ac62512a8 width="25%" >

### Masked Im2Im Stable Diffusion Pipeline XL

This pipeline implements sketch inpaint feature from A1111 for non-inpaint models. The following code reads two images, original and one with mask painted over it. It computes mask as a difference of two images and does the inpainting in the area defined by the mask. Latent code is initialized from the image with the mask by default so the color of the mask affects the result.

```
img = PIL.Image.open("./mech.png")
# read image with mask painted over
img_paint = PIL.Image.open("./mech_painted.png")

pipeline = MaskedStableDiffusionXLImg2ImgPipeline.from_pretrained("frankjoshua/juggernautXL_v8Rundiffusion", dtype=torch.float16)

pipeline.to('cuda')
pipeline.enable_xformers_memory_efficient_attention()

prompt = "a mech warrior wearing a mask"
seed = 8348273636437
for i in range(10):
    generator = torch.Generator(device="cuda").manual_seed(seed + i)
    print(seed + i)
    result = pipeline(prompt=prompt, blur=48, image=img_paint, original_image=img, strength=0.9,
                          generator=generator, num_inference_steps=60, num_images_per_prompt=1)
    im = result.images[0]
    im.save(f"result{i}.png")
```

original image mech.png

<img src=https://github.com/noskill/diffusers/assets/733626/10ad972d-d655-43cb-8de1-039e3d79e849 width="25%" >

image with mask mech_painted.png

<img src=https://github.com/noskill/diffusers/assets/733626/c334466a-67fe-4377-9ff7-f46021b9c224 width="25%" >

3187
result:
3188
3189

<img src=https://github.com/noskill/diffusers/assets/733626/5043fb57-a785-4606-a5ba-a36704f7cb42 width="25%" >
UmerHA's avatar
UmerHA committed
3190
3191
3192
3193

### Prompt2Prompt Pipeline

Prompt2Prompt allows the following edits:
3194

UmerHA's avatar
UmerHA committed
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
- ReplaceEdit (change words in prompt)
- ReplaceEdit with local blend (change words in prompt, keep image part unrelated to changes constant)
- RefineEdit (add words to prompt)
- RefineEdit with local blend (add words to prompt, keep image part unrelated to changes constant)
- ReweightEdit (modulate importance of words)

Here's a full example for `ReplaceEdit``:

```python
import torch
import numpy as np
import matplotlib.pyplot as plt
3207
from diffusers import DiffusionPipeline
UmerHA's avatar
UmerHA committed
3208

3209
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="pipeline_prompt2prompt").to("cuda")
UmerHA's avatar
UmerHA committed
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225

prompts = ["A turtle playing with a ball",
           "A monkey playing with a ball"]

cross_attention_kwargs = {
    "edit_type": "replace",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4
}

outputs = pipe(prompt=prompts, height=512, width=512, num_inference_steps=50, cross_attention_kwargs=cross_attention_kwargs)
```

And abbreviated examples for the other edits:

`ReplaceEdit with local blend`
3226

UmerHA's avatar
UmerHA committed
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
```python
prompts = ["A turtle playing with a ball",
           "A monkey playing with a ball"]

cross_attention_kwargs = {
    "edit_type": "replace",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4,
    "local_blend_words": ["turtle", "monkey"]
}
```

`RefineEdit`
3240

UmerHA's avatar
UmerHA committed
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
```python
prompts = ["A turtle",
           "A turtle in a forest"]

cross_attention_kwargs = {
    "edit_type": "refine",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4,
}
```

`RefineEdit with local blend`
3253

UmerHA's avatar
UmerHA committed
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
```python
prompts = ["A turtle",
           "A turtle in a forest"]

cross_attention_kwargs = {
    "edit_type": "refine",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4,
    "local_blend_words": ["in", "a" , "forest"]
}
```

`ReweightEdit`
3267

UmerHA's avatar
UmerHA committed
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
```python
prompts = ["A smiling turtle"] * 2

edit_kcross_attention_kwargswargs = {
    "edit_type": "reweight",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4,
    "equalizer_words": ["smiling"],
    "equalizer_strengths": [5]
}
```

Side note: See [this GitHub gist](https://gist.github.com/UmerHA/b65bb5fb9626c9c73f3ade2869e36164) if you want to visualize the attention maps.
3281
3282
3283

### Latent Consistency Pipeline

3284
Latent Consistency Models was proposed in [Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference](https://arxiv.org/abs/2310.04378) by _Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, Hang Zhao_ from Tsinghua University.
3285
3286
3287
3288
3289
3290
3291

The abstract of the paper reads as follows:

*Latent Diffusion models (LDMs) have achieved remarkable results in synthesizing high-resolution images. However, the iterative sampling process is computationally intensive and leads to slow generation. Inspired by Consistency Models (song et al.), we propose Latent Consistency Models (LCMs), enabling swift inference with minimal steps on any pre-trained LDMs, including Stable Diffusion (rombach et al). Viewing the guided reverse diffusion process as solving an augmented probability flow ODE (PF-ODE), LCMs are designed to directly predict the solution of such ODE in latent space, mitigating the need for numerous iterations and allowing rapid, high-fidelity sampling. Efficiently distilled from pre-trained classifier-free guided diffusion models, a high-quality 768 x 768 2~4-step LCM takes only 32 A100 GPU hours for training. Furthermore, we introduce Latent Consistency Fine-tuning (LCF), a novel method that is tailored for fine-tuning LCMs on customized image datasets. Evaluation on the LAION-5B-Aesthetics dataset demonstrates that LCMs achieve state-of-the-art text-to-image generation performance with few-step inference. Project Page: [this https URL](https://latent-consistency-models.github.io/)*

The model can be used with `diffusers` as follows:

3292
- *1. Load the model from the community pipeline.*
3293
3294
3295
3296
3297

```py
from diffusers import DiffusionPipeline
import torch

Andrei Filatov's avatar
Andrei Filatov committed
3298
pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main")
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308

# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)
```

- 2. Run inference with as little as 4 steps:

```py
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"

3309
# Can be set to 1~50 steps. LCM supports fast inference even <= 4 steps. Recommend: 1~8 steps.
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3310
num_inference_steps = 4
3311
3312
3313
3314
3315
3316
3317

images = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=8.0, lcm_origin_steps=50, output_type="pil").images
```

For any questions or feedback, feel free to reach out to [Simian Luo](https://github.com/luosiallen).

You can also try this pipeline directly in the [🚀 official spaces](https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model).
Logan's avatar
Logan committed
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340

### Latent Consistency Img2img Pipeline

This pipeline extends the Latent Consistency Pipeline to allow it to take an input image.

```py
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_img2img")

# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)
```

- 2. Run inference with as little as 4 steps:

```py
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"


input_image=Image.open("myimg.png")

3341
strength = 0.5  # strength =0 (no change) strength=1 (completely overwrite image)
Logan's avatar
Logan committed
3342

3343
# Can be set to 1~50 steps. LCM supports fast inference even <= 4 steps. Recommend: 1~8 steps.
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3344
num_inference_steps = 4
Logan's avatar
Logan committed
3345
3346
3347

images = pipe(prompt=prompt, image=input_image, strength=strength, num_inference_steps=num_inference_steps, guidance_scale=8.0, lcm_origin_steps=50, output_type="pil").images
```
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386

### Latent Consistency Interpolation Pipeline

This pipeline extends the Latent Consistency Pipeline to allow for interpolation of the latent space between multiple prompts. It is similar to the [Stable Diffusion Interpolate](https://github.com/huggingface/diffusers/blob/main/examples/community/interpolate_stable_diffusion.py) and [unCLIP Interpolate](https://github.com/huggingface/diffusers/blob/main/examples/community/unclip_text_interpolation.py) community pipelines.

```py
import torch
import numpy as np

from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_interpolate")

# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)

prompts = [
    "Self-portrait oil painting, a beautiful cyborg with golden hair, Margot Robbie, 8k",
    "Self-portrait oil painting, an extremely strong man, body builder, Huge Jackman, 8k",
    "An astronaut floating in space, renaissance art, realistic, high quality, 8k",
    "Oil painting of a cat, cute, dream-like",
    "Hugging face emoji, cute, realistic"
]
num_inference_steps = 4
num_interpolation_steps = 60
seed = 1337

torch.manual_seed(seed)
np.random.seed(seed)

images = pipe(
    prompt=prompts,
    height=512,
    width=512,
    num_inference_steps=num_inference_steps,
    num_interpolation_steps=num_interpolation_steps,
    guidance_scale=8.0,
    embedding_interpolation_type="lerp",
    latent_interpolation_type="slerp",
3387
    process_batch_size=4,  # Make it higher or lower based on your GPU memory
3388
3389
3390
3391
3392
    generator=torch.Generator(seed),
)

assert len(images) == (len(prompts) - 1) * num_interpolation_steps
```
3393

3394
3395
### StableDiffusionUpscaleLDM3D Pipeline

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3396
[LDM3D-VR](https://arxiv.org/pdf/2311.03226.pdf) is an extended version of LDM3D.
3397
3398
3399
3400
3401

The abstract from the paper is:
*Latent diffusion models have proven to be state-of-the-art in the creation and manipulation of visual outputs. However, as far as we know, the generation of depth maps jointly with RGB is still limited. We introduce LDM3D-VR, a suite of diffusion models targeting virtual reality development that includes LDM3D-pano and LDM3D-SR. These models enable the generation of panoramic RGBD based on textual prompts and the upscaling of low-resolution inputs to high-resolution RGBD, respectively. Our models are fine-tuned from existing pretrained models on datasets containing panoramic/high-resolution RGB images, depth maps and captions. Both models are evaluated in comparison to existing related methods*

Two checkpoints are available for use:
3402

3403
3404
3405
- [ldm3d-pano](https://huggingface.co/Intel/ldm3d-pano). This checkpoint enables the generation of panoramic images and requires the StableDiffusionLDM3DPipeline pipeline to be used.
- [ldm3d-sr](https://huggingface.co/Intel/ldm3d-sr). This checkpoint enables the upscaling of RGB and depth images. Can be used in cascade after the original LDM3D pipeline using the StableDiffusionUpscaleLDM3DPipeline pipeline.

3406
```py
3407
3408
3409
3410
3411
from PIL import Image
import os
import torch
from diffusers import StableDiffusionLDM3DPipeline, DiffusionPipeline

3412
3413
# Generate a rgb/depth output from LDM3D

3414
3415
3416
pipe_ldm3d = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d-4c")
pipe_ldm3d.to("cuda")

3417
prompt = "A picture of some lemons on a table"
3418
3419
output = pipe_ldm3d(prompt)
rgb_image, depth_image = output.rgb, output.depth
3420
3421
rgb_image[0].save("lemons_ldm3d_rgb.jpg")
depth_image[0].save("lemons_ldm3d_depth.png")
3422

3423
# Upscale the previous output to a resolution of (1024, 1024)
3424
3425
3426
3427
3428

pipe_ldm3d_upscale = DiffusionPipeline.from_pretrained("Intel/ldm3d-sr", custom_pipeline="pipeline_stable_diffusion_upscale_ldm3d")

pipe_ldm3d_upscale.to("cuda")

3429
3430
low_res_img = Image.open("lemons_ldm3d_rgb.jpg").convert("RGB")
low_res_depth = Image.open("lemons_ldm3d_depth.png").convert("L")
3431
3432
outputs = pipe_ldm3d_upscale(prompt="high quality high resolution uhd 4k image", rgb=low_res_img, depth=low_res_depth, num_inference_steps=50, target_res=[1024, 1024])

3433
3434
3435
3436
upscaled_rgb, upscaled_depth = outputs.rgb[0], outputs.depth[0]
upscaled_rgb.save("upscaled_lemons_rgb.png")
upscaled_depth.save("upscaled_lemons_depth.png")
```
3437

3438
### ControlNet + T2I Adapter Pipeline
3439

3440
3441
This pipeline combines both ControlNet and T2IAdapter into a single pipeline, where the forward pass is executed once.
It receives `control_image` and `adapter_image`, as well as `controlnet_conditioning_scale` and `adapter_conditioning_scale`, for the ControlNet and Adapter modules, respectively. Whenever `adapter_conditioning_scale=0` or `controlnet_conditioning_scale=0`, it will act as a full ControlNet module or as a full T2IAdapter module, respectively.
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506

```py
import cv2
import numpy as np
import torch
from controlnet_aux.midas import MidasDetector
from PIL import Image

from diffusers import AutoencoderKL, ControlNetModel, MultiAdapter, T2IAdapter
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.utils import load_image
from examples.community.pipeline_stable_diffusion_xl_controlnet_adapter import (
    StableDiffusionXLControlNetAdapterPipeline,
)

controlnet_depth = ControlNetModel.from_pretrained(
    "diffusers/controlnet-depth-sdxl-1.0",
    torch_dtype=torch.float16,
    variant="fp16",
    use_safetensors=True
)
adapter_depth = T2IAdapter.from_pretrained(
  "TencentARC/t2i-adapter-depth-midas-sdxl-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, use_safetensors=True)

pipe = StableDiffusionXLControlNetAdapterPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    controlnet=controlnet_depth,
    adapter=adapter_depth,
    vae=vae,
    variant="fp16",
    use_safetensors=True,
    torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
pipe.enable_xformers_memory_efficient_attention()
# pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
midas_depth = MidasDetector.from_pretrained(
  "valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large"
).to("cuda")

prompt = "a tiger sitting on a park bench"
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"

image = load_image(img_url).resize((1024, 1024))

depth_image = midas_depth(
  image, detect_resolution=512, image_resolution=1024
)

strength = 0.5

images = pipe(
    prompt,
    control_image=depth_image,
    adapter_image=depth_image,
    num_inference_steps=30,
    controlnet_conditioning_scale=strength,
    adapter_conditioning_scale=strength,
).images
images[0].save("controlnet_and_adapter.png")
```

### ControlNet + T2I Adapter + Inpainting Pipeline
3507

3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
```py
import cv2
import numpy as np
import torch
from controlnet_aux.midas import MidasDetector
from PIL import Image

from diffusers import AutoencoderKL, ControlNetModel, MultiAdapter, T2IAdapter
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.utils import load_image
from examples.community.pipeline_stable_diffusion_xl_controlnet_adapter_inpaint import (
    StableDiffusionXLControlNetAdapterInpaintPipeline,
)

controlnet_depth = ControlNetModel.from_pretrained(
    "diffusers/controlnet-depth-sdxl-1.0",
    torch_dtype=torch.float16,
    variant="fp16",
    use_safetensors=True
)
adapter_depth = T2IAdapter.from_pretrained(
  "TencentARC/t2i-adapter-depth-midas-sdxl-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, use_safetensors=True)

pipe = StableDiffusionXLControlNetAdapterInpaintPipeline.from_pretrained(
    "diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
    controlnet=controlnet_depth,
    adapter=adapter_depth,
    vae=vae,
    variant="fp16",
    use_safetensors=True,
    torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
pipe.enable_xformers_memory_efficient_attention()
# pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
midas_depth = MidasDetector.from_pretrained(
  "valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large"
).to("cuda")

prompt = "a tiger sitting on a park bench"
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

image = load_image(img_url).resize((1024, 1024))
mask_image = load_image(mask_url).resize((1024, 1024))

depth_image = midas_depth(
  image, detect_resolution=512, image_resolution=1024
)

strength = 0.4

images = pipe(
    prompt,
    image=image,
    mask_image=mask_image,
    control_image=depth_image,
    adapter_image=depth_image,
    num_inference_steps=30,
    controlnet_conditioning_scale=strength,
    adapter_conditioning_scale=strength,
    strength=0.7,
).images
images[0].save("controlnet_and_adapter_inpaint.png")
3574
3575
```

3576
### Regional Prompting Pipeline
3577

3578
This pipeline is a port of the [Regional Prompter extension](https://github.com/hako-mikan/sd-webui-regional-prompter) for [Stable Diffusion web UI](https://github.com/AUTOMATIC1111/stable-diffusion-webui) to `diffusers`.
3579
3580
3581
3582
3583
This code implements a pipeline for the Stable Diffusion model, enabling the division of the canvas into multiple regions, with different prompts applicable to each region. Users can specify regions in two ways: using `Cols` and `Rows` modes for grid-like divisions, or the `Prompt` mode for regions calculated based on prompts.

![sample](https://github.com/hako-mikan/sd-webui-regional-prompter/blob/imgs/rp_pipeline1.png)

### Usage
3584

3585
### Sample Code
3586

3587
3588
```py
from examples.community.regional_prompting_stable_diffusion import RegionalPromptingStableDiffusionPipeline
3589

3590
3591
3592
3593
3594
pipe = RegionalPromptingStableDiffusionPipeline.from_single_file(model_path, vae=vae)

rp_args = {
    "mode":"rows",
    "div": "1;1;1"
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3595
}
3596

3597
prompt = """
3598
3599
3600
3601
3602
3603
3604
3605
3606
green hair twintail BREAK
red blouse BREAK
blue skirt
"""

images = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    guidance_scale=7.5,
3607
3608
3609
3610
3611
3612
    height=768,
    width=512,
    num_inference_steps=20,
    num_images_per_prompt=1,
    rp_args=rp_args
    ).images
3613
3614
3615
3616
3617
3618
3619
3620

time = time.strftime(r"%Y%m%d%H%M%S")
i = 1
for image in images:
    i += 1
    fileName = f'img-{time}-{i+1}.png'
    image.save(fileName)
```
3621

3622
### Cols, Rows mode
3623

3624
3625
In the Cols, Rows mode, you can split the screen vertically and horizontally and assign prompts to each region. The split ratio can be specified by 'div', and you can set the division ratio like '3;3;2' or '0.1;0.5'. Furthermore, as will be described later, you can also subdivide the split Cols, Rows to specify more complex regions.

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3626
In this image, the image is divided into three parts, and a separate prompt is applied to each. The prompts are divided by 'BREAK', and each is applied to the respective region.
3627
![sample](https://github.com/hako-mikan/sd-webui-regional-prompter/blob/imgs/rp_pipeline2.png)
3628

3629
3630
3631
3632
3633
3634
3635
```
green hair twintail BREAK
red blouse BREAK
blue skirt
```

### 2-Dimentional division
3636

3637
The prompt consists of instructions separated by the term `BREAK` and is assigned to different regions of a two-dimensional space. The image is initially split in the main splitting direction, which in this case is rows, due to the presence of a single semicolon `;`, dividing the space into an upper and a lower section. Additional sub-splitting is then applied, indicated by commas. The upper row is split into ratios of `2:1:1`, while the lower row is split into a ratio of `4:6`. Rows themselves are split in a `1:2` ratio. According to the reference image, the blue sky is designated as the first region, green hair as the second, the bookshelf as the third, and so on, in a sequence based on their position from the top left. The terrarium is placed on the desk in the fourth region, and the orange dress and sofa are in the fifth region, conforming to their respective splits.
3638

3639
```py
3640
3641
3642
3643
3644
rp_args = {
    "mode":"rows",
    "div": "1,2,1,1;2,4,6"
}

3645
prompt = """
3646
3647
3648
blue sky BREAK
green hair BREAK
book shelf BREAK
3649
terrarium on the desk BREAK
3650
3651
3652
orange dress and sofa
"""
```
3653

3654
3655
3656
![sample](https://github.com/hako-mikan/sd-webui-regional-prompter/blob/imgs/rp_pipeline4.png)

### Prompt Mode
3657

3658
There are limitations to methods of specifying regions in advance. This is because specifying regions can be a hindrance when designating complex shapes or dynamic compositions. In the region specified by the prompt, the region is determined after the image generation has begun. This allows us to accommodate compositions and complex regions.
3659
For further infomagen, see [here](https://github.com/hako-mikan/sd-webui-regional-prompter/blob/main/prompt_en.md).
3660

3661
### Syntax
3662

3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
```
baseprompt target1 target2 BREAK
effect1, target1 BREAK
effect2 ,target2
```

First, write the base prompt. In the base prompt, write the words (target1, target2) for which you want to create a mask. Next, separate them with BREAK. Next, write the prompt corresponding to target1. Then enter a comma and write target1. The order of the targets in the base prompt and the order of the BREAK-separated targets can be back to back.

```
target2 baseprompt target1  BREAK
effect1, target1 BREAK
effect2 ,target2
```
3676

3677
3678
3679
is also effective.

### Sample
3680

3681
In this example, masks are calculated for shirt, tie, skirt, and color prompts are specified only for those regions.
3682

3683
```py
3684
rp_args = {
3685
3686
    "mode": "prompt-ex",
    "save_mask": True,
3687
3688
3689
    "th": "0.4,0.6,0.6",
}

3690
prompt = """
3691
3692
3693
a girl in street with shirt, tie, skirt BREAK
red, shirt BREAK
green, tie BREAK
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3694
blue , skirt
3695
3696
"""
```
3697

3698
![sample](https://github.com/hako-mikan/sd-webui-regional-prompter/blob/imgs/rp_pipeline3.png)
3699

3700
### Threshold
3701

3702
3703
3704
3705
3706
3707
3708
The threshold used to determine the mask created by the prompt. This can be set as many times as there are masks, as the range varies widely depending on the target prompt. If multiple regions are used, enter them separated by commas. For example, hair tends to be ambiguous and requires a small value, while face tends to be large and requires a small value. These should be ordered by BREAK.

```
a lady ,hair, face  BREAK
red, hair BREAK
tanned ,face
```
3709

3710
3711
3712
3713
`threshold : 0.4,0.6`
If only one input is given for multiple regions, they are all assumed to be the same value.

### Prompt and Prompt-EX
3714

3715
3716
3717
The difference is that in Prompt, duplicate regions are added, whereas in Prompt-EX, duplicate regions are overwritten sequentially. Since they are processed in order, setting a TARGET with a large regions first makes it easier for the effect of small regions to remain unmuffled.

### Accuracy
3718

3719
In the case of a 512x512 image, Attention mode reduces the size of the region to about 8x8 pixels deep in the U-Net, so that small regions get mixed up; Latent mode calculates 64*64, so that the region is exact.
3720

3721
3722
3723
3724
3725
3726
3727
```
girl hair twintail frills,ribbons, dress, face BREAK
girl, ,face
```

### Mask

3728
When an image is generated, the generated mask is displayed. It is generated at the same size as the image, but is actually used at a much smaller size.
3729
3730

### Use common prompt
3731

3732
You can attach the prompt up to ADDCOMM to all prompts by separating it first with ADDCOMM. This is useful when you want to include elements common to all regions. For example, when generating pictures of three people with different appearances, it's necessary to include the instruction of 'three people' in all regions. It's also useful when inserting quality tags and other things. "For example, if you write as follows:
3733

3734
3735
3736
3737
3738
3739
```
best quality, 3persons in garden, ADDCOMM
a girl white dress BREAK
a boy blue shirt BREAK
an old man red suit
```
3740

3741
If common is enabled, this prompt is converted to the following:
3742

3743
3744
3745
3746
3747
```
best quality, 3persons in garden, a girl white dress BREAK
best quality, 3persons in garden, a boy blue shirt BREAK
best quality, 3persons in garden, an old man red suit
```
3748

3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
### Use base prompt

You can use a base prompt to apply the prompt to all areas. You can set a base prompt by adding `ADDBASE` at the end. Base prompts can also be combined with common prompts, but the base prompt must be specified first.

```
2d animation style ADDBASE
masterpiece, high quality ADDCOMM
(blue sky)++ BREAK
green hair twintail BREAK
book shelf BREAK
messy desk BREAK
orange++ dress and sofa
```

3763
### Negative prompt
3764

3765
3766
3767
Negative prompts are equally effective across all regions, but it is possible to set region-specific prompts for negative prompts as well. The number of BREAKs must be the same as the number of prompts. If the number of prompts does not match, the negative prompts will be used without being divided into regions.

### Parameters
3768

3769
To activate Regional Prompter, it is necessary to enter settings in `rp_args`. The items that can be set are as follows. `rp_args` is a dictionary type.
3770
3771

### Input Parameters
3772

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3773
Parameters are specified through the `rp_arg`(dictionary type).
3774

3775
```py
3776
3777
3778
rp_args = {
    "mode":"rows",
    "div": "1;1;1"
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3779
}
3780

3781
pipe(prompt=prompt, rp_args=rp_args)
3782
3783
3784
```

### Required Parameters
3785

3786
- `mode`: Specifies the method for defining regions. Choose from `Cols`, `Rows`, `Prompt`, or `Prompt-Ex`. This parameter is case-insensitive.
3787
3788
3789
3790
- `divide`: Used in `Cols` and `Rows` modes. Details on how to specify this are provided under the respective `Cols` and `Rows` sections.
- `th`: Used in `Prompt` mode. The method of specification is detailed under the `Prompt` section.

### Optional Parameters
3791

3792
- `save_mask`: In `Prompt` mode, choose whether to output the generated mask along with the image. The default is `False`.
3793
- `base_ratio`: Used with `ADDBASE`. Sets the ratio of the base prompt; if base ratio is set to 0.2, then resulting images will consist of `20%*BASE_PROMPT + 80%*REGION_PROMPT`
3794
3795
3796

The Pipeline supports `compel` syntax. Input prompts using the `compel` structure will be automatically applied and processed.

3797
### Diffusion Posterior Sampling Pipeline
3798
3799
3800

- Reference paper

3801
    ```bibtex
3802
3803
3804
3805
3806
3807
3808
    @article{chung2022diffusion,
    title={Diffusion posterior sampling for general noisy inverse problems},
    author={Chung, Hyungjin and Kim, Jeongsol and Mccann, Michael T and Klasky, Marc L and Ye, Jong Chul},
    journal={arXiv preprint arXiv:2209.14687},
    year={2022}
    }
    ```
3809
3810
3811
3812

- This pipeline allows zero-shot conditional sampling from the posterior distribution $p(x|y)$, given observation on $y$, unconditional generative model $p(x)$ and differentiable operator $y=f(x)$.

- For example, $f(.)$ can be downsample operator, then $y$ is a downsampled image, and the pipeline becomes a super-resolution pipeline.
3813
- To use this pipeline, you need to know your operator $f(.)$ and corrupted image $y$, and pass them during the call. For example, as in the main function of `dps_pipeline.py`, you need to first define the Gaussian blurring operator $f(.)$. The operator should be a callable `nn.Module`, with all the parameter gradient disabled:
3814

3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
    ```python
    import torch.nn.functional as F
    import scipy
    from torch import nn

    # define the Gaussian blurring operator first
    class GaussialBlurOperator(nn.Module):
        def __init__(self, kernel_size, intensity):
            super().__init__()

            class Blurkernel(nn.Module):
                def __init__(self, blur_type='gaussian', kernel_size=31, std=3.0):
                    super().__init__()
                    self.blur_type = blur_type
                    self.kernel_size = kernel_size
                    self.std = std
                    self.seq = nn.Sequential(
                        nn.ReflectionPad2d(self.kernel_size//2),
                        nn.Conv2d(3, 3, self.kernel_size, stride=1, padding=0, bias=False, groups=3)
                    )
                    self.weights_init()

                def forward(self, x):
                    return self.seq(x)

                def weights_init(self):
                    if self.blur_type == "gaussian":
                        n = np.zeros((self.kernel_size, self.kernel_size))
3843
                        n[self.kernel_size // 2, self.kernel_size // 2] = 1
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
                        k = scipy.ndimage.gaussian_filter(n, sigma=self.std)
                        k = torch.from_numpy(k)
                        self.k = k
                        for name, f in self.named_parameters():
                            f.data.copy_(k)
                    elif self.blur_type == "motion":
                        k = Kernel(size=(self.kernel_size, self.kernel_size), intensity=self.std).kernelMatrix
                        k = torch.from_numpy(k)
                        self.k = k
                        for name, f in self.named_parameters():
                            f.data.copy_(k)

                def update_weights(self, k):
                    if not torch.is_tensor(k):
                        k = torch.from_numpy(k)
                    for name, f in self.named_parameters():
                        f.data.copy_(k)

                def get_kernel(self):
                    return self.k
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3864

3865
3866
3867
3868
3869
3870
3871
3872
            self.kernel_size = kernel_size
            self.conv = Blurkernel(blur_type='gaussian',
                                kernel_size=kernel_size,
                                std=intensity)
            self.kernel = self.conv.get_kernel()
            self.conv.update_weights(self.kernel.type(torch.float32))

            for param in self.parameters():
3873
                param.requires_grad = False
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883

        def forward(self, data, **kwargs):
            return self.conv(data)

        def transpose(self, data, **kwargs):
            return data

        def get_kernel(self):
            return self.kernel.view(1, 1, self.kernel_size, self.kernel_size)
    ```
3884
3885
3886

- Next, you should obtain the corrupted image $y$ by the operator. In this example, we generate $y$ from the source image $x$. However in practice, having the operator $f(.)$ and corrupted image $y$ is enough:

3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
    ```python
    # set up source image
    src = Image.open('sample.png')
    # read image into [1,3,H,W]
    src = torch.from_numpy(np.array(src, dtype=np.float32)).permute(2,0,1)[None]
    # normalize image to [-1,1]
    src = (src / 127.5) - 1.0
    src = src.to("cuda")

    # set up operator and measurement
    operator = GaussialBlurOperator(kernel_size=61, intensity=3.0).to("cuda")
    measurement = operator(src)

    # save the source and corrupted images
    save_image((src+1.0)/2.0, "dps_src.png")
    save_image((measurement+1.0)/2.0, "dps_mea.png")
    ```
3904
3905
3906
3907
3908
3909

- We provide an example pair of saved source and corrupted images, using the Gaussian blur operator above
  - Source image:
  - ![sample](https://github.com/tongdaxu/Images/assets/22267548/4d2a1216-08d1-4aeb-9ce3-7a2d87561d65)
  - Gaussian blurred image:
  - ![ddpm_generated_image](https://github.com/tongdaxu/Images/assets/22267548/65076258-344b-4ed8-b704-a04edaade8ae)
3910
  - You can download those images to run the example on your own.
3911
3912
3913

- Next, we need to define a loss function used for diffusion posterior sample. For most of the cases, the RMSE is fine:

3914
3915
3916
3917
    ```python
    def RMSELoss(yhat, y):
        return torch.sqrt(torch.sum((yhat-y)**2))
    ```
3918

3919
- And next, as any other diffusion models, we need the score estimator and scheduler. As we are working with $256x256$ face images, we use ddpm-celebahq-256:
3920

3921
3922
3923
3924
3925
3926
3927
3928
    ```python
    # set up scheduler
    scheduler = DDPMScheduler.from_pretrained("google/ddpm-celebahq-256")
    scheduler.set_timesteps(1000)

    # set up model
    model = UNet2DModel.from_pretrained("google/ddpm-celebahq-256").to("cuda")
    ```
3929
3930
3931

- And finally, run the pipeline:

3932
3933
3934
3935
    ```python
    # finally, the pipeline
    dpspipe = DPSPipeline(model, scheduler)
    image = dpspipe(
3936
3937
3938
3939
        measurement=measurement,
        operator=operator,
        loss_fn=RMSELoss,
        zeta=1.0,
3940
3941
3942
    ).images[0]
    image.save("dps_generated_image.png")
    ```
3943

3944
- The `zeta` is a hyperparameter that is in range of $[0,1]$. It needs to be tuned for best effect. By setting `zeta=1`, you should be able to have the reconstructed result:
3945
3946
3947
3948
  - Reconstructed image:
  - ![sample](https://github.com/tongdaxu/Images/assets/22267548/0ceb5575-d42e-4f0b-99c0-50e69c982209)

- The reconstruction is perceptually similar to the source image, but different in details.
3949
- In `dps_pipeline.py`, we also provide a super-resolution example, which should produce:
3950
3951
3952
3953
  - Downsampled image:
  - ![dps_mea](https://github.com/tongdaxu/Images/assets/22267548/ff6a33d6-26f0-42aa-88ce-f8a76ba45a13)
  - Reconstructed image:
  - ![dps_generated_image](https://github.com/tongdaxu/Images/assets/22267548/b74f084d-93f4-4845-83d8-44c0fa758a5f)
3954

3955
3956
3957
3958
3959
3960
### AnimateDiff ControlNet Pipeline

This pipeline combines AnimateDiff and ControlNet. Enjoy precise motion control for your videos! Refer to [this](https://github.com/huggingface/diffusers/issues/5866) issue for more details.

```py
import torch
3961
3962
from diffusers import AutoencoderKL, ControlNetModel, MotionAdapter, DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_gif
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
from PIL import Image

motion_id = "guoyww/animatediff-motion-adapter-v1-5-2"
adapter = MotionAdapter.from_pretrained(motion_id)
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)

model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = DiffusionPipeline.from_pretrained(
    model_id,
    motion_adapter=adapter,
    controlnet=controlnet,
    vae=vae,
    custom_pipeline="pipeline_animatediff_controlnet",
3977
3978
    torch_dtype=torch.float16,
).to(device="cuda")
3979
pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained(
3980
    model_id, subfolder="scheduler", beta_schedule="linear", clip_sample=False, timestep_spacing="linspace", steps_offset=1
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
)
pipe.enable_vae_slicing()

conditioning_frames = []
for i in range(1, 16 + 1):
    conditioning_frames.append(Image.open(f"frame_{i}.png"))

prompt = "astronaut in space, dancing"
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
result = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    width=512,
    height=768,
    conditioning_frames=conditioning_frames,
3996
    num_inference_steps=20,
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
).frames[0]

export_to_gif(result.frames[0], "result.gif")
```

<table>
  <tr><td colspan="2" align=center><b>Conditioning Frames</b></td></tr>
  <tr align=center>
    <td align=center><img src="https://user-images.githubusercontent.com/7365912/265043418-23291941-864d-495a-8ba8-d02e05756396.gif" alt="input-frames"></td>
  </tr>
  <tr><td colspan="2" align=center><b>AnimateDiff model: SG161222/Realistic_Vision_V5.1_noVAE</b></td></tr>
  <tr>
    <td align=center><img src="https://github.com/huggingface/diffusers/assets/72266394/baf301e2-d03c-4129-bd84-203a1de2b2be" alt="gif-1"></td>
    <td align=center><img src="https://github.com/huggingface/diffusers/assets/72266394/9f923475-ecaf-452b-92c8-4e42171182d8" alt="gif-2"></td>
  </tr>
  <tr><td colspan="2" align=center><b>AnimateDiff model: CardosAnime</b></td></tr>
  <tr>
    <td align=center><img src="https://github.com/huggingface/diffusers/assets/72266394/b2c41028-38a0-45d6-86ed-fec7446b87f7" alt="gif-1"></td>
    <td align=center><img src="https://github.com/huggingface/diffusers/assets/72266394/eb7d2952-72e4-44fa-b664-077c79b4fc70" alt="gif-2"></td>
  </tr>
</table>
4018

4019
4020
4021
4022
You can also use multiple controlnets at once!

```python
import torch
4023
4024
from diffusers import AutoencoderKL, ControlNetModel, MotionAdapter, DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_gif
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
from PIL import Image

motion_id = "guoyww/animatediff-motion-adapter-v1-5-2"
adapter = MotionAdapter.from_pretrained(motion_id)
controlnet1 = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch.float16)
controlnet2 = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)

model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = DiffusionPipeline.from_pretrained(
    model_id,
    motion_adapter=adapter,
    controlnet=[controlnet1, controlnet2],
    vae=vae,
    custom_pipeline="pipeline_animatediff_controlnet",
4040
4041
    torch_dtype=torch.float16,
).to(device="cuda")
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained(
    model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", steps_offset=1, beta_schedule="linear",
)
pipe.enable_vae_slicing()

def load_video(file_path: str):
    images = []

    if file_path.startswith(('http://', 'https://')):
        # If the file_path is a URL
        response = requests.get(file_path)
        response.raise_for_status()
        content = BytesIO(response.content)
        vid = imageio.get_reader(content)
    else:
        # Assuming it's a local file path
        vid = imageio.get_reader(file_path)

    for frame in vid:
        pil_image = Image.fromarray(frame)
        images.append(pil_image)

    return images

video = load_video("dance.gif")

# You need to install it using `pip install controlnet_aux`
from controlnet_aux.processor import Processor

p1 = Processor("openpose_full")
cn1 = [p1(frame) for frame in video]

p2 = Processor("canny")
cn2 = [p2(frame) for frame in video]

prompt = "astronaut in space, dancing"
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
result = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    width=512,
    height=768,
    conditioning_frames=[cn1, cn2],
    num_inference_steps=20,
)

export_to_gif(result.frames[0], "result.gif")
```

4091
### DemoFusion
4092

4093
4094
This pipeline is the official implementation of [DemoFusion: Democratising High-Resolution Image Generation With No $$$](https://arxiv.org/abs/2311.16973).
The original repo can be found at [repo](https://github.com/PRIS-CV/DemoFusion).
4095

4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
- `view_batch_size` (`int`, defaults to 16):
  The batch size for multiple denoising paths. Typically, a larger batch size can result in higher efficiency but comes with increased GPU memory requirements.

- `stride` (`int`, defaults to 64):
  The stride of moving local patches. A smaller stride is better for alleviating seam issues, but it also introduces additional computational overhead and inference time.

- `cosine_scale_1` (`float`, defaults to 3):
  Control the strength of skip-residual. For specific impacts, please refer to Appendix C in the DemoFusion paper.

- `cosine_scale_2` (`float`, defaults to 1):
  Control the strength of dilated sampling. For specific impacts, please refer to Appendix C in the DemoFusion paper.

- `cosine_scale_3` (`float`, defaults to 1):
  Control the strength of the Gaussian filter. For specific impacts, please refer to Appendix C in the DemoFusion paper.

- `sigma` (`float`, defaults to 1):
  The standard value of the Gaussian filter. Larger sigma promotes the global guidance of dilated sampling, but has the potential of over-smoothing.

- `multi_decoder` (`bool`, defaults to True):
  Determine whether to use a tiled decoder. Generally, when the resolution exceeds 3072x3072, a tiled decoder becomes necessary.

- `show_image` (`bool`, defaults to False):
  Determine whether to show intermediate results during generation.
4119

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4120
```py
Radamés Ajna's avatar
Radamés Ajna committed
4121
from diffusers import DiffusionPipeline
4122
import torch
4123

Radamés Ajna's avatar
Radamés Ajna committed
4124
4125
4126
4127
4128
4129
pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    custom_pipeline="pipeline_demofusion_sdxl",
    custom_revision="main",
    torch_dtype=torch.float16,
)
4130
4131
4132
4133
4134
4135
pipe = pipe.to("cuda")

prompt = "Envision a portrait of an elderly woman, her face a canvas of time, framed by a headscarf with muted tones of rust and cream. Her eyes, blue like faded denim. Her attire, simple yet dignified."
negative_prompt = "blurry, ugly, duplicate, poorly drawn, deformed, mosaic"

images = pipe(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4136
    prompt,
4137
    negative_prompt=negative_prompt,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4138
4139
4140
    height=3072,
    width=3072,
    view_batch_size=16,
4141
    stride=64,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4142
    num_inference_steps=50,
4143
    guidance_scale=7.5,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4144
4145
4146
    cosine_scale_1=3,
    cosine_scale_2=1,
    cosine_scale_3=1,
4147
    sigma=0.8,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4148
    multi_decoder=True,
4149
4150
4151
    show_image=True
)
```
4152

4153
You can display and save the generated images as:
4154

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4155
```py
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
def image_grid(imgs, save_path=None):

    w = 0
    for i, img in enumerate(imgs):
        h_, w_ = imgs[i].size
        w += w_
    h = h_
    grid = Image.new('RGB', size=(w, h))
    grid_w, grid_h = grid.size

    w = 0
    for i, img in enumerate(imgs):
        h_, w_ = imgs[i].size
        grid.paste(img, box=(w, h - h_))
        if save_path != None:
            img.save(save_path + "/img_{}.jpg".format((i + 1) * 1024))
        w += w_
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4173

4174
4175
4176
4177
    return grid

image_grid(images, save_path="./outputs/")
```
4178

4179
 ![output_example](https://github.com/PRIS-CV/DemoFusion/blob/main/output_example.png)
4180
4181
4182
4183
4184
4185
4186

### SDE Drag pipeline

This pipeline provides drag-and-drop image editing using stochastic differential equations. It enables image editing by inputting prompt, image, mask_image, source_points, and target_points.

![SDE Drag Image](https://github.com/huggingface/diffusers/assets/75928535/bd54f52f-f002-4951-9934-b2a4592771a5)

4187
See [paper](https://arxiv.org/abs/2311.01410), [paper page](https://ml-gsai.github.io/SDE-Drag-demo/), [original repo](https://github.com/ML-GSAI/SDE-Drag) for more information.
4188
4189
4190
4191

```py
import torch
from diffusers import DDIMScheduler, DiffusionPipeline
4192
4193
4194
4195
from PIL import Image
import requests
from io import BytesIO
import numpy as np
4196
4197

# Load the pipeline
4198
model_path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
4199
4200
4201
scheduler = DDIMScheduler.from_pretrained(model_path, subfolder="scheduler")
pipe = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler, custom_pipeline="sde_drag")

4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
# Ensure the model is moved to the GPU
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe.to(device)

# Function to load image from URL
def load_image_from_url(url):
    response = requests.get(url)
    return Image.open(BytesIO(response.content)).convert("RGB")

# Function to prepare mask
def prepare_mask(mask_image):
    # Convert to grayscale
    mask = mask_image.convert("L")
    return mask

# Function to convert numpy array to PIL Image
def array_to_pil(array):
    # Ensure the array is in uint8 format
    if array.dtype != np.uint8:
        if array.max() <= 1.0:
            array = (array * 255).astype(np.uint8)
        else:
            array = array.astype(np.uint8)
    
    # Handle different array shapes
    if len(array.shape) == 3:
        if array.shape[0] == 3:  # If channels first
            array = array.transpose(1, 2, 0)
        return Image.fromarray(array)
    elif len(array.shape) == 4:  # If batch dimension
        array = array[0]
        if array.shape[0] == 3:  # If channels first
            array = array.transpose(1, 2, 0)
        return Image.fromarray(array)
    else:
        raise ValueError(f"Unexpected array shape: {array.shape}")
4238

4239
4240
4241
# Image and mask URLs
image_url = 'https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png'
mask_url = 'https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png'
4242

4243
4244
4245
# Load the images
image = load_image_from_url(image_url)
mask_image = load_image_from_url(mask_url)
4246

4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
# Resize images to a size that's compatible with the model's latent space
image = image.resize((512, 512))
mask_image = mask_image.resize((512, 512))

# Prepare the mask (keep as PIL Image)
mask = prepare_mask(mask_image)

# Provide the prompt and points for drag editing
prompt = "A cute dog"
source_points = [[32, 32]]  # Adjusted for 512x512 image
target_points = [[64, 64]]  # Adjusted for 512x512 image

# Generate the output image
output_array = pipe(
    prompt=prompt,
    image=image,
    mask_image=mask,
    source_points=source_points,
    target_points=target_points
)

# Convert output array to PIL Image and save
output_image = array_to_pil(output_array)
4270
output_image.save("./output.png")
4271
4272
print("Output image saved as './output.png'")

4273
```
4274

4275
### Instaflow Pipeline
4276

4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
InstaFlow is an ultra-fast, one-step image generator that achieves image quality close to Stable Diffusion, significantly reducing the demand of computational resources. This efficiency is made possible through a recent [Rectified Flow](https://github.com/gnobitab/RectifiedFlow) technique, which trains probability flows with straight trajectories, hence inherently requiring only a single step for fast inference.

```python
from diffusers import DiffusionPipeline
import torch


pipe = DiffusionPipeline.from_pretrained("XCLIU/instaflow_0_9B_from_sd_1_5", torch_dtype=torch.float16, custom_pipeline="instaflow_one_step")
pipe.to("cuda")  ### if GPU is not available, comment this line
prompt = "A hyper-realistic photo of a cute cat."

images = pipe(prompt=prompt,
            num_inference_steps=1,
            guidance_scale=0.0).images
images[0].save("./image.png")
```
4293

4294
4295
![image1](https://huggingface.co/datasets/ayushtues/instaflow_images/resolve/main/instaflow_cat.png)

4296
You can also combine it with LORA out of the box, like <https://huggingface.co/artificialguybr/logo-redmond-1-5v-logo-lora-for-liberteredmond-sd-1-5>, to unlock cool use cases in single step!
4297
4298
4299
4300
4301

```python
from diffusers import DiffusionPipeline
import torch

4302
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
4303
4304

pipe = DiffusionPipeline.from_pretrained("XCLIU/instaflow_0_9B_from_sd_1_5", torch_dtype=torch.float16, custom_pipeline="instaflow_one_step")
4305
pipe.to(device)  ### if GPU is not available, comment this line
4306
4307
4308
4309
4310
4311
4312
pipe.load_lora_weights("artificialguybr/logo-redmond-1-5v-logo-lora-for-liberteredmond-sd-1-5")
prompt = "logo, A logo for a fitness app, dynamic running figure, energetic colors (red, orange) ),LogoRedAF ,"
images = pipe(prompt=prompt,
            num_inference_steps=1,
            guidance_scale=0.0).images
images[0].save("./image.png")
```
4313

4314
4315
![image0](https://huggingface.co/datasets/ayushtues/instaflow_images/resolve/main/instaflow_logo.png)

4316
4317
4318
### Null-Text Inversion pipeline

This pipeline provides null-text inversion for editing real images. It enables null-text optimization, and DDIM reconstruction via w, w/o null-text optimization. No prompt-to-prompt code is implemented as there is a Prompt2PromptPipeline.
4319
4320
4321

- Reference paper

4322
4323
4324
4325
4326
4327
    ```bibtex
    @article{hertz2022prompt,
    title={Prompt-to-prompt image editing with cross attention control},
    author={Hertz, Amir and Mokady, Ron and Tenenbaum, Jay and Aberman, Kfir and Pritch, Yael and Cohen-Or, Daniel},
    booktitle={arXiv preprint arXiv:2208.01626},
    year={2022}
4328
4329
4330
    ```}

```py
4331
from diffusers import DDIMScheduler
4332
4333
4334
4335
4336
4337
4338
4339
4340
from examples.community.pipeline_null_text_inversion import NullTextPipeline
import torch

device = "cuda"
# Provide invert_prompt and the image for null-text optimization.
invert_prompt = "A lying cat"
input_image = "siamese.jpg"
steps = 50

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4341
# Provide prompt used for generation. Same if reconstruction
4342
4343
4344
4345
prompt = "A lying cat"
# or different if editing.
prompt = "A lying dog"

4346
# Float32 is essential to a well optimization
4347
model_path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
4348
scheduler = DDIMScheduler(num_train_timesteps=1000, beta_start=0.00085, beta_end=0.0120, beta_schedule="scaled_linear")
4349
pipeline = NullTextPipeline.from_pretrained(model_path, scheduler=scheduler, torch_dtype=torch.float32).to(device)
4350

4351
4352
# Saves the inverted_latent to save time
inverted_latent, uncond = pipeline.invert(input_image, invert_prompt, num_inner_steps=10, early_stop_epsilon=1e-5, num_inference_steps=steps)
4353
pipeline(prompt, uncond, inverted_latent, guidance_scale=7.5, num_inference_steps=steps).images[0].save(input_image+".output.jpg")
4354
```
Aryan V S's avatar
Aryan V S committed
4355

pravdomil's avatar
pravdomil committed
4356
### Rerender A Video
4357

pravdomil's avatar
pravdomil committed
4358
This is the Diffusers implementation of zero-shot video-to-video translation pipeline [Rerender A Video](https://github.com/williamyang1991/Rerender_A_Video) (without Ebsynth postprocessing). To run the code, please install gmflow. Then modify the path in `gmflow_dir`. After that, you can run the pipeline with:
4359
4360

```py
pravdomil's avatar
pravdomil committed
4361
import sys
4362
gmflow_dir = "/path/to/gmflow"
pravdomil's avatar
pravdomil committed
4363
sys.path.insert(0, gmflow_dir)
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408

from diffusers import ControlNetModel, AutoencoderKL, DDIMScheduler
from diffusers.utils import export_to_video
import numpy as np
import torch

import cv2
from PIL import Image

def video_to_frame(video_path: str, interval: int):
    vidcap = cv2.VideoCapture(video_path)
    success = True

    count = 0
    res = []
    while success:
        count += 1
        success, image = vidcap.read()
        if count % interval != 1:
            continue
        if image is not None:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            res.append(image)

    vidcap.release()
    return res

input_video_path = 'path/to/video'
input_interval = 10
frames = video_to_frame(
    input_video_path, input_interval)

control_frames = []
# get canny image
for frame in frames:
    np_image = cv2.Canny(frame, 50, 100)
    np_image = np_image[:, :, None]
    np_image = np.concatenate([np_image, np_image, np_image], axis=2)
    canny_image = Image.fromarray(np_image)
    control_frames.append(canny_image)

# You can use any ControlNet here
controlnet = ControlNetModel.from_pretrained(
    "lllyasviel/sd-controlnet-canny").to('cuda')

4409
# You can use any finetuned SD here
4410
pipe = DiffusionPipeline.from_pretrained(
4411
    "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, custom_pipeline='rerender_a_video').to('cuda')
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434

# Optional: you can download vae-ft-mse-840000-ema-pruned.ckpt to enhance the results
# pipe.vae = AutoencoderKL.from_single_file(
#     "path/to/vae-ft-mse-840000-ema-pruned.ckpt").to('cuda')

pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)

generator = torch.manual_seed(0)
frames = [Image.fromarray(frame) for frame in frames]
output_frames = pipe(
    "a beautiful woman in CG style, best quality, extremely detailed",
    frames,
    control_frames,
    num_inference_steps=20,
    strength=0.75,
    controlnet_conditioning_scale=0.7,
    generator=generator,
    warp_start=0.0,
    warp_end=0.1,
    mask_start=0.5,
    mask_end=0.8,
    mask_strength=0.5,
    negative_prompt='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4435
).frames[0]
4436
4437
4438

export_to_video(
    output_frames, "/path/to/video.mp4", 5)
4439
4440
4441
4442
```

### StyleAligned Pipeline

Aryan V S's avatar
Aryan V S committed
4443
This pipeline is the implementation of [Style Aligned Image Generation via Shared Attention](https://arxiv.org/abs/2312.02133). You can find more results [here](https://github.com/huggingface/diffusers/pull/6489#issuecomment-1881209354).
4444
4445
4446
4447
4448
4449
4450

> Large-scale Text-to-Image (T2I) models have rapidly gained prominence across creative fields, generating visually compelling outputs from textual prompts. However, controlling these models to ensure consistent style remains challenging, with existing methods necessitating fine-tuning and manual intervention to disentangle content and style. In this paper, we introduce StyleAligned, a novel technique designed to establish style alignment among a series of generated images. By employing minimal `attention sharing' during the diffusion process, our method maintains style consistency across images within T2I models. This approach allows for the creation of style-consistent images using a reference style through a straightforward inversion operation. Our method's evaluation across diverse styles and text prompts demonstrates high-quality synthesis and fidelity, underscoring its efficacy in achieving consistent style across various inputs.

```python
from typing import List

import torch
4451
from diffusers import DiffusionPipeline
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
from PIL import Image

model_id = "a-r-r-o-w/dreamshaper-xl-turbo"
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", custom_pipeline="pipeline_sdxl_style_aligned")
pipe = pipe.to("cuda")

# Enable memory saving techniques
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()

prompt = [
  "a toy train. macro photo. 3d game asset",
  "a toy airplane. macro photo. 3d game asset",
  "a toy bicycle. macro photo. 3d game asset",
  "a toy car. macro photo. 3d game asset",
]
negative_prompt = "low quality, worst quality, "

# Enable StyleAligned
pipe.enable_style_aligned(
    share_group_norm=False,
    share_layer_norm=False,
    share_attention=True,
    adain_queries=True,
    adain_keys=True,
    adain_values=False,
    full_attention_share=False,
    shared_score_scale=1.0,
    shared_score_shift=0.0,
    only_self_level=0.0,
)

# Run inference
images = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    guidance_scale=2,
    height=1024,
    width=1024,
    num_inference_steps=10,
    generator=torch.Generator().manual_seed(42),
).images

# Disable StyleAligned if you do not wish to use it anymore
pipe.disable_style_aligned()
4497
4498
```

4499
4500
4501
4502
### AnimateDiff Image-To-Video Pipeline

This pipeline adds experimental support for the image-to-video task using AnimateDiff. Refer to [this](https://github.com/huggingface/diffusers/pull/6328) PR for more examples and results.

4503
4504
This pipeline relies on a "hack" discovered by the community that allows the generation of videos given an input image with AnimateDiff. It works by creating a copy of the image `num_frames` times and progressively adding more noise to the image based on the strength and latent interpolation method.

4505
4506
4507
4508
4509
```py
import torch
from diffusers import MotionAdapter, DiffusionPipeline, DDIMScheduler
from diffusers.utils import export_to_gif, load_image

4510
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
4511
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
4512
4513
pipe = DiffusionPipeline.from_pretrained(model_id, motion_adapter=adapter, custom_pipeline="pipeline_animatediff_img2video").to("cuda")
pipe.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", beta_schedule="linear", steps_offset=1)
4514
4515
4516
4517
4518
4519

image = load_image("snail.png")
output = pipe(
  image=image,
  prompt="A snail moving on the ground",
  strength=0.8,
4520
  latent_interpolation_method="slerp",  # can be lerp, slerp, or your own callback
4521
4522
4523
4524
4525
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
```

4526
### IP Adapter Face ID
4527

4528
4529
IP Adapter FaceID is an experimental IP Adapter model that uses image embeddings generated by `insightface`, so no image encoder needs to be loaded.
You need to install `insightface` and all its requirements to use this model.
4530
You must pass the image embedding tensor as `image_embeds` to the `DiffusionPipeline` instead of `ip_adapter_image`.
Aryan V S's avatar
Aryan V S committed
4531
You can find more results [here](https://github.com/huggingface/diffusers/pull/6276).
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562

```py
import torch
from diffusers.utils import load_image
import cv2
import numpy as np
from diffusers import DiffusionPipeline, AutoencoderKL, DDIMScheduler
from insightface.app import FaceAnalysis


noise_scheduler = DDIMScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
    steps_offset=1,
)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained(
    "SG161222/Realistic_Vision_V4.0_noVAE",
    torch_dtype=torch.float16,
    scheduler=noise_scheduler,
    vae=vae,
    custom_pipeline="ip_adapter_face_id"
)
pipeline.load_ip_adapter_face_id("h94/IP-Adapter-FaceID", "ip-adapter-faceid_sd15.bin")
pipeline.to("cuda")

generator = torch.Generator(device="cpu").manual_seed(42)
4563
num_images = 2
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574

image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ai_face2.png")

app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_BGR2RGB)
faces = app.get(image)
image = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
images = pipeline(
    prompt="A photo of a girl wearing a black dress, holding red roses in hand, upper body, behind is the Eiffel Tower",
    image_embeds=image,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4575
4576
    negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
    num_inference_steps=20, num_images_per_prompt=num_images, width=512, height=704,
4577
4578
4579
4580
4581
4582
    generator=generator
).images

for i in range(num_images):
    images[i].save(f"c{i}.png")
```
Haofan Wang's avatar
Haofan Wang committed
4583
4584
4585

### InstantID Pipeline

4586
InstantID is a new state-of-the-art tuning-free method to achieve ID-Preserving generation with only single image, supporting various downstream tasks. For any usage question, please refer to the [official implementation](https://github.com/InstantID/InstantID).
Haofan Wang's avatar
Haofan Wang committed
4587
4588

```py
4589
# !pip install diffusers opencv-python transformers accelerate insightface
Haofan Wang's avatar
Haofan Wang committed
4590
4591
import diffusers
from diffusers.utils import load_image
4592
from diffusers import ControlNetModel
Haofan Wang's avatar
Haofan Wang committed
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609

import cv2
import torch
import numpy as np
from PIL import Image

from insightface.app import FaceAnalysis
from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps

# prepare 'antelopev2' under ./models
# https://github.com/deepinsight/insightface/issues/1896#issuecomment-1023867304
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

# prepare models under ./checkpoints
# https://huggingface.co/InstantX/InstantID
from huggingface_hub import hf_hub_download
4610

Haofan Wang's avatar
Haofan Wang committed
4611
4612
4613
4614
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/diffusion_pytorch_model.safetensors", local_dir="./checkpoints")
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")

4615
4616
face_adapter = './checkpoints/ip-adapter.bin'
controlnet_path = './checkpoints/ControlNetModel'
Haofan Wang's avatar
Haofan Wang committed
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626

# load IdentityNet
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)

base_model = 'wangqixun/YamerMIX_v8'
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
    base_model,
    controlnet=controlnet,
    torch_dtype=torch.float16
)
4627
pipe.to("cuda")
Haofan Wang's avatar
Haofan Wang committed
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653

# load adapter
pipe.load_ip_adapter_instantid(face_adapter)

# load an image
face_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ai_face2.png")

# prepare face emb
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1]  # only use the maximum face
face_emb = face_info['embedding']
face_kps = draw_kps(face_image, face_info['kps'])

# prompt
prompt = "film noir style, ink sketch|vector, male man, highly detailed, sharp focus, ultra sharpness, monochrome, high contrast, dramatic shadows, 1940s style, mysterious, cinematic"
negative_prompt = "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, vibrant, colorful"

# generate image
pipe.set_ip_adapter_scale(0.8)
image = pipe(
    prompt,
    image_embeds=face_emb,
    image=face_kps,
    controlnet_conditioning_scale=0.8,
).images[0]
```
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682

### UFOGen Scheduler

[UFOGen](https://arxiv.org/abs/2311.09257) is a generative model designed for fast one-step text-to-image generation, trained via adversarial training starting from an initial pretrained diffusion model such as Stable Diffusion. `scheduling_ufogen.py` implements a onestep and multistep sampling algorithm for UFOGen models compatible with pipelines like `StableDiffusionPipeline`. A usage example is as follows:

```py
import torch
from diffusers import StableDiffusionPipeline

from scheduling_ufogen import UFOGenScheduler

# NOTE: currently, I am not aware of any publicly available UFOGen model checkpoints trained from SD v1.5.
ufogen_model_id_or_path = "/path/to/ufogen/model"
pipe = StableDiffusionPipeline(
    ufogen_model_id_or_path,
    torch_dtype=torch.float16,
)

# You can initialize a UFOGenScheduler as follows:
pipe.scheduler = UFOGenScheduler.from_config(pipe.scheduler.config)

prompt = "Three cats having dinner at a table at new years eve, cinematic shot, 8k."

# Onestep sampling
onestep_image = pipe(prompt, num_inference_steps=1).images[0]

# Multistep sampling
multistep_image = pipe(prompt, num_inference_steps=4).images[0]
```
4683

4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
### FRESCO

This is the Diffusers implementation of zero-shot video-to-video translation pipeline [FRESCO](https://github.com/williamyang1991/FRESCO) (without Ebsynth postprocessing and background smooth). To run the code, please install gmflow. Then modify the path in `gmflow_dir`. After that, you can run the pipeline with:

```py
from PIL import Image
import cv2
import torch
import numpy as np

4694
from diffusers import ControlNetModel, DDIMScheduler, DiffusionPipeline
4695
import sys
4696

4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
gmflow_dir = "/path/to/gmflow"
sys.path.insert(0, gmflow_dir)

def video_to_frame(video_path: str, interval: int):
    vidcap = cv2.VideoCapture(video_path)
    success = True

    count = 0
    res = []
    while success:
        count += 1
        success, image = vidcap.read()
        if count % interval != 1:
            continue
        if image is not None:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            res.append(image)
            if len(res) >= 8:
                break

    vidcap.release()
    return res


input_video_path = 'https://github.com/williamyang1991/FRESCO/raw/main/data/car-turn.mp4'
output_video_path = 'car.gif'

4724
# You can use any finetuned SD here
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
model_path = 'SG161222/Realistic_Vision_V2.0'

prompt = 'a red car turns in the winter'
a_prompt = ', RAW photo, subject, (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3, '
n_prompt = '(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation'

input_interval = 5
frames = video_to_frame(
    input_video_path, input_interval)

control_frames = []
# get canny image
for frame in frames:
    image = cv2.Canny(frame, 50, 100)
    np_image = np.array(image)
    np_image = np_image[:, :, None]
    np_image = np.concatenate([np_image, np_image, np_image], axis=2)
    canny_image = Image.fromarray(np_image)
    control_frames.append(canny_image)

# You can use any ControlNet here
controlnet = ControlNetModel.from_pretrained(
    "lllyasviel/sd-controlnet-canny").to('cuda')

pipe = DiffusionPipeline.from_pretrained(
    model_path, controlnet=controlnet, custom_pipeline='fresco_v2v').to('cuda')
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)

generator = torch.manual_seed(0)
frames = [Image.fromarray(frame) for frame in frames]

output_frames = pipe(
    prompt + a_prompt,
    frames,
    control_frames,
    num_inference_steps=20,
    strength=0.75,
    controlnet_conditioning_scale=0.7,
    generator=generator,
    negative_prompt=n_prompt
).images

output_frames[0].save(output_video_path, save_all=True,
                 append_images=output_frames[1:], duration=100, loop=0)
```

4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
### AnimateDiff on IPEX

This diffusion pipeline aims to accelerate the inference of AnimateDiff on Intel Xeon CPUs with BF16/FP32 precision using [IPEX](https://github.com/intel/intel-extension-for-pytorch).

To use this pipeline, you need to:
1. Install [IPEX](https://github.com/intel/intel-extension-for-pytorch)

**Note:** For each PyTorch release, there is a corresponding release of IPEX. Here is the mapping relationship. It is recommended to install Pytorch/IPEX2.3 to get the best performance.

|PyTorch Version|IPEX Version|
|--|--|
|[v2.3.\*](https://github.com/pytorch/pytorch/tree/v2.3.0 "v2.3.0")|[v2.3.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0+cpu)|
|[v1.13.\*](https://github.com/pytorch/pytorch/tree/v1.13.0 "v1.13.0")|[v1.13.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v1.13.100+cpu)|

You can simply use pip to install IPEX with the latest version.
```python
python -m pip install intel_extension_for_pytorch
```
**Note:** To install a specific version, run with the following command:
```
python -m pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
```
2. After pipeline initialization, `prepare_for_ipex()` should be called to enable IPEX accelaration. Supported inference datatypes are Float32 and BFloat16.

```python
pipe = AnimateDiffPipelineIpex.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
# For Float32
pipe.prepare_for_ipex(torch.float32, prompt="A girl smiling")
# For BFloat16
pipe.prepare_for_ipex(torch.bfloat16, prompt="A girl smiling")
```

Then you can use the ipex pipeline in a similar way to the default animatediff pipeline.
```python
# For Float32
output = pipe(prompt="A girl smiling", guidance_scale=1.0, num_inference_steps=step)
# For BFloat16
with torch.cpu.amp.autocast(enabled = True, dtype = torch.bfloat16):
    output = pipe(prompt="A girl smiling", guidance_scale=1.0, num_inference_steps=step)
```

The following code compares the performance of the original animatediff pipeline with the ipex-optimized pipeline.
By using this optimized pipeline, we can get about 1.5-2.2 times performance boost with BFloat16 on the fifth generation of Intel Xeon CPUs, code-named Emerald Rapids.

```python
import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, EulerDiscreteScheduler
from safetensors.torch import load_file
from pipeline_animatediff_ipex import AnimateDiffPipelineIpex
import time

device = "cpu"
dtype = torch.float32

prompt = "A girl smiling"
step = 8  # Options: [1,2,4,8]
repo = "ByteDance/AnimateDiff-Lightning"
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
base = "emilianJR/epiCRealism"  # Choose to your favorite base model.

adapter = MotionAdapter().to(device, dtype)
adapter.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device))

# Helper function for time evaluation
def elapsed_time(pipeline, nb_pass=3, num_inference_steps=1):
    # warmup
    for _ in range(2):
        output = pipeline(prompt = prompt, guidance_scale=1.0, num_inference_steps = num_inference_steps)
    #time evaluation
    start = time.time()
    for _ in range(nb_pass):
        pipeline(prompt = prompt, guidance_scale=1.0, num_inference_steps = num_inference_steps)
    end = time.time()
    return (end - start) / nb_pass

##############     bf16 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe = AnimateDiffPipelineIpex.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
pipe.prepare_for_ipex(torch.bfloat16, prompt = prompt)

# 2. Original Pipeline initialization
pipe2 = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe2.scheduler = EulerDiscreteScheduler.from_config(pipe2.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")

# 3. Compare performance between Original Pipeline and IPEX Pipeline
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
    latency = elapsed_time(pipe, num_inference_steps=step)
    print("Latency of AnimateDiffPipelineIpex--bf16", latency, "s for total", step, "steps")
    latency = elapsed_time(pipe2, num_inference_steps=step)
    print("Latency of AnimateDiffPipeline--bf16", latency, "s for total", step, "steps")

##############     fp32 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe3 = AnimateDiffPipelineIpex.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe3.scheduler = EulerDiscreteScheduler.from_config(pipe3.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
pipe3.prepare_for_ipex(torch.float32, prompt = prompt)

# 2. Original Pipeline initialization
pipe4 = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe4.scheduler = EulerDiscreteScheduler.from_config(pipe4.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")

# 3. Compare performance between Original Pipeline and IPEX Pipeline
latency = elapsed_time(pipe3, num_inference_steps=step)
print("Latency of AnimateDiffPipelineIpex--fp32", latency, "s for total", step, "steps")
latency = elapsed_time(pipe4, num_inference_steps=step)
print("Latency of AnimateDiffPipeline--fp32",latency, "s for total", step, "steps")
```
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
### HunyuanDiT with Differential Diffusion

#### Usage

```python
import torch
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import load_image
from PIL import Image
from torchvision import transforms

from pipeline_hunyuandit_differential_img2img import (
    HunyuanDiTDifferentialImg2ImgPipeline,
)


pipe = HunyuanDiTDifferentialImg2ImgPipeline.from_pretrained(
    "Tencent-Hunyuan/HunyuanDiT-Diffusers", torch_dtype=torch.float16
).to("cuda")


source_image = load_image(
    "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png"
)
map = load_image(
    "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask_2.png"
)
prompt = "a green pear"
negative_prompt = "blurry"

image = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    image=source_image,
    num_inference_steps=28,
    guidance_scale=4.5,
    strength=1.0,
    map=map,
).images[0]
```

| ![Gradient](https://github.com/user-attachments/assets/e38ce4d5-1ae6-4df0-ab43-adc1b45716b5) | ![Input](https://github.com/user-attachments/assets/9c95679c-e9d7-4f5a-90d6-560203acd6b3) | ![Output](https://github.com/user-attachments/assets/5313ff64-a0c4-418b-8b55-a38f1a5e7532) |
4923
4924
| -------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------ |
| Gradient                                                                                     | Input                                                                                     | Output                                                                                     |
4925
4926

A colab notebook demonstrating all results can be found [here](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing). Depth Maps have also been added in the same colab.
4927

4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
### 🪆Matryoshka Diffusion Models

![🪆Matryoshka Diffusion Models](https://github.com/user-attachments/assets/bf90b53b-48c3-4769-a805-d9dfe4a7c572)

The Abstract of the paper:
>Diffusion models are the _de-facto_ approach for generating high-quality images and videos but learning high-dimensional models remains a formidable task due to computational and optimization challenges. Existing methods often resort to training cascaded models in pixel space, or using a downsampled latent space of a separately trained auto-encoder. In this paper, we introduce Matryoshka Diffusion (MDM), **a novel framework for high-resolution image and video synthesis**. We propose a diffusion process that denoises inputs at multiple resolutions jointly and uses a **NestedUNet** architecture where features and parameters for small scale inputs are nested within those of the large scales. In addition, MDM enables a progressive training schedule from lower to higher resolutions which leads to significant improvements in optimization for high-resolution generation. We demonstrate the effectiveness of our approach on various benchmarks, including class-conditioned image generation, high-resolution text-to-image, and text-to-video applications. Remarkably, we can train a **_single pixel-space model_ at resolutions of up to 1024 × 1024 pixels**, demonstrating strong zero shot generalization using the **CC12M dataset, which contains only 12 million images**. Code and pre-trained checkpoints are released at https://github.com/apple/ml-mdm.

- `64×64, nesting_level=0`: 1.719 GiB. With `50` DDIM inference steps:

**64x64**
:-------------------------:
4939
| <img src="https://github.com/user-attachments/assets/032738eb-c6cd-4fd9-b4d7-a7317b4b6528" width="222" height="222" alt="bird_64_64"> |
4940
4941
4942
4943
4944

- `256×256, nesting_level=1`: 1.776 GiB. With `150` DDIM inference steps:

**64x64**             |  **256x256**
:-------------------------:|:-------------------------:
4945
| <img src="https://github.com/user-attachments/assets/21b9ad8b-eea6-4603-80a2-31180f391589" width="222" height="222" alt="bird_256_64"> | <img src="https://github.com/user-attachments/assets/fc411682-8a36-422c-9488-395b77d4406e" width="222" height="222" alt="bird_256_256"> |
4946

4947
- `1024×1024, nesting_level=2`: 1.792 GiB. As one can realize the cost of adding another layer is really negligible in this context! With `250` DDIM inference steps:
4948
4949
4950

**64x64**             |  **256x256**  |  **1024x1024**
:-------------------------:|:-------------------------:|:-------------------------:
4951
| <img src="https://github.com/user-attachments/assets/febf4b98-3dee-4a8e-9946-fd42e1f232e6" width="222" height="222" alt="bird_1024_64"> | <img src="https://github.com/user-attachments/assets/c5f85b40-5d6d-4267-a92a-c89dff015b9b" width="222" height="222" alt="bird_1024_256"> | <img src="https://github.com/user-attachments/assets/ad66b913-4367-4cb9-889e-bc06f4d96148" width="222" height="222" alt="bird_1024_1024"> |
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964

```py
from diffusers import DiffusionPipeline
from diffusers.utils import make_image_grid

# nesting_level=0 -> 64x64; nesting_level=1 -> 256x256 - 64x64; nesting_level=2 -> 1024x1024 - 256x256 - 64x64
pipe = DiffusionPipeline.from_pretrained("tolgacangoz/matryoshka-diffusion-models",
                                         nesting_level=0,
                                         trust_remote_code=False,  # One needs to give permission for this code to run
                                         ).to("cuda")

prompt0 = "a blue jay stops on the top of a helmet of Japanese samurai, background with sakura tree"
prompt = f"breathtaking {prompt0}. award-winning, professional, highly detailed"
4965
image = pipe(prompt, num_inference_steps=50).images
4966
4967
4968
4969
4970
4971
make_image_grid(image, rows=1, cols=len(image))

# pipe.change_nesting_level(<int>)  # 0, 1, or 2
# 50+, 100+, and 250+ num_inference_steps are recommended for nesting levels 0, 1, and 2 respectively.
```

4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
### Stable Diffusion XL Attentive Eraser Pipeline
<img src="https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/fenmian.png"  width="600" />

**Stable Diffusion XL Attentive Eraser Pipeline** is an advanced object removal pipeline that leverages SDXL for precise content suppression and seamless region completion. This pipeline uses **self-attention redirection guidance** to modify the model’s self-attention mechanism, allowing for effective removal and inpainting across various levels of mask precision, including semantic segmentation masks, bounding boxes, and hand-drawn masks. If you are interested in more detailed information and have any questions, please refer to the [paper](https://arxiv.org/abs/2412.12974) and [official implementation](https://github.com/Anonym0u3/AttentiveEraser).

#### Key features

- **Tuning-Free**: No additional training is required, making it easy to integrate and use.
- **Flexible Mask Support**: Works with different types of masks for targeted object removal.
- **High-Quality Results**: Utilizes the inherent generative power of diffusion models for realistic content completion.

#### Usage example
To use the Stable Diffusion XL Attentive Eraser Pipeline, you can initialize it as follows:
```py
import torch
from diffusers import DDIMScheduler, DiffusionPipeline
from diffusers.utils import load_image
import torch.nn.functional as F
from torchvision.transforms.functional import to_tensor, gaussian_blur

dtype = torch.float16
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") 

scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
pipeline = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    custom_pipeline="pipeline_stable_diffusion_xl_attentive_eraser",
    scheduler=scheduler,
    variant="fp16",
    use_safetensors=True,
    torch_dtype=dtype,
).to(device)


def preprocess_image(image_path, device):
    image = to_tensor((load_image(image_path)))
    image = image.unsqueeze_(0).float() * 2 - 1 # [0,1] --> [-1,1]
    if image.shape[1] != 3:
        image = image.expand(-1, 3, -1, -1)
        image = F.interpolate(image, (1024, 1024))
        image = image.to(dtype).to(device)
        return image

def preprocess_mask(mask_path, device):
    mask = to_tensor((load_image(mask_path, convert_method=lambda img: img.convert('L'))))
    mask = mask.unsqueeze_(0).float()  # 0 or 1
    mask = F.interpolate(mask, (1024, 1024))
    mask = gaussian_blur(mask, kernel_size=(77, 77))
    mask[mask < 0.1] = 0
    mask[mask >= 0.1] = 1
    mask = mask.to(dtype).to(device)
    return mask

prompt = "" # Set prompt to null
seed=123 
generator = torch.Generator(device=device).manual_seed(seed)
source_image_path = "https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/an1024.png"
mask_path = "https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/an1024_mask.png"
source_image = preprocess_image(source_image_path, device)
mask = preprocess_mask(mask_path, device)

image = pipeline(
    prompt=prompt, 
    image=source_image,
    mask_image=mask,
    height=1024,
    width=1024,
    AAS=True, # enable AAS
    strength=0.8, # inpainting strength
    rm_guidance_scale=9, # removal guidance scale
    ss_steps = 9, # similarity suppression steps
    ss_scale = 0.3, # similarity suppression scale
    AAS_start_step=0, # AAS start step
    AAS_start_layer=34, # AAS start layer
    AAS_end_layer=70, # AAS end layer
    num_inference_steps=50, # number of inference steps # AAS_end_step = int(strength*num_inference_steps)
    generator=generator,
    guidance_scale=1,
).images[0]
image.save('./removed_img.png')
print("Object removal completed")
```

| Source Image                                                                                   | Mask                                                                                        | Output                                                                                              |
| ---------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------- |
| ![Source Image](https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/an1024.png) | ![Mask](https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/an1024_mask.png) | ![Output](https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/AE_step40_layer34.png) |

5059
5060
5061
5062
# Perturbed-Attention Guidance

[Project](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) / [arXiv](https://arxiv.org/abs/2403.17377) / [GitHub](https://github.com/KU-CVLAB/Perturbed-Attention-Guidance)

5063
This implementation is based on [Diffusers](https://huggingface.co/docs/diffusers/index). `StableDiffusionPAGPipeline` is a modification of `StableDiffusionPipeline` to support Perturbed-Attention Guidance (PAG).
5064
5065
5066

## Example Usage

5067
```py
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
import os
import torch

from accelerate.utils import set_seed

from diffusers import StableDiffusionPipeline
from diffusers.utils import load_image, make_image_grid
from diffusers.utils.torch_utils import randn_tensor

pipe = StableDiffusionPipeline.from_pretrained(
5078
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
5079
5080
5081
5082
    custom_pipeline="hyoungwoncho/sd_perturbed_attention_guidance",
    torch_dtype=torch.float16
)

5083
device = "cuda"
5084
5085
5086
5087
5088
5089
pipe = pipe.to(device)

pag_scale = 5.0
pag_applied_layers_index = ['m0']

batch_size = 4
5090
seed = 10
5091
5092
5093
5094
5095
5096
5097
5098
5099

base_dir = "./results/"
grid_dir = base_dir + "/pag" + str(pag_scale) + "/"

if not os.path.exists(grid_dir):
    os.makedirs(grid_dir)

set_seed(seed)

5100
latent_input = randn_tensor(shape=(batch_size,4,64,64), generator=None, device=device, dtype=torch.float16)
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131

output_baseline = pipe(
    "",
    width=512,
    height=512,
    num_inference_steps=50,
    guidance_scale=0.0,
    pag_scale=0.0,
    pag_applied_layers_index=pag_applied_layers_index,
    num_images_per_prompt=batch_size,
    latents=latent_input
).images

output_pag = pipe(
    "",
    width=512,
    height=512,
    num_inference_steps=50,
    guidance_scale=0.0,
    pag_scale=5.0,
    pag_applied_layers_index=pag_applied_layers_index,
    num_images_per_prompt=batch_size,
    latents=latent_input
).images

grid_image = make_image_grid(output_baseline + output_pag, rows=2, cols=batch_size)
grid_image.save(grid_dir + "sample.png")
```

## PAG Parameters

5132
`pag_scale` : guidance scale of PAG (ex: 5.0)
5133

5134
`pag_applied_layers_index` : index of the layer to apply perturbation (ex: ['m0'])
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224

# PIXART-α Controlnet pipeline

[Project](https://pixart-alpha.github.io/) / [GitHub](https://github.com/PixArt-alpha/PixArt-alpha/blob/master/asset/docs/pixart_controlnet.md)

This the implementation of the controlnet model and the pipelne for the Pixart-alpha model, adapted to use the HuggingFace Diffusers.

## Example Usage

This example uses the Pixart HED Controlnet model, converted from the control net model as trained by the authors of the paper.

```py
import sys
import os
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as TF

from pipeline_pixart_alpha_controlnet import PixArtAlphaControlnetPipeline
from diffusers.utils import load_image

from diffusers.image_processor import PixArtImageProcessor

from controlnet_aux import HEDdetector

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from pixart.controlnet_pixart_alpha import PixArtControlNetAdapterModel

controlnet_repo_id = "raulc0399/pixart-alpha-hed-controlnet"

weight_dtype = torch.float16
image_size = 1024

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

torch.manual_seed(0)

# load controlnet
controlnet = PixArtControlNetAdapterModel.from_pretrained(
    controlnet_repo_id,
    torch_dtype=weight_dtype,
    use_safetensors=True,
).to(device)

pipe = PixArtAlphaControlnetPipeline.from_pretrained(
    "PixArt-alpha/PixArt-XL-2-1024-MS",
    controlnet=controlnet,
    torch_dtype=weight_dtype,
    use_safetensors=True,
).to(device)

images_path = "images"
control_image_file = "0_7.jpg"

prompt = "battleship in space, galaxy in background"

control_image_name = control_image_file.split('.')[0]

control_image = load_image(f"{images_path}/{control_image_file}")
print(control_image.size)
height, width = control_image.size

hed = HEDdetector.from_pretrained("lllyasviel/Annotators")

condition_transform = T.Compose([
    T.Lambda(lambda img: img.convert('RGB')),
    T.CenterCrop([image_size, image_size]),
])

control_image = condition_transform(control_image)
hed_edge = hed(control_image, detect_resolution=image_size, image_resolution=image_size)

hed_edge.save(f"{images_path}/{control_image_name}_hed.jpg")

# run pipeline
with torch.no_grad():
    out = pipe(
        prompt=prompt,
        image=hed_edge,
        num_inference_steps=14,
        guidance_scale=4.5,
        height=image_size,
        width=image_size,
    )

    out.images[0].save(f"{images_path}//{control_image_name}_output.jpg")
    
```

In the folder examples/pixart there is also a script that can be used to train new models.
5225
Please check the script `train_controlnet_hf_diffusers.sh` on how to start the training.
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261

# CogVideoX DDIM Inversion Pipeline

This implementation performs DDIM inversion on the video based on CogVideoX and uses guided attention to reconstruct or edit the inversion latents.

## Example Usage

```python
import torch

from examples.community.cogvideox_ddim_inversion import CogVideoXPipelineForDDIMInversion


# Load pretrained pipeline
pipeline = CogVideoXPipelineForDDIMInversion.from_pretrained(
    "THUDM/CogVideoX1.5-5B",
    torch_dtype=torch.bfloat16,
).to("cuda")

# Run DDIM inversion, and the videos will be generated in the output_path
output = pipeline_for_inversion(
    prompt="prompt that describes the edited video",
    video_path="path/to/input.mp4",
    guidance_scale=6.0,
    num_inference_steps=50,
    skip_frames_start=0,
    skip_frames_end=0,
    frame_sample_step=None,
    max_num_frames=81,
    width=720,
    height=480,
    seed=42,
)
pipeline.export_latents_to_video(output.inverse_latents[-1], "path/to/inverse_video.mp4", fps=8)
pipeline.export_latents_to_video(output.recon_latents[-1], "path/to/recon_video.mp4", fps=8)
```