README.md 243 KB
Newer Older
1
# Community Pipeline Examples
2

Patrick von Platen's avatar
Patrick von Platen committed
3
4
> **For more information about community pipelines, please have a look at [this issue](https://github.com/huggingface/diffusers/issues/841).**

5
6
7
8
9
**Community pipeline** examples consist pipelines that have been added by the community.
Please have a look at the following tables to get an overview of all community examples. Click on the **Code Example** to get a copy-and-paste ready code example that you can try out.
If a community pipeline doesn't work as expected, please open an issue and ping the author on it.

Please also check out our [Community Scripts](https://github.com/huggingface/diffusers/blob/main/examples/community/README_community_scripts.md) examples for tips and tricks that you can use with diffusers without having to run a community pipeline.
10

11
12
| Example                                                                                                                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Code Example                                                                              | Colab                                                                                                                                                                                                              |                                                        Author |
|:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:|
13
|Adaptive Mask Inpainting|Adaptive Mask Inpainting algorithm from [Beyond the Contact: Discovering Comprehensive Affordance for 3D Objects from Pre-trained 2D Diffusion Models](https://github.com/snuvclab/coma) (ECCV '24, Oral) provides a way to insert human inside the scene image without altering the background, by inpainting with adapting mask.|[Adaptive Mask Inpainting](#adaptive-mask-inpainting)|-|[Hyeonwoo Kim](https://sshowbiz.xyz),[Sookwan Han](https://jellyheadandrew.github.io)|
14
|Flux with CFG|[Flux with CFG](https://github.com/ToTheBeginning/PuLID/blob/main/docs/pulid_for_flux.md) provides an implementation of using CFG in [Flux](https://blackforestlabs.ai/announcing-black-forest-labs/).|[Flux with CFG](#flux-with-cfg)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/flux_with_cfg.ipynb)|[Linoy Tsaban](https://github.com/linoytsaban), [Apolinário](https://github.com/apolinario), and [Sayak Paul](https://github.com/sayakpaul)|
15
|Differential Diffusion|[Differential Diffusion](https://github.com/exx8/differential-diffusion) modifies an image according to a text prompt, and according to a map that specifies the amount of change in each region.|[Differential Diffusion](#differential-diffusion)|[![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/exx8/differential-diffusion) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/exx8/differential-diffusion/blob/main/examples/SD2.ipynb)|[Eran Levin](https://github.com/exx8) and [Ohad Fried](https://www.ohadf.com/)|
haikmanukyan's avatar
haikmanukyan committed
16
| HD-Painter                                                                                                                            | [HD-Painter](https://github.com/Picsart-AI-Research/HD-Painter) enables prompt-faithfull and high resolution (up to 2k) image inpainting upon any diffusion-based image inpainting method.                                                                                                                                                                                                                                                                                                               | [HD-Painter](#hd-painter)                                                                 | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/PAIR/HD-Painter)                                                                              | [Manukyan Hayk](https://github.com/haikmanukyan) and [Sargsyan Andranik](https://github.com/AndranikSargsyan) |
17
| Marigold Monocular Depth Estimation                                                                                                   | A universal monocular depth estimator, utilizing Stable Diffusion, delivering sharp predictions in the wild. (See the [project page](https://marigoldmonodepth.github.io) and [full codebase](https://github.com/prs-eth/marigold) for more details.)                                                                                                                                                                                                                                                        | [Marigold Depth Estimation](#marigold-depth-estimation)                                   | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/toshas/marigold) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/12G8reD13DdpMie5ZQlaFNo2WCGeNUH-u?usp=sharing) | [Bingxin Ke](https://github.com/markkua) and [Anton Obukhov](https://github.com/toshas) |
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
18
19
| LLM-grounded Diffusion (LMD+)                                                                                                         | LMD greatly improves the prompt following ability of text-to-image generation models by introducing an LLM as a front-end prompt parser and layout planner. [Project page.](https://llm-grounded-diffusion.github.io/) [See our full codebase (also with diffusers).](https://github.com/TonyLianLong/LLM-groundedDiffusion)                                                                                                                                                                                                                                                                                                                                                                                                                                   | [LLM-grounded Diffusion (LMD+)](#llm-grounded-diffusion)                             | [Huggingface Demo](https://huggingface.co/spaces/longlian/llm-grounded-diffusion) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1SXzMSeAB-LJYISb2yrUOdypLz4OYWUKj) |                [Long (Tony) Lian](https://tonylian.com/) |
| CLIP Guided Stable Diffusion                                                                                                          | Doing CLIP guidance for text to image generation with Stable Diffusion                                                                                                                                                                                                                                                                                                                                                                                                                                   | [CLIP Guided Stable Diffusion](#clip-guided-stable-diffusion)                             | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/CLIP_Guided_Stable_diffusion_with_diffusers.ipynb) |                [Suraj Patil](https://github.com/patil-suraj/) |
20
| One Step U-Net (Dummy)                                                                                                                | Example showcasing of how to use Community Pipelines (see <https://github.com/huggingface/diffusers/issues/841>)                                                                                                                                                                                                                                                                                                                                                                                           | [One Step U-Net](#one-step-unet)                                                          | -                                                                                                                                                                                                                  |    [Patrick von Platen](https://github.com/patrickvonplaten/) |
21
| Stable Diffusion Interpolation                                                                                                        | Interpolate the latent space of Stable Diffusion between different prompts/seeds                                                                                                                                                                                                                                                                                                                                                                                                                         | [Stable Diffusion Interpolation](#stable-diffusion-interpolation)                         | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_interpolation.ipynb)                                                                                                                                                           |                       [Nate Raw](https://github.com/nateraw/) |
22
| Stable Diffusion Mega                                                                                                                 | **One** Stable Diffusion Pipeline with all functionalities of [Text2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py), [Image2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py) and [Inpainting](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py) | [Stable Diffusion Mega](#stable-diffusion-mega)                                           | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_mega.ipynb)                                                                                                                                                                             |    [Patrick von Platen](https://github.com/patrickvonplaten/) |
23
| Long Prompt Weighting Stable Diffusion                                                                                                | **One** Stable Diffusion Pipeline without tokens length limit, and support parsing weighting in prompt.                                                                                                                                                                                                                                                                                                                                                                                                  | [Long Prompt Weighting Stable Diffusion](#long-prompt-weighting-stable-diffusion)         | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/long_prompt_weighting_stable_diffusion.ipynb)                                                                                        |                           [SkyTNT](https://github.com/SkyTNT) |
24
| Speech to Image                                                                                                                       | Using automatic-speech-recognition to transcribe text and Stable Diffusion to generate images                                                                                                                                                                                                                                                                                                                                                                                                            | [Speech to Image](#speech-to-image)                                                       |[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/speech_to_image.ipynb)                                                                                                                                                                                                   |             [Mikail Duzenli](https://github.com/MikailINTech)
25
| Wild Card Stable Diffusion                                                                                                            | Stable Diffusion Pipeline that supports prompts that contain wildcard terms (indicated by surrounding double underscores), with values instantiated randomly from a corresponding txt file or a dictionary of possible values                                                                                                                                                                                                                                                                            | [Wildcard Stable Diffusion](#wildcard-stable-diffusion)                                   | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/wildcard_stable_diffusion.ipynb)                                                                                                                                                                                 |              [Shyam Sudhakaran](https://github.com/shyamsn97) |
26
27
28
| [Composable Stable Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) | Stable Diffusion Pipeline that supports prompts that contain "&#124;" in prompts (as an AND condition) and weights (separated by "&#124;" as well) to positively / negatively weight prompts.                                                                                                                                                                                                                                                                                                            | [Composable Stable Diffusion](#composable-stable-diffusion)                               | -                                                                                                                                                                                                                  |                      [Mark Rich](https://github.com/MarkRich) |
| Seed Resizing Stable Diffusion                                                                                                        | Stable Diffusion Pipeline that supports resizing an image and retaining the concepts of the 512 by 512 generation.                                                                                                                                                                                                                                                                                                                                                                                       | [Seed Resizing](#seed-resizing)                                                           | -                                                                                                                                                                                                                  |                      [Mark Rich](https://github.com/MarkRich) |
| Imagic Stable Diffusion                                                                                                               | Stable Diffusion Pipeline that enables writing a text prompt to edit an existing image                                                                                                                                                                                                                                                                                                                                                                                                                   | [Imagic Stable Diffusion](#imagic-stable-diffusion)                                       | -                                                                                                                                                                                                                  |                      [Mark Rich](https://github.com/MarkRich) |
29
| Multilingual Stable Diffusion                                                                                                         | Stable Diffusion Pipeline that supports prompts in 50 different languages.                                                                                                                                                                                                                                                                                                                                                                                                                               | [Multilingual Stable Diffusion](#multilingual-stable-diffusion-pipeline)                  | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/multilingual_stable_diffusion.ipynb)                                                                                                                                                                             |          [Juan Carlos Piñeros](https://github.com/juancopi81) |
30
| GlueGen Stable Diffusion                                                                                                         | Stable Diffusion Pipeline that supports prompts in different languages using GlueGen adapter.                                                                                                                                                                                                                                                                                                                                                                                                                               | [GlueGen Stable Diffusion](#gluegen-stable-diffusion-pipeline)                  | -                                                                                                                                                                                                                  |          [Phạm Hồng Vinh](https://github.com/rootonchair) |
31
| Image to Image Inpainting Stable Diffusion                                                                                            | Stable Diffusion Pipeline that enables the overlaying of two images and subsequent inpainting                                                                                                                                                                                                                                                                                                                                                                                                            | [Image to Image Inpainting Stable Diffusion](#image-to-image-inpainting-stable-diffusion) | -                                                                                                                                                                                                                  |                    [Alex McKinney](https://github.com/vvvm23) |
32
| Text Based Inpainting Stable Diffusion                                                                                                | Stable Diffusion Inpainting Pipeline that enables passing a text prompt to generate the mask for inpainting                                                                                                                                                                                                                                                                                                                                                                                              | [Text Based Inpainting Stable Diffusion](#text-based-inpainting-stable-diffusion)     | -                                                                                                                                                                                                                  |                   [Dhruv Karan](https://github.com/unography) |
33
34
| Bit Diffusion                                                                                                                         | Diffusion on discrete data                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [Bit Diffusion](#bit-diffusion)                                                           | -  |                       [Stuti R.](https://github.com/kingstut) |
| K-Diffusion Stable Diffusion                                                                                                          | Run Stable Diffusion with any of [K-Diffusion's samplers](https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py)                                                                                                                                                                                                                                                                                                                                                                  | [Stable Diffusion with K Diffusion](#stable-diffusion-with-k-diffusion)                   | -  |    [Patrick von Platen](https://github.com/patrickvonplaten/) |
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
35
| Checkpoint Merger Pipeline                                                                                                            | Diffusion Pipeline that enables merging of saved model checkpoints                                                                                                                                                                                                                                                                                                                                                                                                                                       | [Checkpoint Merger Pipeline](#checkpoint-merger-pipeline)                                 | -                                                                                                                                                                                                                  | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
36
| Stable Diffusion v1.1-1.4 Comparison                                                                                                  | Run all 4 model checkpoints for Stable Diffusion and compare their results together                                                                                                                                                                                                                                                                                                                                                                                                                      | [Stable Diffusion Comparison](#stable-diffusion-comparisons)                              | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_comparison.ipynb) |        [Suvaditya Mukherjee](https://github.com/suvadityamuk) |
Aryan V S's avatar
Aryan V S committed
37
| MagicMix                                                                                                                              | Diffusion Pipeline for semantic mixing of an image and a text prompt                                                                                                                                                                                                                                                                                                                                                                                                                                     | [MagicMix](#magic-mix)                                                                    | - |                    [Partho Das](https://github.com/daspartho) |
38
39
| Stable UnCLIP                                                                                                                         | Diffusion Pipeline for combining prior model (generate clip image embedding from text, UnCLIPPipeline `"kakaobrain/karlo-v1-alpha"`) and decoder pipeline (decode clip image embedding to image, StableDiffusionImageVariationPipeline `"lambdalabs/sd-image-variations-diffusers"` ).                                                                                                                                                                                                                   | [Stable UnCLIP](#stable-unclip)                                                           | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_unclip.ipynb)  |                                [Ray Wang](https://wrong.wang) |
| UnCLIP Text Interpolation Pipeline                                                                                                    | Diffusion Pipeline that allows passing two prompts and produces images while interpolating between the text-embeddings of the two prompts                                                                                                                                                                                                                                                                                                                                                                | [UnCLIP Text Interpolation Pipeline](#unclip-text-interpolation-pipeline)                 | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/unclip_text_interpolation.ipynb)| [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
40
| UnCLIP Image Interpolation Pipeline                                                                                                   | Diffusion Pipeline that allows passing two images/image_embeddings and produces images while interpolating between their image-embeddings                                                                                                                                                                                                                                                                                                                                                                | [UnCLIP Image Interpolation Pipeline](#unclip-image-interpolation-pipeline)               | -                                                                                                                                                                                                                  | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
41
| DDIM Noise Comparative Analysis Pipeline                                                                                              | Investigating how the diffusion models learn visual concepts from each noise level (which is a contribution of [P2 weighting (CVPR 2022)](https://arxiv.org/abs/2204.00227))                                                                                                                                                                                                                                                                                                                             | [DDIM Noise Comparative Analysis Pipeline](#ddim-noise-comparative-analysis-pipeline)     | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/ddim_noise_comparative_analysis.ipynb)|              [Aengus (Duc-Anh)](https://github.com/aengusng8) |
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
42
| CLIP Guided Img2Img Stable Diffusion Pipeline                                                                                         | Doing CLIP guidance for image to image generation with Stable Diffusion                                                                                                                                                                                                                                                                                                                                                                                                                                  | [CLIP Guided Img2Img Stable Diffusion](#clip-guided-img2img-stable-diffusion)             | - |               [Nipun Jindal](https://github.com/nipunjindal/) |
43
| TensorRT Stable Diffusion Text to Image Pipeline                                                                                                    | Accelerates the Stable Diffusion Text2Image Pipeline using TensorRT                                                                                                                                                                                                                                                                                                                                                                                                                                      | [TensorRT Stable Diffusion Text to Image Pipeline](#tensorrt-text2image-stable-diffusion-pipeline)      | - |              [Asfiya Baig](https://github.com/asfiyab-nvidia) |
44
45
| EDICT Image Editing Pipeline                                                                                                          | Diffusion pipeline for text-guided image editing                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [EDICT Image Editing Pipeline](#edict-image-editing-pipeline)                             | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/edict_image_pipeline.ipynb) |                    [Joqsan Azocar](https://github.com/Joqsan) |
| Stable Diffusion RePaint                                                                                                              | Stable Diffusion pipeline using [RePaint](https://arxiv.org/abs/2201.09865) for inpainting.                                                                                                                                                                                                                                                                                                                                                                                                               | [Stable Diffusion RePaint](#stable-diffusion-repaint )|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_repaint.ipynb)|                  [Markus Pobitzer](https://github.com/Markus-Pobitzer) |
46
| TensorRT Stable Diffusion Image to Image Pipeline                                                                                                    | Accelerates the Stable Diffusion Image2Image Pipeline using TensorRT                                                                                                                                                                                                                                                                                                                                                                                                                                      | [TensorRT Stable Diffusion Image to Image Pipeline](#tensorrt-image2image-stable-diffusion-pipeline)      | - |              [Asfiya Baig](https://github.com/asfiyab-nvidia) |
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
47
48
| Stable Diffusion IPEX Pipeline | Accelerate Stable Diffusion inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [Stable Diffusion on IPEX](#stable-diffusion-on-ipex) | - | [Yingjie Han](https://github.com/yingjie-han/) |
| CLIP Guided Images Mixing Stable Diffusion Pipeline | Сombine images using usual diffusion models. | [CLIP Guided Images Mixing Using Stable Diffusion](#clip-guided-images-mixing-with-stable-diffusion) | - | [Karachev Denis](https://github.com/TheDenk) |
49
| TensorRT Stable Diffusion Inpainting Pipeline                                                                                                    | Accelerates the Stable Diffusion Inpainting Pipeline using TensorRT                                                                                                                                                                                                                                                                                                                                                                                                                                      | [TensorRT Stable Diffusion Inpainting Pipeline](#tensorrt-inpainting-stable-diffusion-pipeline)      | - |              [Asfiya Baig](https://github.com/asfiyab-nvidia) |
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
50
|   IADB Pipeline                                                                                                    | Implementation of [Iterative α-(de)Blending: a Minimalist Deterministic Diffusion Model](https://arxiv.org/abs/2305.03486)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [IADB Pipeline](#iadb-pipeline)      | - |              [Thomas Chambon](https://github.com/tchambon)
51
|   Zero1to3 Pipeline                                                                                                    | Implementation of [Zero-1-to-3: Zero-shot One Image to 3D Object](https://arxiv.org/abs/2303.11328)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Zero1to3 Pipeline](#zero1to3-pipeline)      | - |              [Xin Kong](https://github.com/kxhit) |
52
| Stable Diffusion XL Long Weighted Prompt Pipeline | A pipeline support unlimited length of prompt and negative prompt, use A1111 style of prompt weighting | [Stable Diffusion XL Long Weighted Prompt Pipeline](#stable-diffusion-xl-long-weighted-prompt-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1LsqilswLR40XLLcp6XFOl5nKb_wOe26W?usp=sharing) | [Andrew Zhu](https://xhinker.medium.com/) |
53
| FABRIC - Stable Diffusion with feedback Pipeline | pipeline supports feedback from liked and disliked images | [Stable Diffusion Fabric Pipeline](#stable-diffusion-fabric-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_fabric.ipynb)| [Shauray Singh](https://shauray8.github.io/about_shauray/) |
Aryan V S's avatar
Aryan V S committed
54
| sketch inpaint - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion Pipeline](#stable-diffusion-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
55
| sketch inpaint xl - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion XL Pipeline](#stable-diffusion-xl-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
Aryan V S's avatar
Aryan V S committed
56
| prompt-to-prompt | change parts of a prompt and retain image structure (see [paper page](https://prompt-to-prompt.github.io/)) | [Prompt2Prompt Pipeline](#prompt2prompt-pipeline) | - | [Umer H. Adil](https://twitter.com/UmerHAdil) |
57
|   Latent Consistency Pipeline                                                                                                    | Implementation of [Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference](https://arxiv.org/abs/2310.04378)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Latent Consistency Pipeline](#latent-consistency-pipeline)      | - |              [Simian Luo](https://github.com/luosiallen) |
Logan's avatar
Logan committed
58
|   Latent Consistency Img2img Pipeline                                                                                                    | Img2img pipeline for Latent Consistency Models                                                                                                                                                                                                                                                                                                                                                                                                                                    | [Latent Consistency Img2Img Pipeline](#latent-consistency-img2img-pipeline)      | - |              [Logan Zoellner](https://github.com/nagolinc) |
59
|   Latent Consistency Interpolation Pipeline                                                                                                    | Interpolate the latent space of Latent Consistency Models with multiple prompts                                                                                                                                                                                                                                                                                                                                                                                                                                    | [Latent Consistency Interpolation Pipeline](#latent-consistency-interpolation-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1pK3NrLWJSiJsBynLns1K1-IDTW9zbPvl?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
60
| SDE Drag Pipeline                                                                                                                         | The pipeline supports drag editing of images using stochastic differential equations                                                                                                                                                                                                                                                                                                                                                                                                                | [SDE Drag Pipeline](#sde-drag-pipeline)                                                     | - | [NieShen](https://github.com/NieShenRuc) [Fengqi Zhu](https://github.com/Monohydroxides) |
61
|   Regional Prompting Pipeline                                                                                               | Assign multiple prompts for different regions                                                                                                                                                                                                                                                                                                                                                    |  [Regional Prompting Pipeline](#regional-prompting-pipeline) | - | [hako-mikan](https://github.com/hako-mikan) |
62
| LDM3D-sr (LDM3D upscaler)                                                                                                             | Upscale low resolution RGB and depth inputs to high resolution                                                                                                                                                                                                                                                                                                                                                                                                                              | [StableDiffusionUpscaleLDM3D Pipeline](https://github.com/estelleafl/diffusers/tree/ldm3d_upscaler_community/examples/community#stablediffusionupscaleldm3d-pipeline)                                                                             | -                                                                                                                                                                                                             |                                                        [Estelle Aflalo](https://github.com/estelleafl) |
63
| AnimateDiff ControlNet Pipeline                                                                                                    | Combines AnimateDiff with precise motion control using ControlNets                                                                                                                                                                                                                                                                                                                                                                                                                                    | [AnimateDiff ControlNet Pipeline](#animatediff-controlnet-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1SKboYeGjEQmQPWoFC0aLYpBlYdHXkvAu?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) and [Edoardo Botta](https://github.com/EdoardoBotta) |
64
65
|   DemoFusion Pipeline                                                                                                    | Implementation of [DemoFusion: Democratising High-Resolution Image Generation With No $$$](https://arxiv.org/abs/2311.16973)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [DemoFusion Pipeline](#demofusion)      | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/demo_fusion.ipynb) |              [Ruoyi Du](https://github.com/RuoyiDu) |
|   Instaflow Pipeline                                                                                                    | Implementation of [InstaFlow! One-Step Stable Diffusion with Rectified Flow](https://arxiv.org/abs/2309.06380)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Instaflow Pipeline](#instaflow-pipeline)      | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/insta_flow.ipynb) |              [Ayush Mangal](https://github.com/ayushtues) |
66
|   Null-Text Inversion Pipeline  | Implement [Null-text Inversion for Editing Real Images using Guided Diffusion Models](https://arxiv.org/abs/2211.09794) as a pipeline.                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Null-Text Inversion](https://github.com/google/prompt-to-prompt/)      | - |              [Junsheng Luan](https://github.com/Junsheng121) |
67
|   Rerender A Video Pipeline                                                                                                    | Implementation of [[SIGGRAPH Asia 2023] Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation](https://arxiv.org/abs/2306.07954)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Rerender A Video Pipeline](#rerender-a-video)      | - |              [Yifan Zhou](https://github.com/SingleZombie) |
68
| StyleAligned Pipeline                                                                                                    | Implementation of [Style Aligned Image Generation via Shared Attention](https://arxiv.org/abs/2312.02133)                                                                                                                                                                                                                                                                                                                                                                                                                                   | [StyleAligned Pipeline](#stylealigned-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://drive.google.com/file/d/15X2E0jFPTajUIjS0FzX50OaHsCbP2lQ0/view?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
69
| AnimateDiff Image-To-Video Pipeline | Experimental Image-To-Video support for AnimateDiff (open to improvements) | [AnimateDiff Image To Video Pipeline](#animatediff-image-to-video-pipeline) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://drive.google.com/file/d/1TvzCDPHhfFtdcJZe4RLloAwyoLKuttWK/view?usp=sharing) | [Aryan V S](https://github.com/a-r-r-o-w) |
70
|   IP Adapter FaceID Stable Diffusion                                                                                               | Stable Diffusion Pipeline that supports IP Adapter Face ID                                                                                                                                                                                                                                                                                                                                                  |  [IP Adapter Face ID](#ip-adapter-face-id) |[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/ip_adapter_face_id.ipynb)| [Fabio Rigano](https://github.com/fabiorigano) |
Aryan V S's avatar
Aryan V S committed
71
|   InstantID Pipeline                                                                                               | Stable Diffusion XL Pipeline that supports InstantID                                                                                                                                                                                                                                                                                                                                                 |  [InstantID Pipeline](#instantid-pipeline) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/InstantX/InstantID) | [Haofan Wang](https://github.com/haofanwang) |
72
|   UFOGen Scheduler                                                                                               | Scheduler for UFOGen Model (compatible with Stable Diffusion pipelines)                                                                                                                                                                                                                                                                                                                                                 |  [UFOGen Scheduler](#ufogen-scheduler) | - | [dg845](https://github.com/dg845) |
73
| Stable Diffusion XL IPEX Pipeline | Accelerate Stable Diffusion XL inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [Stable Diffusion XL on IPEX](#stable-diffusion-xl-on-ipex) | - | [Dan Li](https://github.com/ustcuna/) |
74
| Stable Diffusion BoxDiff Pipeline | Training-free controlled generation with bounding boxes using [BoxDiff](https://github.com/showlab/BoxDiff) | [Stable Diffusion BoxDiff Pipeline](#stable-diffusion-boxdiff) | - | [Jingyang Zhang](https://github.com/zjysteven/) |
75
|   FRESCO V2V Pipeline                                                                                                    | Implementation of [[CVPR 2024] FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation](https://arxiv.org/abs/2403.12962)                                                                                                                                                                                                                                                                                                                                                                                                                                      | [FRESCO V2V Pipeline](#fresco)      | - |              [Yifan Zhou](https://github.com/SingleZombie) |
76
| AnimateDiff IPEX Pipeline | Accelerate AnimateDiff inference pipeline with BF16/FP32 precision on Intel Xeon CPUs with [IPEX](https://github.com/intel/intel-extension-for-pytorch) | [AnimateDiff on IPEX](#animatediff-on-ipex) | - | [Dan Li](https://github.com/ustcuna/) |
77
PIXART-α Controlnet pipeline | Implementation of the controlnet model for pixart alpha and its diffusers pipeline | [PIXART-α Controlnet pipeline](#pixart-α-controlnet-pipeline) | - | [Raul Ciotescu](https://github.com/raulc0399/) |
78
79
| HunyuanDiT Differential Diffusion Pipeline | Applies [Differential Diffusion](https://github.com/exx8/differential-diffusion) to [HunyuanDiT](https://github.com/huggingface/diffusers/pull/8240). | [HunyuanDiT with Differential Diffusion](#hunyuandit-with-differential-diffusion) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing) | [Monjoy Choudhury](https://github.com/MnCSSJ4x) |
| [🪆Matryoshka Diffusion Models](https://huggingface.co/papers/2310.15111) | A diffusion process that denoises inputs at multiple resolutions jointly and uses a NestedUNet architecture where features and parameters for small scale inputs are nested within those of the large scales. See [original codebase](https://github.com/apple/ml-mdm). | [🪆Matryoshka Diffusion Models](#matryoshka-diffusion-models) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/pcuenq/mdm) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/tolgacangoz/1f54875fc7aeaabcf284ebde64820966/matryoshka_hf.ipynb) | [M. Tolga Cangöz](https://github.com/tolgacangoz) |
80
| Stable Diffusion XL Attentive Eraser Pipeline |[[AAAI2025 Oral] Attentive Eraser](https://github.com/Anonym0u3/AttentiveEraser) is a novel tuning-free method that enhances object removal capabilities in pre-trained diffusion models.|[Stable Diffusion XL Attentive Eraser Pipeline](#stable-diffusion-xl-attentive-eraser-pipeline)|-|[Wenhao Sun](https://github.com/Anonym0u3) and [Benlei Cui](https://github.com/Benny079)|
81

82
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
Aryan V S's avatar
Aryan V S committed
83

84
```py
85
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", custom_pipeline="filename_in_the_community_folder")
86
87
```

Patrick von Platen's avatar
Patrick von Platen committed
88
89
## Example usages

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
### Adaptive Mask Inpainting

**Hyeonwoo Kim\*, Sookwan Han\*, Patrick Kwon, Hanbyul Joo**

**Seoul National University, Naver Webtoon**

Adaptive Mask Inpainting, presented in the ECCV'24 oral paper [*Beyond the Contact: Discovering Comprehensive Affordance for 3D Objects from Pre-trained 2D Diffusion Models*](https://snuvclab.github.io/coma), is an algorithm designed to insert humans into scene images without altering the background. Traditional inpainting methods often fail to preserve object geometry and details within the masked region, leading to false affordances. Adaptive Mask Inpainting addresses this issue by progressively specifying the inpainting region over diffusion timesteps, ensuring that the inserted human integrates seamlessly with the existing scene.

Here is the demonstration of Adaptive Mask Inpainting:

<video controls>
  <source src="https://snuvclab.github.io/coma/static/videos/adaptive_mask_inpainting_vis.mp4" type="video/mp4">
  Your browser does not support the video tag.
</video>

![teaser-img](https://snuvclab.github.io/coma/static/images/example_result_adaptive_mask_inpainting.png)


You can find additional information about Adaptive Mask Inpainting in the [paper](https://arxiv.org/pdf/2401.12978) or in the [project website](https://snuvclab.github.io/coma).

#### Usage example
First, clone the diffusers github repository, and run the following command to set environment.
```Shell
git clone https://github.com/huggingface/diffusers.git
cd diffusers

conda create --name ami python=3.9 -y
conda activate ami

conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge -y
python -m pip install detectron2==0.6 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu113/torch1.10/index.html
pip install easydict
pip install diffusers==0.20.2 accelerate safetensors transformers
pip install setuptools==59.5.0
pip install opencv-python
pip install numpy==1.24.1
```
Then, run the below code under 'diffusers' directory.
```python
import numpy as np
import torch
from PIL import Image

from diffusers import DDIMScheduler
from diffusers import DiffusionPipeline
from diffusers.utils import load_image

from examples.community.adaptive_mask_inpainting import download_file, AdaptiveMaskInpaintPipeline, AMI_INSTALL_MESSAGE

print(AMI_INSTALL_MESSAGE)

from easydict import EasyDict



if __name__ == "__main__":    
    """
    Download Necessary Files
    """
    download_file(
        url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/model_final_edd263.pkl?download=true",
        output_file = "model_final_edd263.pkl",
        exist_ok=True,
    )
    download_file(
        url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/pointrend_rcnn_R_50_FPN_3x_coco.yaml?download=true",
        output_file = "pointrend_rcnn_R_50_FPN_3x_coco.yaml",
        exist_ok=True,
    )
    download_file(
        url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/input_img.png?download=true",
        output_file = "input_img.png",
        exist_ok=True,
    )
    download_file(
        url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/input_mask.png?download=true",
        output_file = "input_mask.png",
        exist_ok=True,
    )
    download_file(
        url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/Base-PointRend-RCNN-FPN.yaml?download=true",
        output_file = "Base-PointRend-RCNN-FPN.yaml",
        exist_ok=True,
    )
    download_file(
        url = "https://huggingface.co/datasets/jellyheadnadrew/adaptive-mask-inpainting-test-images/resolve/main/Base-RCNN-FPN.yaml?download=true",
        output_file = "Base-RCNN-FPN.yaml",
        exist_ok=True,
    )
    
    """ 
    Prepare Adaptive Mask Inpainting Pipeline
    """
    # device
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    num_steps = 50
    
    # Scheduler
    scheduler = DDIMScheduler(
        beta_start=0.00085, 
        beta_end=0.012, 
        beta_schedule="scaled_linear", 
        clip_sample=False, 
        set_alpha_to_one=False
    )
    scheduler.set_timesteps(num_inference_steps=num_steps)

    ## load models as pipelines
    pipeline = AdaptiveMaskInpaintPipeline.from_pretrained(
        "Uminosachi/realisticVisionV51_v51VAE-inpainting", 
        scheduler=scheduler, 
        torch_dtype=torch.float16, 
        requires_safety_checker=False
    ).to(device)

    ## disable safety checker
    enable_safety_checker = False
    if not enable_safety_checker:
        pipeline.safety_checker = None
    
    """ 
    Run Adaptive Mask Inpainting 
    """
    default_mask_image = Image.open("./input_mask.png").convert("L")
    init_image = Image.open("./input_img.png").convert("RGB")
    
    
    seed = 59
    generator = torch.Generator(device=device)
    generator.manual_seed(seed)
    
    image = pipeline(
        prompt="a man sitting on a couch",
        negative_prompt="worst quality, normal quality, low quality, bad anatomy, artifacts, blurry, cropped, watermark, greyscale, nsfw",
        image=init_image,
        default_mask_image=default_mask_image,
        guidance_scale=11.0,
        strength=0.98,
        use_adaptive_mask=True,
        generator=generator,
        enforce_full_mask_ratio=0.0,
        visualization_save_dir="./ECCV2024_adaptive_mask_inpainting_demo", # DON'T CHANGE THIS!!!
        human_detection_thres=0.015,
    ).images[0]

    
    image.save(f'final_img.png')
```
#### [Troubleshooting]

If you run into an error `cannot import name 'cached_download' from 'huggingface_hub'` (issue [1851](https://github.com/easydiffusion/easydiffusion/issues/1851)), remove `cached_download` from the import line in the file `diffusers/utils/dynamic_modules_utils.py`. 

For example, change the import line from `.../env/lib/python3.8/site-packages/diffusers/utils/dynamic_modules_utils.py`.


245
246
### Flux with CFG

247
Know more about Flux [here](https://blackforestlabs.ai/announcing-black-forest-labs/). Since Flux doesn't use CFG, this implementation provides one, inspired by the [PuLID Flux adaptation](https://github.com/ToTheBeginning/PuLID/blob/main/docs/pulid_for_flux.md).
248
249
250
251
252

Example usage:

```py
from diffusers import DiffusionPipeline
253
import torch
254

255
256
257
258
259
model_name = "black-forest-labs/FLUX.1-dev"
prompt = "a watercolor painting of a unicorn"
negative_prompt = "pink"

# Load the diffusion pipeline
260
pipeline = DiffusionPipeline.from_pretrained(
261
    model_name,
262
    torch_dtype=torch.bfloat16,
263
264
265
266
    custom_pipeline="pipeline_flux_with_cfg"
)
pipeline.enable_model_cpu_offload()

267
# Generate the image
268
img = pipeline(
269
270
271
272
    prompt=prompt,
    negative_prompt=negative_prompt,
    true_cfg=1.5,
    guidance_scale=3.5,
273
274
    generator=torch.manual_seed(0)
).images[0]
275
276

# Save the generated image
277
img.save("cfg_flux.png")
278
print("Image generated and saved successfully.")
279
280
```

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
### Differential Diffusion

**Eran Levin, Ohad Fried**

**Tel Aviv University, Reichman University**

Diffusion models have revolutionized image generation and editing, producing state-of-the-art results in conditioned and unconditioned image synthesis. While current techniques enable user control over the degree of change in an image edit, the controllability is limited to global changes over an entire edited region. This paper introduces a novel framework that enables customization of the amount of change per pixel or per image region. Our framework can be integrated into any existing diffusion model, enhancing it with this capability. Such granular control on the quantity of change opens up a diverse array of new editing capabilities, such as control of the extent to which individual objects are modified, or the ability to introduce gradual spatial changes. Furthermore, we showcase the framework's effectiveness in soft-inpainting---the completion of portions of an image while subtly adjusting the surrounding areas to ensure seamless integration. Additionally, we introduce a new tool for exploring the effects of different change quantities. Our framework operates solely during inference, requiring no model training or fine-tuning. We demonstrate our method with the current open state-of-the-art models, and validate it via both quantitative and qualitative comparisons, and a user study.

![teaser-img](https://github.com/exx8/differential-diffusion/raw/main/assets/teaser.png)

You can find additional information about Differential Diffusion in the [paper](https://differential-diffusion.github.io/paper.pdf) or in the [project website](https://differential-diffusion.github.io/).

#### Usage example

```python
import torch
from torchvision import transforms

from diffusers import DPMSolverMultistepScheduler
from diffusers.utils import load_image
from examples.community.pipeline_stable_diffusion_xl_differential_img2img import (
    StableDiffusionXLDifferentialImg2ImgPipeline,
)


pipeline = StableDiffusionXLDifferentialImg2ImgPipeline.from_pretrained(
    "SG161222/RealVisXL_V4.0", torch_dtype=torch.float16, variant="fp16"
).to("cuda")
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, use_karras_sigmas=True)


def preprocess_image(image):
    image = image.convert("RGB")
    image = transforms.CenterCrop((image.size[1] // 64 * 64, image.size[0] // 64 * 64))(image)
    image = transforms.ToTensor()(image)
    image = image * 2 - 1
    image = image.unsqueeze(0).to("cuda")
    return image


def preprocess_map(map):
    map = map.convert("L")
    map = transforms.CenterCrop((map.size[1] // 64 * 64, map.size[0] // 64 * 64))(map)
    map = transforms.ToTensor()(map)
    map = map.to("cuda")
    return map


image = preprocess_image(
    load_image(
        "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true"
    )
)

mask = preprocess_map(
    load_image(
        "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true"
    )
)

prompt = "a green pear"
negative_prompt = "blurry"

image = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    guidance_scale=7.5,
    num_inference_steps=25,
    original_image=image,
    image=image,
    strength=1.0,
    map=mask,
).images[0]

image.save("result.png")
```

haikmanukyan's avatar
haikmanukyan committed
358
359
360
361
362
363
364
365
366
367
368
369
370
### HD-Painter

Implementation of [HD-Painter: High-Resolution and Prompt-Faithful Text-Guided Image Inpainting with Diffusion Models](https://arxiv.org/abs/2312.14091).

![teaser-img](https://raw.githubusercontent.com/Picsart-AI-Research/HD-Painter/main/__assets__/github/teaser.jpg)

The abstract from the paper is:

Recent progress in text-guided image inpainting, based on the unprecedented success of text-to-image diffusion models, has led to exceptionally realistic and visually plausible results.
However, there is still significant potential for improvement in current text-to-image inpainting models, particularly in better aligning the inpainted area with user prompts and performing high-resolution inpainting.
Therefore, in this paper we introduce _HD-Painter_, a completely **training-free** approach that **accurately follows to prompts** and coherently **scales to high-resolution** image inpainting.
To this end, we design the _Prompt-Aware Introverted Attention (PAIntA)_ layer enhancing self-attention scores by prompt information and resulting in better text alignment generations.
To further improve the prompt coherence we introduce the _Reweighting Attention Score Guidance (RASG)_ mechanism seamlessly integrating a post-hoc sampling strategy into general form of DDIM to prevent out-of-distribution latent shifts.
371
372
Moreover, HD-Painter allows extension to larger scales by introducing a specialized super-resolution technique customized for inpainting, enabling the completion of missing regions in images of up to 2K resolution.
Our experiments demonstrate that HD-Painter surpasses existing state-of-the-art approaches qualitatively and quantitatively, achieving an impressive generation accuracy improvement of **61.4** vs **51.9**.
haikmanukyan's avatar
haikmanukyan committed
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
We will make the codes publicly available.

You can find additional information about Text2Video-Zero in the [paper](https://arxiv.org/abs/2312.14091) or the [original codebase](https://github.com/Picsart-AI-Research/HD-Painter).

#### Usage example

```python
import torch
from diffusers import DiffusionPipeline, DDIMScheduler
from diffusers.utils import load_image, make_image_grid

pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-inpainting",
    custom_pipeline="hd_painter"
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)

prompt = "wooden boat"
init_image = load_image("https://raw.githubusercontent.com/Picsart-AI-Research/HD-Painter/main/__assets__/samples/images/2.jpg")
mask_image = load_image("https://raw.githubusercontent.com/Picsart-AI-Research/HD-Painter/main/__assets__/samples/masks/2.png")

394
image = pipe(prompt, init_image, mask_image, use_rasg=True, use_painta=True, generator=torch.manual_seed(12345)).images[0]
haikmanukyan's avatar
haikmanukyan committed
395
396
397
398

make_image_grid([init_image, mask_image, image], rows=1, cols=3)
```

399
400
401
402
403
404
405
406
407
408
### Marigold Depth Estimation

Marigold is a universal monocular depth estimator that delivers accurate and sharp predictions in the wild. Based on Stable Diffusion, it is trained exclusively with synthetic depth data and excels in zero-shot adaptation to real-world imagery. This pipeline is an official implementation of the inference process. More details can be found on our [project page](https://marigoldmonodepth.github.io) and [full codebase](https://github.com/prs-eth/marigold) (also implemented with diffusers).

![Marigold Teaser](https://marigoldmonodepth.github.io/images/teaser_collage_compressed.jpg)

This depth estimation pipeline processes a single input image through multiple diffusion denoising stages to estimate depth maps. These maps are subsequently merged to produce the final output. Below is an example code snippet, including optional arguments:

```python
import numpy as np
409
import torch
410
411
412
413
from PIL import Image
from diffusers import DiffusionPipeline
from diffusers.utils import load_image

414
# Original DDIM version (higher quality)
415
pipe = DiffusionPipeline.from_pretrained(
416
    "prs-eth/marigold-v1-0",
417
418
    custom_pipeline="marigold_depth_estimation"
    # torch_dtype=torch.float16,                # (optional) Run with half-precision (16-bit float).
419
420
421
422
423
    # variant="fp16",                           # (optional) Use with `torch_dtype=torch.float16`, to directly load fp16 checkpoint
)

# (New) LCM version (faster speed)
pipe = DiffusionPipeline.from_pretrained(
424
    "prs-eth/marigold-depth-lcm-v1-0",
425
426
427
    custom_pipeline="marigold_depth_estimation"
    # torch_dtype=torch.float16,                # (optional) Run with half-precision (16-bit float).
    # variant="fp16",                           # (optional) Use with `torch_dtype=torch.float16`, to directly load fp16 checkpoint
428
429
430
431
432
433
434
435
)

pipe.to("cuda")

img_path_or_url = "https://share.phys.ethz.ch/~pf/bingkedata/marigold/pipeline_example.jpg"
image: Image.Image = load_image(img_path_or_url)

pipeline_output = pipe(
436
437
    image,                    # Input image.
    # ----- recommended setting for DDIM version -----
438
439
    # denoising_steps=10,     # (optional) Number of denoising steps of each inference pass. Default: 10.
    # ensemble_size=10,       # (optional) Number of inference passes in the ensemble. Default: 10.
440
    # ------------------------------------------------
441

442
443
444
445
    # ----- recommended setting for LCM version ------
    # denoising_steps=4,
    # ensemble_size=5,
    # -------------------------------------------------
446

447
448
449
    # processing_res=768,     # (optional) Maximum resolution of processing. If set to 0: will not resize at all. Defaults to 768.
    # match_input_res=True,   # (optional) Resize depth prediction to match input resolution.
    # batch_size=0,           # (optional) Inference batch size, no bigger than `num_ensemble`. If set to 0, the script will automatically decide the proper batch size. Defaults to 0.
450
    # seed=2024,              # (optional) Random seed can be set to ensure additional reproducibility. Default: None (unseeded). Note: forcing --batch_size 1 helps to increase reproducibility. To ensure full reproducibility, deterministic mode needs to be used.
451
    # color_map="Spectral",   # (optional) Colormap used to colorize the depth map. Defaults to "Spectral". Set to `None` to skip colormap generation.
452
453
454
455
456
457
458
459
460
461
462
463
464
465
    # show_progress_bar=True, # (optional) If true, will show progress bars of the inference progress.
)

depth: np.ndarray = pipeline_output.depth_np                    # Predicted depth map
depth_colored: Image.Image = pipeline_output.depth_colored      # Colorized prediction

# Save as uint16 PNG
depth_uint16 = (depth * 65535.0).astype(np.uint16)
Image.fromarray(depth_uint16).save("./depth_map.png", mode="I;16")

# Save colorized depth map
depth_colored.save("./depth_colored.png")
```

466
467
468
469
470
471
472
473
474
475
476
477
### LLM-grounded Diffusion

LMD and LMD+ greatly improves the prompt understanding ability of text-to-image generation models by introducing an LLM as a front-end prompt parser and layout planner. It improves spatial reasoning, the understanding of negation, attribute binding, generative numeracy, etc. in a unified manner without explicitly aiming for each. LMD is completely training-free (i.e., uses SD model off-the-shelf). LMD+ takes in additional adapters for better control. This is a reproduction of LMD+ model used in our work. [Project page.](https://llm-grounded-diffusion.github.io/) [See our full codebase (also with diffusers).](https://github.com/TonyLianLong/LLM-groundedDiffusion)

![Main Image](https://llm-grounded-diffusion.github.io/main_figure.jpg)
![Visualizations: Enhanced Prompt Understanding](https://llm-grounded-diffusion.github.io/visualizations.jpg)

This pipeline can be used with an LLM or on its own. We provide a parser that parses LLM outputs to the layouts. You can obtain the prompt to input to the LLM for layout generation [here](https://github.com/TonyLianLong/LLM-groundedDiffusion/blob/main/prompt.py). After feeding the prompt to an LLM (e.g., GPT-4 on ChatGPT website), you can feed the LLM response into our pipeline.

The following code has been tested on 1x RTX 4090, but it should also support GPUs with lower GPU memory.

#### Use this pipeline with an LLM
478

479
480
481
482
483
```python
import torch
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
484
    "longlian/lmd_plus",
485
    custom_pipeline="llm_grounded_diffusion",
486
    custom_revision="main",
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
    variant="fp16", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()

# Generate directly from a text prompt and an LLM response
prompt = "a waterfall and a modern high speed train in a beautiful forest with fall foliage"
phrases, boxes, bg_prompt, neg_prompt = pipe.parse_llm_response("""
[('a waterfall', [71, 105, 148, 258]), ('a modern high speed train', [255, 223, 181, 149])]
Background prompt: A beautiful forest with fall foliage
Negative prompt:
""")

images = pipe(
    prompt=prompt,
    negative_prompt=neg_prompt,
    phrases=phrases,
    boxes=boxes,
    gligen_scheduled_sampling_beta=0.4,
    output_type="pil",
    num_inference_steps=50,
    lmd_guidance_kwargs={}
).images

images[0].save("./lmd_plus_generation.jpg")
```

#### Use this pipeline on its own for layout generation
514

515
516
517
518
519
```python
import torch
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
520
    "longlian/lmd_plus",
521
    custom_pipeline="llm_grounded_diffusion",
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
    variant="fp16", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()

# Generate an image described by the prompt and
# insert objects described by text at the region defined by bounding boxes
prompt = "a waterfall and a modern high speed train in a beautiful forest with fall foliage"
boxes = [[0.1387, 0.2051, 0.4277, 0.7090], [0.4980, 0.4355, 0.8516, 0.7266]]
phrases = ["a waterfall", "a modern high speed train"]

images = pipe(
    prompt=prompt,
    phrases=phrases,
    boxes=boxes,
    gligen_scheduled_sampling_beta=0.4,
    output_type="pil",
    num_inference_steps=50,
    lmd_guidance_kwargs={}
).images

images[0].save("./lmd_plus_generation.jpg")
```

Patrick von Platen's avatar
Patrick von Platen committed
545
546
### CLIP Guided Stable Diffusion

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
547
CLIP guided stable diffusion can help to generate more realistic images
Patrick von Platen's avatar
Patrick von Platen committed
548
549
550
551
552
553
by guiding stable diffusion at every denoising step with an additional CLIP model.

The following code requires roughly 12GB of GPU RAM.

```python
from diffusers import DiffusionPipeline
554
from transformers import CLIPImageProcessor, CLIPModel
Patrick von Platen's avatar
Patrick von Platen committed
555
556
557
import torch


558
feature_extractor = CLIPImageProcessor.from_pretrained("laion/CLIP-ViT-B-32-laion2B-s34B-b79K")
Patrick von Platen's avatar
Patrick von Platen committed
559
560
561
562
clip_model = CLIPModel.from_pretrained("laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16)


guided_pipeline = DiffusionPipeline.from_pretrained(
563
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
Patrick von Platen's avatar
Patrick von Platen committed
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
    custom_pipeline="clip_guided_stable_diffusion",
    clip_model=clip_model,
    feature_extractor=feature_extractor,
    torch_dtype=torch.float16,
)
guided_pipeline.enable_attention_slicing()
guided_pipeline = guided_pipeline.to("cuda")

prompt = "fantasy book cover, full moon, fantasy forest landscape, golden vector elements, fantasy magic, dark light night, intricate, elegant, sharp focus, illustration, highly detailed, digital painting, concept art, matte, art by WLOP and Artgerm and Albert Bierstadt, masterpiece"

generator = torch.Generator(device="cuda").manual_seed(0)
images = []
for i in range(4):
    image = guided_pipeline(
        prompt,
        num_inference_steps=50,
        guidance_scale=7.5,
        clip_guidance_scale=100,
        num_cutouts=4,
        use_cutouts=False,
        generator=generator,
    ).images[0]
    images.append(image)
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
587

Patrick von Platen's avatar
Patrick von Platen committed
588
589
590
591
592
593
# save images locally
for i, img in enumerate(images):
    img.save(f"./clip_guided_sd/image_{i}.png")
```

The `images` list contains a list of PIL images that can be saved locally or displayed directly in a google colab.
594
Generated images tend to be of higher quality than natively using stable diffusion. E.g. the above script generates the following images:
Patrick von Platen's avatar
Patrick von Platen committed
595
596
597

![clip_guidance](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/clip_guidance/merged_clip_guidance.jpg).

598
### One Step Unet
Patrick von Platen's avatar
Patrick von Platen committed
599
600
601
602
603
604
605
606
607
608

The dummy "one-step-unet" can be run as follows:

```python
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeline="one_step_unet")
pipe()
```

609
**Note**: This community pipeline is not useful as a feature, but rather just serves as an example of how community pipelines can be added (see <https://github.com/huggingface/diffusers/issues/841>).
Patrick von Platen's avatar
Patrick von Platen committed
610
611
612
613
614
615
616
617
618
619
620

### Stable Diffusion Interpolation

The following code can be run on a GPU of at least 8GB VRAM and should take approximately 5 minutes.

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
621
    variant='fp16',
Patrick von Platen's avatar
Patrick von Platen committed
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
    torch_dtype=torch.float16,
    safety_checker=None,  # Very important for videos...lots of false positives while interpolating
    custom_pipeline="interpolate_stable_diffusion",
).to('cuda')
pipe.enable_attention_slicing()

frame_filepaths = pipe.walk(
    prompts=['a dog', 'a cat', 'a horse'],
    seeds=[42, 1337, 1234],
    num_interpolation_steps=16,
    output_dir='./dreams',
    batch_size=4,
    height=512,
    width=512,
    guidance_scale=8.5,
    num_inference_steps=50,
)
```

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
641
The output of the `walk(...)` function returns a list of images saved under the folder as defined in `output_dir`. You can use these images to create videos of stable diffusion.
Patrick von Platen's avatar
Patrick von Platen committed
642

643
> **Please have a look at <https://github.com/nateraw/stable-diffusion-videos> for more in-detail information on how to create videos using stable diffusion as well as more feature-complete functionality.**
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

### Stable Diffusion Mega

The Stable Diffusion Mega Pipeline lets you use the main use cases of the stable diffusion pipeline in a single class.

```python
#!/usr/bin/env python3
from diffusers import DiffusionPipeline
import PIL
import requests
from io import BytesIO
import torch


def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")

662
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_mega", torch_dtype=torch.float16, variant="fp16")
663
664
665
666
667
668
669
670
671
672
673
674
pipe.to("cuda")
pipe.enable_attention_slicing()


### Text-to-Image
images = pipe.text2img("An astronaut riding a horse").images

### Image-to-Image
init_image = download_image("https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg")

prompt = "A fantasy landscape, trending on artstation"

675
images = pipe.img2img(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images
676
677
678
679
680
681
682
683

### Inpainting
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))

prompt = "a cat sitting on a bench"
684
images = pipe.inpaint(prompt=prompt, image=init_image, mask_image=mask_image, strength=0.75).images
685
686
687
688
```

As shown above this one pipeline can run all both "text-to-image", "image-to-image", and "inpainting" in one pipeline.

689
### Long Prompt Weighting Stable Diffusion
690

691
Features of this custom pipeline:
692

693
- Input a prompt without the 77 token length limit.
694
- Includes tx2img, img2img, and inpainting pipelines.
695
696
697
698
699
- Emphasize/weigh part of your prompt with parentheses as so: `a baby deer with (big eyes)`
- De-emphasize part of your prompt as so: `a [baby] deer with big eyes`
- Precisely weigh part of your prompt as so: `a baby deer with (big eyes:1.3)`

Prompt weighting equivalents:
700

701
702
703
704
705
706
- `a baby deer with` == `(a baby deer with:1.0)`
- `(big eyes)` == `(big eyes:1.1)`
- `((big eyes))` == `(big eyes:1.21)`
- `[big eyes]` == `(big eyes:0.91)`

You can run this custom pipeline as so:
707

708
#### PyTorch
709
710
711
712
713
714
715
716
717
718

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    'hakurei/waifu-diffusion',
    custom_pipeline="lpw_stable_diffusion",
    torch_dtype=torch.float16
)
719
pipe = pipe.to("cuda")
720
721
722
723

prompt = "best_quality (1girl:1.3) bow bride brown_hair closed_mouth frilled_bow frilled_hair_tubes frills (full_body:1.3) fox_ear hair_bow hair_tubes happy hood japanese_clothes kimono long_sleeves red_bow smile solo tabi uchikake white_kimono wide_sleeves cherry_blossoms"
neg_prompt = "lowres, bad_anatomy, error_body, error_hair, error_arm, error_hands, bad_hands, error_fingers, bad_fingers, missing_fingers, error_legs, bad_legs, multiple_legs, missing_legs, error_lighting, error_shadow, error_reflection, text, error, extra_digit, fewer_digits, cropped, worst_quality, low_quality, normal_quality, jpeg_artifacts, signature, watermark, username, blurry"

724
pipe.text2img(prompt, negative_prompt=neg_prompt, width=512, height=512, max_embeddings_multiples=3).images[0]
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
```

#### onnxruntime

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    'CompVis/stable-diffusion-v1-4',
    custom_pipeline="lpw_stable_diffusion_onnx",
    revision="onnx",
    provider="CUDAExecutionProvider"
)

prompt = "a photo of an astronaut riding a horse on mars, best quality"
neg_prompt = "lowres, bad anatomy, error body, error hair, error arm, error hands, bad hands, error fingers, bad fingers, missing fingers, error legs, bad legs, multiple legs, missing legs, error lighting, error shadow, error reflection, text, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry"

743
pipe.text2img(prompt, negative_prompt=neg_prompt, width=512, height=512, max_embeddings_multiples=3).images[0]
744
745
```

746
If you see `Token indices sequence length is longer than the specified maximum sequence length for this model ( *** > 77 ) . Running this sequence through the model will result in indexing errors`. Do not worry, it is normal.
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789

### Speech to Image

The following code can generate an image from an audio sample using pre-trained OpenAI whisper-small and Stable Diffusion.

```Python
import torch

import matplotlib.pyplot as plt
from datasets import load_dataset
from diffusers import DiffusionPipeline
from transformers import (
    WhisperForConditionalGeneration,
    WhisperProcessor,
)


device = "cuda" if torch.cuda.is_available() else "cpu"

ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")

audio_sample = ds[3]

text = audio_sample["text"].lower()
speech_data = audio_sample["audio"]["array"]

model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
processor = WhisperProcessor.from_pretrained("openai/whisper-small")

diffuser_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="speech_to_image_diffusion",
    speech_model=model,
    speech_processor=processor,
    torch_dtype=torch.float16,
)

diffuser_pipeline.enable_attention_slicing()
diffuser_pipeline = diffuser_pipeline.to(device)

output = diffuser_pipeline(speech_data)
plt.imshow(output.images[0])
```
790

791
792
793
This example produces the following image:

![image](https://user-images.githubusercontent.com/45072645/196901736-77d9c6fc-63ee-4072-90b0-dc8b903d63e3.png)
794
795

### Wildcard Stable Diffusion
796
797

Following the great examples from <https://github.com/jtkelm2/stable-diffusion-webui-1/blob/master/scripts/wildcards.py> and <https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts#wildcards>, here's a minimal implementation that allows for users to add "wildcards", denoted by `__wildcard__` to prompts that are used as placeholders for randomly sampled values given by either a dictionary or a `.txt` file. For example:
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850

Say we have a prompt:

```
prompt = "__animal__ sitting on a __object__ wearing a __clothing__"
```

We can then define possible values to be sampled for `animal`, `object`, and `clothing`. These can either be from a `.txt` with the same name as the category.

The possible values can also be defined / combined by using a dictionary like: `{"animal":["dog", "cat", mouse"]}`.

The actual pipeline works just like `StableDiffusionPipeline`, except the `__call__` method takes in:

`wildcard_files`: list of file paths for wild card replacement
`wildcard_option_dict`: dict with key as `wildcard` and values as a list of possible replacements
`num_prompt_samples`: number of prompts to sample, uniformly sampling wildcards

A full example:

create `animal.txt`, with contents like:

```
dog
cat
mouse
```

create `object.txt`, with contents like:

```
chair
sofa
bench
```

```python
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="wildcard_stable_diffusion",
    torch_dtype=torch.float16,
)
prompt = "__animal__ sitting on a __object__ wearing a __clothing__"
out = pipe(
    prompt,
    wildcard_option_dict={
        "clothing":["hat", "shirt", "scarf", "beret"]
    },
    wildcard_files=["object.txt", "animal.txt"],
    num_prompt_samples=1
)
851
852
out.images[0].save("image.png")
torch.cuda.empty_cache()
853
854
```

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
855
### Composable Stable diffusion
856

857
858
[Composable Stable Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) proposes conjunction and negation (negative prompts) operators for compositional generation with conditional diffusion models.

859
860
861
862
```python
import torch as th
import numpy as np
import torchvision.utils as tvu
863

864
865
from diffusers import DiffusionPipeline

866
867
868
869
870
871
872
873
874
875
876
877
878
import argparse

parser = argparse.ArgumentParser()
parser.add_argument("--prompt", type=str, default="mystical trees | A magical pond | dark",
                    help="use '|' as the delimiter to compose separate sentences.")
parser.add_argument("--steps", type=int, default=50)
parser.add_argument("--scale", type=float, default=7.5)
parser.add_argument("--weights", type=str, default="7.5 | 7.5 | -7.5")
parser.add_argument("--seed", type=int, default=2)
parser.add_argument("--model_path", type=str, default="CompVis/stable-diffusion-v1-4")
parser.add_argument("--num_images", type=int, default=1)
args = parser.parse_args()

879
880
881
has_cuda = th.cuda.is_available()
device = th.device('cpu' if not has_cuda else 'cuda')

882
883
884
885
prompt = args.prompt
scale = args.scale
steps = args.steps

886
pipe = DiffusionPipeline.from_pretrained(
887
    args.model_path,
888
889
890
    custom_pipeline="composable_stable_diffusion",
).to(device)

891
pipe.safety_checker = None
892
893

images = []
894
895
896
897
898
899
900
generator = th.Generator("cuda").manual_seed(args.seed)
for i in range(args.num_images):
    image = pipe(prompt, guidance_scale=scale, num_inference_steps=steps,
                 weights=args.weights, generator=generator).images[0]
    images.append(th.from_numpy(np.array(image)).permute(2, 0, 1) / 255.)
grid = tvu.make_grid(th.stack(images, dim=0), nrow=4, padding=0)
tvu.save_image(grid, f'{prompt}_{args.weights}' + '.png')
901
```
902
903

### Imagic Stable Diffusion
904

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
905
Allows you to edit an image using stable diffusion.
906
907
908
909
910
911

```python
import requests
from PIL import Image
from io import BytesIO
import torch
912
import os
913
from diffusers import DiffusionPipeline, DDIMScheduler
914

915
916
917
918
has_cuda = torch.cuda.is_available()
device = torch.device('cpu' if not has_cuda else 'cuda')
pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
919
    safety_checker=None,
920
    custom_pipeline="imagic_stable_diffusion",
921
    scheduler=DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
922
).to(device)
Dhruv Naik's avatar
Dhruv Naik committed
923
generator = torch.Generator("cuda").manual_seed(0)
924
925
926
927
928
929
930
931
seed = 0
prompt = "A photo of Barack Obama smiling with a big grin"
url = 'https://www.dropbox.com/s/6tlwzr73jd1r9yk/obama.png?dl=1'
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((512, 512))
res = pipe.train(
    prompt,
932
    image=init_image,
933
    generator=generator)
Dhruv Naik's avatar
Dhruv Naik committed
934
res = pipe(alpha=1, guidance_scale=7.5, num_inference_steps=50)
935
os.makedirs("imagic", exist_ok=True)
936
937
image = res.images[0]
image.save('./imagic/imagic_image_alpha_1.png')
Dhruv Naik's avatar
Dhruv Naik committed
938
res = pipe(alpha=1.5, guidance_scale=7.5, num_inference_steps=50)
939
940
image = res.images[0]
image.save('./imagic/imagic_image_alpha_1_5.png')
Dhruv Naik's avatar
Dhruv Naik committed
941
res = pipe(alpha=2, guidance_scale=7.5, num_inference_steps=50)
942
943
944
945
image = res.images[0]
image.save('./imagic/imagic_image_alpha_2.png')
```

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
946
### Seed Resizing
947

948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
Test seed resizing. Originally generate an image in 512 by 512, then generate image with same seed at 512 by 592 using seed resizing. Finally, generate 512 by 592 using original stable diffusion pipeline.

```python
import torch as th
import numpy as np
from diffusers import DiffusionPipeline

has_cuda = th.cuda.is_available()
device = th.device('cpu' if not has_cuda else 'cuda')

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="seed_resize_stable_diffusion"
).to(device)

def dummy(images, **kwargs):
    return images, False

pipe.safety_checker = dummy


images = []
th.manual_seed(0)
generator = th.Generator("cuda").manual_seed(0)

seed = 0
prompt = "A painting of a futuristic cop"

width = 512
height = 512

res = pipe(
    prompt,
    guidance_scale=7.5,
    num_inference_steps=50,
    height=height,
    width=width,
    generator=generator)
image = res.images[0]
image.save('./seed_resize/seed_resize_{w}_{h}_image.png'.format(w=width, h=height))


th.manual_seed(0)
generator = th.Generator("cuda").manual_seed(0)

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="/home/mark/open_source/diffusers/examples/community/"
).to(device)

width = 512
height = 592

res = pipe(
    prompt,
    guidance_scale=7.5,
    num_inference_steps=50,
    height=height,
    width=width,
    generator=generator)
image = res.images[0]
image.save('./seed_resize/seed_resize_{w}_{h}_image.png'.format(w=width, h=height))

pipe_compare = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="/home/mark/open_source/diffusers/examples/community/"
).to(device)

res = pipe_compare(
    prompt,
    guidance_scale=7.5,
    num_inference_steps=50,
    height=height,
    width=width,
    generator=generator
)

image = res.images[0]
image.save('./seed_resize/seed_resize_{w}_{h}_image_compare.png'.format(w=width, h=height))
1027
```
1028

1029
1030
### Multilingual Stable Diffusion Pipeline

1031
The following code can generate images from texts in different languages using the pre-trained [mBART-50 many-to-one multilingual machine translation model](https://huggingface.co/facebook/mbart-large-50-many-to-one-mmt) and Stable Diffusion.
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

```python
from PIL import Image

import torch

from diffusers import DiffusionPipeline
from transformers import (
    pipeline,
    MBart50TokenizerFast,
    MBartForConditionalGeneration,
)
device = "cuda" if torch.cuda.is_available() else "cpu"
device_dict = {"cuda": 0, "cpu": -1}

# helper function taken from: https://huggingface.co/blog/stable_diffusion
def image_grid(imgs, rows, cols):
    assert len(imgs) == rows*cols

    w, h = imgs[0].size
    grid = Image.new('RGB', size=(cols*w, rows*h))
    grid_w, grid_h = grid.size

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i%cols*w, i//cols*h))
    return grid

# Add language detection pipeline
language_detection_model_ckpt = "papluca/xlm-roberta-base-language-detection"
language_detection_pipeline = pipeline("text-classification",
                                       model=language_detection_model_ckpt,
                                       device=device_dict[device])

# Add model for language translation
trans_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-one-mmt")
trans_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-one-mmt").to(device)

diffuser_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="multilingual_stable_diffusion",
    detection_pipeline=language_detection_pipeline,
    translation_model=trans_model,
    translation_tokenizer=trans_tokenizer,
    torch_dtype=torch.float16,
)

diffuser_pipeline.enable_attention_slicing()
diffuser_pipeline = diffuser_pipeline.to(device)

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1081
prompt = ["a photograph of an astronaut riding a horse",
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
          "Una casa en la playa",
          "Ein Hund, der Orange isst",
          "Un restaurant parisien"]

output = diffuser_pipeline(prompt)

images = output.images

grid = image_grid(images, rows=2, cols=2)
```

This example produces the following images:
![image](https://user-images.githubusercontent.com/4313860/198328706-295824a4-9856-4ce5-8e66-278ceb42fd29.png)

1096
### GlueGen Stable Diffusion Pipeline
1097

1098
GlueGen is a minimal adapter that allows alignment between any encoder (Text Encoder of different language, Multilingual Roberta, AudioClip) and CLIP text encoder used in standard Stable Diffusion model. This method allows easy language adaptation to available english Stable Diffusion checkpoints without the need of an image captioning dataset as well as long training hours.
1099

1100
Make sure you downloaded `gluenet_French_clip_overnorm_over3_noln.ckpt` for French (there are also pre-trained weights for Chinese, Italian, Japanese, Spanish or train your own) at [GlueGen's official repo](https://github.com/salesforce/GlueGen/tree/main).
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122

```python
from PIL import Image

import torch

from transformers import AutoModel, AutoTokenizer

from diffusers import DiffusionPipeline

if __name__ == "__main__":
    device = "cuda"

    lm_model_id = "xlm-roberta-large"
    token_max_length = 77

    text_encoder = AutoModel.from_pretrained(lm_model_id)
    tokenizer = AutoTokenizer.from_pretrained(lm_model_id, model_max_length=token_max_length, use_fast=False)

    tensor_norm = torch.Tensor([[43.8203],[28.3668],[27.9345],[28.0084],[28.2958],[28.2576],[28.3373],[28.2695],[28.4097],[28.2790],[28.2825],[28.2807],[28.2775],[28.2708],[28.2682],[28.2624],[28.2589],[28.2611],[28.2616],[28.2639],[28.2613],[28.2566],[28.2615],[28.2665],[28.2799],[28.2885],[28.2852],[28.2863],[28.2780],[28.2818],[28.2764],[28.2532],[28.2412],[28.2336],[28.2514],[28.2734],[28.2763],[28.2977],[28.2971],[28.2948],[28.2818],[28.2676],[28.2831],[28.2890],[28.2979],[28.2999],[28.3117],[28.3363],[28.3554],[28.3626],[28.3589],[28.3597],[28.3543],[28.3660],[28.3731],[28.3717],[28.3812],[28.3753],[28.3810],[28.3777],[28.3693],[28.3713],[28.3670],[28.3691],[28.3679],[28.3624],[28.3703],[28.3703],[28.3720],[28.3594],[28.3576],[28.3562],[28.3438],[28.3376],[28.3389],[28.3433],[28.3191]])

    pipeline = DiffusionPipeline.from_pretrained(
1123
        "stable-diffusion-v1-5/stable-diffusion-v1-5",
1124
1125
1126
1127
1128
1129
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        custom_pipeline="gluegen"
    ).to(device)
    pipeline.load_language_adapter("gluenet_French_clip_overnorm_over3_noln.ckpt", num_token=token_max_length, dim=1024, dim_out=768, tensor_norm=tensor_norm)

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1130
    prompt = "une voiture sur la plage"
1131

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1132
    generator = torch.Generator(device=device).manual_seed(42)
1133
1134
1135
    image = pipeline(prompt, generator=generator).images[0]
    image.save("gluegen_output_fr.png")
```
1136

1137
1138
1139
1140
Which will produce:

![output_image](https://github.com/rootonchair/diffusers/assets/23548268/db43ffb6-8667-47c1-8872-26f85dc0a57f)

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
### Image to Image Inpainting Stable Diffusion

Similar to the standard stable diffusion inpainting example, except with the addition of an `inner_image` argument.

`image`, `inner_image`, and `mask` should have the same dimensions. `inner_image` should have an alpha (transparency) channel.

The aim is to overlay two images, then mask out the boundary between `image` and `inner_image` to allow stable diffusion to make the connection more seamless.
For example, this could be used to place a logo on a shirt and make it blend seamlessly.

```python
import PIL
import torch

1154
from diffusers import DiffusionPipeline
1155
1156
1157
1158
1159
1160
1161
1162
1163

image_path = "./path-to-image.png"
inner_image_path = "./path-to-inner-image.png"
mask_path = "./path-to-mask.png"

init_image = PIL.Image.open(image_path).convert("RGB").resize((512, 512))
inner_image = PIL.Image.open(inner_image_path).convert("RGBA").resize((512, 512))
mask_image = PIL.Image.open(mask_path).convert("RGB").resize((512, 512))

1164
pipe = DiffusionPipeline.from_pretrained(
1165
    "runwayml/stable-diffusion-inpainting",
1166
1167
    custom_pipeline="img2img_inpainting",
    torch_dtype=torch.float16
1168
1169
1170
1171
1172
)
pipe = pipe.to("cuda")

prompt = "Your prompt here!"
image = pipe(prompt=prompt, image=init_image, inner_image=inner_image, mask_image=mask_image).images[0]
1173
```
1174

1175
1176
![2 by 2 grid demonstrating image to image inpainting.](https://user-images.githubusercontent.com/44398246/203506577-ec303be4-887e-4ebd-a773-c83fcb3dd01a.png)

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
### Text Based Inpainting Stable Diffusion

Use a text prompt to generate the mask for the area to be inpainted.
Currently uses the CLIPSeg model for mask generation, then calls the standard Stable Diffusion Inpainting pipeline to perform the inpainting.

```python
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
from diffusers import DiffusionPipeline

from PIL import Image
import requests

processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")

pipe = DiffusionPipeline.from_pretrained(
    "runwayml/stable-diffusion-inpainting",
    custom_pipeline="text_inpainting",
    segmentation_model=model,
    segmentation_processor=processor
)
pipe = pipe.to("cuda")


url = "https://github.com/timojl/clipseg/blob/master/example_image.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw).resize((512, 512))
text = "a glass"  # will mask out this text
prompt = "a cup"  # the masked out region will be replaced with this

1206
image = pipe(image=image, text=text, prompt=prompt).images[0]
1207
```
Stuti R's avatar
Stuti R committed
1208

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1209
### Bit Diffusion
1210

1211
Based <https://arxiv.org/abs/2208.04202>, this is used for diffusion on discrete data - eg, discrete image data, DNA sequence data. An unconditional discrete image can be generated like this:
Stuti R's avatar
Stuti R committed
1212
1213
1214

```python
from diffusers import DiffusionPipeline
1215

Stuti R's avatar
Stuti R committed
1216
1217
pipe = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeline="bit_diffusion")
image = pipe().images[0]
1218
1219
1220
1221
```

### Stable Diffusion with K Diffusion

1222
Make sure you have @crowsonkb's <https://github.com/crowsonkb/k-diffusion> installed:
1223

1224
```sh
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
pip install k-diffusion
```

You can use the community pipeline as follows:

```python
from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="sd_text2img_k_diffusion")
pipe = pipe.to("cuda")

prompt = "an astronaut riding a horse on mars"
1237
pipe.set_scheduler("sample_heun")
1238
1239
1240
1241
1242
1243
1244
1245
1246
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=20).images[0]

image.save("./astronaut_heun_k_diffusion.png")
```

To make sure that K Diffusion and `diffusers` yield the same results:

**Diffusers**:
1247

1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
```python
from diffusers import DiffusionPipeline, EulerDiscreteScheduler

seed = 33

pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")

generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=50).images[0]
```

![diffusers_euler](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/k_diffusion/astronaut_euler.png)

**K Diffusion**:
1264

1265
1266
1267
1268
1269
1270
1271
1272
1273
```python
from diffusers import DiffusionPipeline, EulerDiscreteScheduler

seed = 33

pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="sd_text2img_k_diffusion")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")

1274
pipe.set_scheduler("sample_euler")
1275
1276
1277
1278
1279
1280
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(prompt, generator=generator, num_inference_steps=50).images[0]
```

![diffusers_euler](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/k_diffusion/astronaut_euler_k_diffusion.png)

1281
### Checkpoint Merger Pipeline
1282

1283
Based on the AUTOMATIC1111/webui for checkpoint merging. This is a custom pipeline that merges up to 3 pretrained model checkpoints as long as they are in the HuggingFace model_index.json format.
1284

1285
1286
The checkpoint merging is currently memory intensive as it modifies the weights of a DiffusionPipeline object in place. Expect at least 13GB RAM usage on Kaggle GPU kernels and
on Colab you might run out of the 12GB memory even while merging two checkpoints.
1287
1288

Usage:-
1289

1290
1291
1292
```python
from diffusers import DiffusionPipeline

1293
1294
1295
# Return a CheckpointMergerPipeline class that allows you to merge checkpoints.
# The checkpoint passed here is ignored. But still pass one of the checkpoints you plan to
# merge for convenience
1296
1297
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="checkpoint_merger")

1298
1299
# There are multiple possible scenarios:
# The pipeline with the merged checkpoints is returned in all the scenarios
1300

1301
1302
# Compatible checkpoints a.k.a matched model_index.json files. Ignores the meta attributes in model_index.json during comparison.( attrs with _ as prefix )
merged_pipe = pipe.merge(["CompVis/stable-diffusion-v1-4"," CompVis/stable-diffusion-v1-2"], interp="sigmoid", alpha=0.4)
1303

1304
1305
# Incompatible checkpoints in model_index.json but merge might be possible. Use force=True to ignore model_index.json compatibility
merged_pipe_1 = pipe.merge(["CompVis/stable-diffusion-v1-4", "hakurei/waifu-diffusion"], force=True, interp="sigmoid", alpha=0.4)
1306

1307
1308
# Three checkpoint merging. Only "add_difference" method actually works on all three checkpoints. Using any other options will ignore the 3rd checkpoint.
merged_pipe_2 = pipe.merge(["CompVis/stable-diffusion-v1-4", "hakurei/waifu-diffusion", "prompthero/openjourney"], force=True, interp="add_difference", alpha=0.4)
1309
1310
1311
1312
1313

prompt = "An astronaut riding a horse on Mars"

image = merged_pipe(prompt).images[0]
```
1314

1315
1316
Some examples along with the merge details:

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1317
1. "CompVis/stable-diffusion-v1-4" + "hakurei/waifu-diffusion" ; Sigmoid interpolation; alpha = 0.8
1318
1319
1320

![Stable plus Waifu Sigmoid 0.8](https://huggingface.co/datasets/NagaSaiAbhinay/CheckpointMergerSamples/resolve/main/stability_v1_4_waifu_sig_0.8.png)

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1321
2. "hakurei/waifu-diffusion" + "prompthero/openjourney" ; Inverse Sigmoid interpolation; alpha = 0.8
1322

1323
![Waifu plus openjourney Sigmoid 0.8](https://huggingface.co/datasets/NagaSaiAbhinay/CheckpointMergerSamples/resolve/main/waifu_openjourney_inv_sig_0.8.png)
1324

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1325
3. "CompVis/stable-diffusion-v1-4" + "hakurei/waifu-diffusion" + "prompthero/openjourney"; Add Difference interpolation; alpha = 0.5
1326
1327

![Stable plus Waifu plus openjourney add_diff 0.5](https://huggingface.co/datasets/NagaSaiAbhinay/CheckpointMergerSamples/resolve/main/stable_waifu_openjourney_add_diff_0.5.png)
1328
1329
1330
1331

### Stable Diffusion Comparisons

This Community Pipeline enables the comparison between the 4 checkpoints that exist for Stable Diffusion. They can be found through the following links:
1332

1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1. [Stable Diffusion v1.1](https://huggingface.co/CompVis/stable-diffusion-v1-1)
2. [Stable Diffusion v1.2](https://huggingface.co/CompVis/stable-diffusion-v1-2)
3. [Stable Diffusion v1.3](https://huggingface.co/CompVis/stable-diffusion-v1-3)
4. [Stable Diffusion v1.4](https://huggingface.co/CompVis/stable-diffusion-v1-4)

```python
from diffusers import DiffusionPipeline
import matplotlib.pyplot as plt

pipe = DiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4', custom_pipeline='suvadityamuk/StableDiffusionComparison')
pipe.enable_attention_slicing()
pipe = pipe.to('cuda')
prompt = "an astronaut riding a horse on mars"
output = pipe(prompt)

plt.subplots(2,2,1)
plt.imshow(output.images[0])
plt.title('Stable Diffusion v1.1')
plt.axis('off')
plt.subplots(2,2,2)
plt.imshow(output.images[1])
plt.title('Stable Diffusion v1.2')
plt.axis('off')
plt.subplots(2,2,3)
plt.imshow(output.images[2])
plt.title('Stable Diffusion v1.3')
plt.axis('off')
plt.subplots(2,2,4)
plt.imshow(output.images[3])
plt.title('Stable Diffusion v1.4')
plt.axis('off')

plt.show()
Partho's avatar
Partho committed
1366
1367
1368
1369
1370
1371
1372
1373
1374
```

As a result, you can look at a grid of all 4 generated images being shown together, that captures a difference the advancement of the training between the 4 checkpoints.

### Magic Mix

Implementation of the [MagicMix: Semantic Mixing with Diffusion Models](https://arxiv.org/abs/2210.16056) paper. This is a Diffusion Pipeline for semantic mixing of an image and a text prompt to create a new concept while preserving the spatial layout and geometry of the subject in the image. The pipeline takes an image that provides the layout semantics and a prompt that provides the content semantics for the mixing process.

There are 3 parameters for the method-
1375

Partho's avatar
Partho committed
1376
1377
1378
1379
1380
- `mix_factor`: It is the interpolation constant used in the layout generation phase. The greater the value of `mix_factor`, the greater the influence of the prompt on the layout generation process.
- `kmax` and `kmin`: These determine the range for the layout and content generation process. A higher value of kmax results in loss of more information about the layout of the original image and a higher value of kmin results in more steps for content generation process.

Here is an example usage-

1381
```python
Partho's avatar
Partho committed
1382
1383
1384
1385
1386
1387
from diffusers import DiffusionPipeline, DDIMScheduler
from PIL import Image

pipe = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="magic_mix",
1388
    scheduler=DDIMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler"),
Partho's avatar
Partho committed
1389
1390
1391
1392
).to('cuda')

img = Image.open('phone.jpg')
mix_img = pipe(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1393
    img,
1394
1395
1396
1397
    prompt='bed',
    kmin=0.3,
    kmax=0.5,
    mix_factor=0.5,
Partho's avatar
Partho committed
1398
1399
1400
    )
mix_img.save('phone_bed_mix.jpg')
```
1401

Partho's avatar
Partho committed
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
The `mix_img` is a PIL image that can be saved locally or displayed directly in a google colab. Generated image is a mix of the layout semantics of the given image and the content semantics of the prompt.

E.g. the above script generates the following image:

`phone.jpg`

![206903102-34e79b9f-9ed2-4fac-bb38-82871343c655](https://user-images.githubusercontent.com/59410571/209578593-141467c7-d831-4792-8b9a-b17dc5e47816.jpg)

`phone_bed_mix.jpg`

![206903104-913a671d-ef53-4ae4-919d-64c3059c8f67](https://user-images.githubusercontent.com/59410571/209578602-70f323fa-05b7-4dd6-b055-e40683e37914.jpg)
1413

Partho's avatar
Partho committed
1414
For more example generations check out this [demo notebook](https://github.com/daspartho/MagicMix/blob/main/demo.ipynb).
1415
1416
1417

### Stable UnCLIP

1418
1419
UnCLIPPipeline("kakaobrain/karlo-v1-alpha") provides a prior model that can generate clip image embedding from text.
StableDiffusionImageVariationPipeline("lambdalabs/sd-image-variations-diffusers") provides a decoder model than can generate images from clip image embedding.
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459

```python
import torch
from diffusers import DiffusionPipeline

device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")

pipeline = DiffusionPipeline.from_pretrained(
    "kakaobrain/karlo-v1-alpha",
    torch_dtype=torch.float16,
    custom_pipeline="stable_unclip",
    decoder_pipe_kwargs=dict(
        image_encoder=None,
    ),
)
pipeline.to(device)

prompt = "a shiba inu wearing a beret and black turtleneck"
random_generator = torch.Generator(device=device).manual_seed(1000)
output = pipeline(
    prompt=prompt,
    width=512,
    height=512,
    generator=random_generator,
    prior_guidance_scale=4,
    prior_num_inference_steps=25,
    decoder_guidance_scale=8,
    decoder_num_inference_steps=50,
)

image = output.images[0]
image.save("./shiba-inu.jpg")

# debug

# `pipeline.decoder_pipe` is a regular StableDiffusionImageVariationPipeline instance.
# It is used to convert clip image embedding to latents, then fed into VAE decoder.
print(pipeline.decoder_pipe.__class__)
# <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_image_variation.StableDiffusionImageVariationPipeline'>

1460
# this pipeline only uses prior module in "kakaobrain/karlo-v1-alpha"
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
# It is used to convert clip text embedding to clip image embedding.
print(pipeline)
# StableUnCLIPPipeline {
#   "_class_name": "StableUnCLIPPipeline",
#   "_diffusers_version": "0.12.0.dev0",
#   "prior": [
#     "diffusers",
#     "PriorTransformer"
#   ],
#   "prior_scheduler": [
#     "diffusers",
#     "UnCLIPScheduler"
#   ],
#   "text_encoder": [
#     "transformers",
#     "CLIPTextModelWithProjection"
#   ],
#   "tokenizer": [
#     "transformers",
#     "CLIPTokenizer"
#   ]
# }

# pipeline.prior_scheduler is the scheduler used for prior in UnCLIP.
print(pipeline.prior_scheduler)
# UnCLIPScheduler {
#   "_class_name": "UnCLIPScheduler",
#   "_diffusers_version": "0.12.0.dev0",
#   "clip_sample": true,
#   "clip_sample_range": 5.0,
#   "num_train_timesteps": 1000,
#   "prediction_type": "sample",
#   "variance_type": "fixed_small_log"
# }
```

`shiba-inu.jpg`

![shiba-inu](https://user-images.githubusercontent.com/16448529/209185639-6e5ec794-ce9d-4883-aa29-bd6852a2abad.jpg)

1501
1502
### UnCLIP Text Interpolation Pipeline

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1503
This Diffusion Pipeline takes two prompts and interpolates between the two input prompts using spherical interpolation ( slerp ). The input prompts are converted to text embeddings by the pipeline's text_encoder and the interpolation is done on the resulting text_embeddings over the number of steps specified. Defaults to 5 steps.
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519

```python
import torch
from diffusers import DiffusionPipeline

device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")

pipe = DiffusionPipeline.from_pretrained(
    "kakaobrain/karlo-v1-alpha",
    torch_dtype=torch.float16,
    custom_pipeline="unclip_text_interpolation"
)
pipe.to(device)

start_prompt = "A photograph of an adult lion"
end_prompt = "A photograph of a lion cub"
1520
# For best results keep the prompts close in length to each other. Of course, feel free to try out with differing lengths.
1521
1522
generator = torch.Generator(device=device).manual_seed(42)

1523
output = pipe(start_prompt, end_prompt, steps=6, generator=generator, enable_sequential_cpu_offload=False)
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536

for i,image in enumerate(output.images):
    img.save('result%s.jpg' % i)
```

The resulting images in order:-

![result_0](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_0.png)
![result_1](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_1.png)
![result_2](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_2.png)
![result_3](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_3.png)
![result_4](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_4.png)
![result_5](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPTextInterpolationSamples/resolve/main/lion_to_cub_5.png)
1537
1538
1539

### UnCLIP Image Interpolation Pipeline

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1540
This Diffusion Pipeline takes two images or an image_embeddings tensor of size 2 and interpolates between their embeddings using spherical interpolation ( slerp ). The input images/image_embeddings are converted to image embeddings by the pipeline's image_encoder and the interpolation is done on the resulting image_embeddings over the number of steps specified. Defaults to 5 steps.
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557

```python
import torch
from diffusers import DiffusionPipeline
from PIL import Image

device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")
dtype = torch.float16 if torch.cuda.is_available() else torch.bfloat16

pipe = DiffusionPipeline.from_pretrained(
    "kakaobrain/karlo-v1-alpha-image-variations",
    torch_dtype=dtype,
    custom_pipeline="unclip_image_interpolation"
)
pipe.to(device)

images = [Image.open('./starry_night.jpg'), Image.open('./flowers.jpg')]
1558
# For best results keep the prompts close in length to each other. Of course, feel free to try out with differing lengths.
1559
1560
generator = torch.Generator(device=device).manual_seed(42)

1561
output = pipe(image=images, steps=6, generator=generator)
1562
1563
1564
1565

for i,image in enumerate(output.images):
    image.save('starry_to_flowers_%s.jpg' % i)
```
1566

1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
The original images:-

![starry](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_night.jpg)
![flowers](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/flowers.jpg)

The resulting images in order:-

![result0](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_0.png)
![result1](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_1.png)
![result2](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_2.png)
![result3](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_3.png)
![result4](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_4.png)
![result5](https://huggingface.co/datasets/NagaSaiAbhinay/UnCLIPImageInterpolationSamples/resolve/main/starry_to_flowers_5.png)

1581
### DDIM Noise Comparative Analysis Pipeline
1582

1583
#### **Research question: What visual concepts do the diffusion models learn from each noise level during training?**
1584

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1585
The [P2 weighting (CVPR 2022)](https://arxiv.org/abs/2204.00227) paper proposed an approach to answer the above question, which is their second contribution.
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
The approach consists of the following steps:

1. The input is an image x0.
2. Perturb it to xt using a diffusion process q(xt|x0).
    - `strength` is a value between 0.0 and 1.0, that controls the amount of noise that is added to the input image. Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input.
3. Reconstruct the image with the learned denoising process pθ(ˆx0|xt).
4. Compare x0 and ˆx0 among various t to show how each step contributes to the sample.
The authors used [openai/guided-diffusion](https://github.com/openai/guided-diffusion) model to denoise images in FFHQ dataset. This pipeline extends their second contribution by investigating DDIM on any input image.

```python
import torch
from PIL import Image
import numpy as np

1600
image_path = "path/to/your/image"  # images from CelebA-HQ might be better
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
image_pil = Image.open(image_path)
image_name = image_path.split("/")[-1].split(".")[0]

device = torch.device("cpu" if not torch.cuda.is_available() else "cuda")
pipe = DiffusionPipeline.from_pretrained(
    "google/ddpm-ema-celebahq-256",
    custom_pipeline="ddim_noise_comparative_analysis",
)
pipe = pipe.to(device)

for strength in np.linspace(0.1, 1, 25):
    denoised_image, latent_timestep = pipe(
        image_pil, strength=strength, return_dict=False
    )
    denoised_image = denoised_image[0]
    denoised_image.save(
        f"noise_comparative_analysis_{image_name}_{latent_timestep}.png"
    )
```

Here is the result of this pipeline (which is DDIM) on CelebA-HQ dataset.
1622

1623
![noise-comparative-analysis](https://user-images.githubusercontent.com/67547213/224677066-4474b2ed-56ab-4c27-87c6-de3c0255eb9c.jpeg)
1624
1625
1626

### CLIP Guided Img2Img Stable Diffusion

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1627
CLIP guided Img2Img stable diffusion can help to generate more realistic images with an initial image
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
by guiding stable diffusion at every denoising step with an additional CLIP model.

The following code requires roughly 12GB of GPU RAM.

```python
from io import BytesIO
import requests
import torch
from diffusers import DiffusionPipeline
from PIL import Image
1638
from transformers import CLIPImageProcessor, CLIPModel
1639

1640
feature_extractor = CLIPImageProcessor.from_pretrained(
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
    "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
)
clip_model = CLIPModel.from_pretrained(
    "laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16
)
guided_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    # custom_pipeline="clip_guided_stable_diffusion",
    custom_pipeline="/home/njindal/diffusers/examples/community/clip_guided_stable_diffusion.py",
    clip_model=clip_model,
    feature_extractor=feature_extractor,
    torch_dtype=torch.float16,
)
guided_pipeline.enable_attention_slicing()
guided_pipeline = guided_pipeline.to("cuda")
prompt = "fantasy book cover, full moon, fantasy forest landscape, golden vector elements, fantasy magic, dark light night, intricate, elegant, sharp focus, illustration, highly detailed, digital painting, concept art, matte, art by WLOP and Artgerm and Albert Bierstadt, masterpiece"
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
image = guided_pipeline(
    prompt=prompt,
    num_inference_steps=30,
    image=init_image,
    strength=0.75,
    guidance_scale=7.5,
    clip_guidance_scale=100,
    num_cutouts=4,
    use_cutouts=False,
).images[0]
display(image)
```

Init Image

![img2img_init_clip_guidance](https://huggingface.co/datasets/njindal/images/resolve/main/clip_guided_img2img_init.jpg)

Output Image

![img2img_clip_guidance](https://huggingface.co/datasets/njindal/images/resolve/main/clip_guided_img2img.jpg)
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689

### TensorRT Text2Image Stable Diffusion Pipeline

The TensorRT Pipeline can be used to accelerate the Text2Image Stable Diffusion Inference run.

NOTE: The ONNX conversions and TensorRT engine build may take up to 30 minutes.

```python
import torch
from diffusers import DDIMScheduler
1690
from diffusers.pipelines import DiffusionPipeline
1691
1692

# Use the DDIMScheduler scheduler here instead
1693
scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="scheduler")
1694

1695
1696
1697
1698
1699
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1",
    custom_pipeline="stable_diffusion_tensorrt_txt2img",
    variant='fp16',
    torch_dtype=torch.float16,
    scheduler=scheduler,)
1700
1701

# re-use cached folder to save ONNX models and TensorRT Engines
1702
pipe.set_cached_folder("stabilityai/stable-diffusion-2-1", variant='fp16',)
1703
1704
1705
1706
1707
1708
1709

pipe = pipe.to("cuda")

prompt = "a beautiful photograph of Mt. Fuji during cherry blossom"
image = pipe(prompt).images[0]
image.save('tensorrt_mt_fuji.png')
```
1710
1711
1712
1713

### EDICT Image Editing Pipeline

This pipeline implements the text-guided image editing approach from the paper [EDICT: Exact Diffusion Inversion via Coupled Transformations](https://arxiv.org/abs/2211.12446). You have to pass:
1714

1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
- (`PIL`) `image` you want to edit.
- `base_prompt`: the text prompt describing the current image (before editing).
- `target_prompt`: the text prompt describing with the edits.

```python
from diffusers import DiffusionPipeline, DDIMScheduler
from transformers import CLIPTextModel
import torch, PIL, requests
from io import BytesIO
from IPython.display import display

def center_crop_and_resize(im):

    width, height = im.size
    d = min(width, height)
    left = (width - d) / 2
    upper = (height - d) / 2
    right = (width + d) / 2
    lower = (height + d) / 2

    return im.crop((left, upper, right, lower)).resize((512, 512))

torch_dtype = torch.float16
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# scheduler and text_encoder param values as in the paper
scheduler = DDIMScheduler(
        num_train_timesteps=1000,
        beta_start=0.00085,
        beta_end=0.012,
        beta_schedule="scaled_linear",
        set_alpha_to_one=False,
        clip_sample=False,
)

text_encoder = CLIPTextModel.from_pretrained(
    pretrained_model_name_or_path="openai/clip-vit-large-patch14",
    torch_dtype=torch_dtype,
)

# initialize pipeline
pipeline = DiffusionPipeline.from_pretrained(
    pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4",
    custom_pipeline="edict_pipeline",
1759
    variant="fp16",
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
    scheduler=scheduler,
    text_encoder=text_encoder,
    leapfrog_steps=True,
    torch_dtype=torch_dtype,
).to(device)

# download image
image_url = "https://huggingface.co/datasets/Joqsan/images/resolve/main/imagenet_dog_1.jpeg"
response = requests.get(image_url)
image = PIL.Image.open(BytesIO(response.content))

# preprocess it
cropped_image = center_crop_and_resize(image)

# define the prompts
base_prompt = "A dog"
target_prompt = "A golden retriever"

# run the pipeline
result_image = pipeline(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1780
1781
      base_prompt=base_prompt,
      target_prompt=target_prompt,
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
      image=cropped_image,
)

display(result_image)
```

Init Image

![img2img_init_edict_text_editing](https://huggingface.co/datasets/Joqsan/images/resolve/main/imagenet_dog_1.jpeg)

Output Image

![img2img_edict_text_editing](https://huggingface.co/datasets/Joqsan/images/resolve/main/imagenet_dog_1_cropped_generated.png)
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812

### Stable Diffusion RePaint

This pipeline uses the [RePaint](https://arxiv.org/abs/2201.09865) logic on the latent space of stable diffusion. It can
be used similarly to other image inpainting pipelines but does not rely on a specific inpainting model. This means you can use
models that are not specifically created for inpainting.

Make sure to use the ```RePaintScheduler``` as shown in the example below.

Disclaimer: The mask gets transferred into latent space, this may lead to unexpected changes on the edge of the masked part.
The inference time is a lot slower.

```py
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionPipeline, RePaintScheduler
1813

1814
1815
1816
1817
1818
1819
1820
1821
def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))
mask_image = PIL.ImageOps.invert(mask_image)
1822
pipe = StableDiffusionPipeline.from_pretrained(
1823
1824
1825
1826
1827
1828
    "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16, custom_pipeline="stable_diffusion_repaint",
)
pipe.scheduler = RePaintScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0]
1829
```
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842

### TensorRT Image2Image Stable Diffusion Pipeline

The TensorRT Pipeline can be used to accelerate the Image2Image Stable Diffusion Inference run.

NOTE: The ONNX conversions and TensorRT engine build may take up to 30 minutes.

```python
import requests
from io import BytesIO
from PIL import Image
import torch
from diffusers import DDIMScheduler
1843
from diffusers import DiffusionPipeline
1844
1845
1846
1847
1848

# Use the DDIMScheduler scheduler here instead
scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1",
                                            subfolder="scheduler")

1849
1850
1851
1852
1853
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1",
                                            custom_pipeline="stable_diffusion_tensorrt_img2img",
                                            variant='fp16',
                                            torch_dtype=torch.float16,
                                            scheduler=scheduler,)
1854
1855

# re-use cached folder to save ONNX models and TensorRT Engines
1856
pipe.set_cached_folder("stabilityai/stable-diffusion-2-1", variant='fp16',)
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866

pipe = pipe.to("cuda")

url = "https://pajoca.com/wp-content/uploads/2022/09/tekito-yamakawa-1.png"
response = requests.get(url)
input_image = Image.open(BytesIO(response.content)).convert("RGB")
prompt = "photorealistic new zealand hills"
image = pipe(prompt, image=input_image, strength=0.75,).images[0]
image.save('tensorrt_img2img_new_zealand_hills.png')
```
1867

1868
### Stable Diffusion BoxDiff
1869
BoxDiff is a training-free method for controlled generation with bounding box coordinates. It should work with any Stable Diffusion model. Below shows an example with `stable-diffusion-2-1-base`.
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
```py
import torch
from PIL import Image, ImageDraw
from copy import deepcopy

from examples.community.pipeline_stable_diffusion_boxdiff import StableDiffusionBoxDiffPipeline

def draw_box_with_text(img, boxes, names):
    colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"]
    img_new = deepcopy(img)
    draw = ImageDraw.Draw(img_new)

    W, H = img.size
    for bid, box in enumerate(boxes):
        draw.rectangle([box[0] * W, box[1] * H, box[2] * W, box[3] * H], outline=colors[bid % len(colors)], width=4)
        draw.text((box[0] * W, box[1] * H), names[bid], fill=colors[bid % len(colors)])
    return img_new

pipe = StableDiffusionBoxDiffPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-1-base",
    torch_dtype=torch.float16,
)
pipe.to("cuda")

# example 1
prompt = "as the aurora lights up the sky, a herd of reindeer leisurely wanders on the grassy meadow, admiring the breathtaking view, a serene lake quietly reflects the magnificent display, and in the distance, a snow-capped mountain stands majestically, fantasy, 8k, highly detailed"
phrases = [
    "aurora",
    "reindeer",
    "meadow",
    "lake",
    "mountain"
]
boxes = [[1,3,512,202], [75,344,421,495], [1,327,508,507], [2,217,507,341], [1,135,509,242]]

# example 2
# prompt = "A rabbit wearing sunglasses looks very proud"
# phrases = ["rabbit", "sunglasses"]
# boxes = [[67,87,366,512], [66,130,364,262]]

boxes = [[x / 512 for x in box] for box in boxes]

images = pipe(
    prompt,
    boxdiff_phrases=phrases,
    boxdiff_boxes=boxes,
    boxdiff_kwargs={
        "attention_res": 16,
        "normalize_eot": True
    },
    num_inference_steps=50,
    guidance_scale=7.5,
    generator=torch.manual_seed(42),
    safety_checker=None
).images

draw_box_with_text(images[0], boxes, phrases).save("output.png")
```


1930
1931
### Stable Diffusion Reference

1932
This pipeline uses the Reference Control. Refer to the [sd-webui-controlnet discussion: Reference-only Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1236)[sd-webui-controlnet discussion: Reference-adain Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1280).
1933

1934
Based on [this issue](https://github.com/huggingface/diffusers/issues/3566),
1935

1936
- `EulerAncestralDiscreteScheduler` got poor results.
1937
1938
1939
1940
1941
1942
1943
1944
1945

```py
import torch
from diffusers import UniPCMultistepScheduler
from diffusers.utils import load_image

input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")

pipe = StableDiffusionReferencePipeline.from_pretrained(
1946
       "stable-diffusion-v1-5/stable-diffusion-v1-5",
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
       safety_checker=None,
       torch_dtype=torch.float16
       ).to('cuda:0')

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

result_img = pipe(ref_image=input_image,
      prompt="1girl",
      num_inference_steps=20,
      reference_attn=True,
      reference_adain=True).images[0]
```

Reference Image

![reference_image](https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png)

Output Image of `reference_attn=True` and `reference_adain=False`

![output_image](https://github.com/huggingface/diffusers/assets/24734142/813b5c6a-6d89-46ba-b7a4-2624e240eea5)

Output Image of `reference_attn=False` and `reference_adain=True`

![output_image](https://github.com/huggingface/diffusers/assets/24734142/ffc90339-9ef0-4c4d-a544-135c3e5644da)

Output Image of `reference_attn=True` and `reference_adain=True`

![output_image](https://github.com/huggingface/diffusers/assets/24734142/3c5255d6-867d-4d35-b202-8dfd30cc6827)
1975

1976
1977
1978
1979
### Stable Diffusion ControlNet Reference

This pipeline uses the Reference Control with ControlNet. Refer to the [sd-webui-controlnet discussion: Reference-only Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1236)[sd-webui-controlnet discussion: Reference-adain Control](https://github.com/Mikubill/sd-webui-controlnet/discussions/1280).

1980
Based on [this issue](https://github.com/huggingface/diffusers/issues/3566),
1981

1982
1983
- `EulerAncestralDiscreteScheduler` got poor results.
- `guess_mode=True` works well for ControlNet v1.1
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002

```py
import cv2
import torch
import numpy as np
from PIL import Image
from diffusers import UniPCMultistepScheduler
from diffusers.utils import load_image

input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")

# get canny image
image = cv2.Canny(np.array(input_image), 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)

controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetReferencePipeline.from_pretrained(
2003
       "stable-diffusion-v1-5/stable-diffusion-v1-5",
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
       controlnet=controlnet,
       safety_checker=None,
       torch_dtype=torch.float16
       ).to('cuda:0')

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

result_img = pipe(ref_image=input_image,
      prompt="1girl",
      image=canny_image,
      num_inference_steps=20,
      reference_attn=True,
      reference_adain=True).images[0]
```

Reference Image

![reference_image](https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png)

Output Image

![output_image](https://github.com/huggingface/diffusers/assets/24734142/7b9a5830-f173-4b92-b0cf-73d0e9c01d60)

2027
2028
### Stable Diffusion on IPEX

2029
This diffusion pipeline aims to accelerate the inference of Stable-Diffusion on Intel Xeon CPUs with BF16/FP32 precision using [IPEX](https://github.com/intel/intel-extension-for-pytorch).
2030
2031

To use this pipeline, you need to:
2032

2033
2034
1. Install [IPEX](https://github.com/intel/intel-extension-for-pytorch)

2035
**Note:** For each PyTorch release, there is a corresponding release of the IPEX. Here is the mapping relationship. It is recommended to install PyTorch/IPEX2.0 to get the best performance.
2036
2037
2038
2039
2040
2041
2042

|PyTorch Version|IPEX Version|
|--|--|
|[v2.0.\*](https://github.com/pytorch/pytorch/tree/v2.0.1 "v2.0.1")|[v2.0.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.100+cpu)|
|[v1.13.\*](https://github.com/pytorch/pytorch/tree/v1.13.0 "v1.13.0")|[v1.13.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v1.13.100+cpu)|

You can simply use pip to install IPEX with the latest version.
2043

2044
```sh
2045
2046
python -m pip install intel_extension_for_pytorch
```
2047

2048
**Note:** To install a specific version, run with the following command:
2049

2050
```sh
2051
2052
2053
python -m pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
```

2054
2. After pipeline initialization, `prepare_for_ipex()` should be called to enable IPEX acceleration. Supported inference datatypes are Float32 and BFloat16.
2055
2056

**Note:** The setting of generated image height/width for `prepare_for_ipex()` should be same as the setting of pipeline inference.
2057

2058
```python
2059
pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_ipex")
2060
# For Float32
2061
pipe.prepare_for_ipex(prompt, dtype=torch.float32, height=512, width=512) # value of image height/width should be consistent with the pipeline inference
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2062
# For BFloat16
2063
pipe.prepare_for_ipex(prompt, dtype=torch.bfloat16, height=512, width=512) # value of image height/width should be consistent with the pipeline inference
2064
2065
2066
```

Then you can use the ipex pipeline in a similar way to the default stable diffusion pipeline.
2067

2068
2069
```python
# For Float32
2070
image = pipe(prompt, num_inference_steps=20, height=512, width=512).images[0] # value of image height/width should be consistent with 'prepare_for_ipex()'
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2071
# For BFloat16
2072
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
2073
    image = pipe(prompt, num_inference_steps=20, height=512, width=512).images[0] # value of image height/width should be consistent with 'prepare_for_ipex()'
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
```

The following code compares the performance of the original stable diffusion pipeline with the ipex-optimized pipeline.

```python
import torch
import intel_extension_for_pytorch as ipex
from diffusers import StableDiffusionPipeline
import time

prompt = "sailing ship in storm by Rembrandt"
2085
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
2086
2087
2088
2089
2090
# Helper function for time evaluation
def elapsed_time(pipeline, nb_pass=3, num_inference_steps=20):
    # warmup
    for _ in range(2):
        images = pipeline(prompt, num_inference_steps=num_inference_steps, height=512, width=512).images
2091
    # time evaluation
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
    start = time.time()
    for _ in range(nb_pass):
        pipeline(prompt, num_inference_steps=num_inference_steps, height=512, width=512)
    end = time.time()
    return (end - start) / nb_pass

##############     bf16 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe = DiffusionPipeline.from_pretrained(model_id, custom_pipeline="stable_diffusion_ipex")
pipe.prepare_for_ipex(prompt, dtype=torch.bfloat16, height=512, width=512)

# 2. Original Pipeline initialization
pipe2 = StableDiffusionPipeline.from_pretrained(model_id)

# 3. Compare performance between Original Pipeline and IPEX Pipeline
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
    latency = elapsed_time(pipe)
    print("Latency of StableDiffusionIPEXPipeline--bf16", latency)
    latency = elapsed_time(pipe2)
2112
    print("Latency of StableDiffusionPipeline--bf16", latency)
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126

##############     fp32 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe3 = DiffusionPipeline.from_pretrained(model_id, custom_pipeline="stable_diffusion_ipex")
pipe3.prepare_for_ipex(prompt, dtype=torch.float32, height=512, width=512)

# 2. Original Pipeline initialization
pipe4 = StableDiffusionPipeline.from_pretrained(model_id)

# 3. Compare performance between Original Pipeline and IPEX Pipeline
latency = elapsed_time(pipe3)
print("Latency of StableDiffusionIPEXPipeline--fp32", latency)
latency = elapsed_time(pipe4)
2127
print("Latency of StableDiffusionPipeline--fp32", latency)
2128
```
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2129

2130
2131
### Stable Diffusion XL on IPEX

2132
This diffusion pipeline aims to accelerate the inference of Stable-Diffusion XL on Intel Xeon CPUs with BF16/FP32 precision using [IPEX](https://github.com/intel/intel-extension-for-pytorch).
2133
2134

To use this pipeline, you need to:
2135

2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
1. Install [IPEX](https://github.com/intel/intel-extension-for-pytorch)

**Note:** For each PyTorch release, there is a corresponding release of IPEX. Here is the mapping relationship. It is recommended to install Pytorch/IPEX2.0 to get the best performance.

|PyTorch Version|IPEX Version|
|--|--|
|[v2.0.\*](https://github.com/pytorch/pytorch/tree/v2.0.1 "v2.0.1")|[v2.0.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v2.0.100+cpu)|
|[v1.13.\*](https://github.com/pytorch/pytorch/tree/v1.13.0 "v1.13.0")|[v1.13.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v1.13.100+cpu)|

You can simply use pip to install IPEX with the latest version.
2146

2147
```sh
2148
2149
python -m pip install intel_extension_for_pytorch
```
2150

2151
**Note:** To install a specific version, run with the following command:
2152

2153
```sh
2154
2155
2156
python -m pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
```

2157
2. After pipeline initialization, `prepare_for_ipex()` should be called to enable IPEX acceleration. Supported inference datatypes are Float32 and BFloat16.
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170

**Note:** The values of `height` and `width` used during preparation with `prepare_for_ipex()` should be the same when running inference with the prepared pipeline.

```python
pipe = StableDiffusionXLPipelineIpex.from_pretrained("stabilityai/sdxl-turbo", low_cpu_mem_usage=True, use_safetensors=True)
# value of image height/width should be consistent with the pipeline inference
# For Float32
pipe.prepare_for_ipex(torch.float32, prompt, height=512, width=512)
# For BFloat16
pipe.prepare_for_ipex(torch.bfloat16, prompt, height=512, width=512)
```

Then you can use the ipex pipeline in a similar way to the default stable diffusion xl pipeline.
2171

2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
```python
# value of image height/width should be consistent with 'prepare_for_ipex()'
# For Float32
image = pipe(prompt, num_inference_steps=num_inference_steps, height=512, width=512, guidance_scale=guidance_scale).images[0]
# For BFloat16
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
    image = pipe(prompt, num_inference_steps=num_inference_steps, height=512, width=512, guidance_scale=guidance_scale).images[0]
```

The following code compares the performance of the original stable diffusion xl pipeline with the ipex-optimized pipeline.
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2182
By using this optimized pipeline, we can get about 1.4-2 times performance boost with BFloat16 on fourth generation of Intel Xeon CPUs,
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
code-named Sapphire Rapids.

```python
import torch
from diffusers import StableDiffusionXLPipeline
from pipeline_stable_diffusion_xl_ipex import StableDiffusionXLPipelineIpex
import time

prompt = "sailing ship in storm by Rembrandt"
model_id = "stabilityai/sdxl-turbo"
steps = 4

# Helper function for time evaluation
def elapsed_time(pipeline, nb_pass=3, num_inference_steps=1):
    # warmup
    for _ in range(2):
        images = pipeline(prompt, num_inference_steps=num_inference_steps, height=512, width=512, guidance_scale=0.0).images
2200
    # time evaluation
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
    start = time.time()
    for _ in range(nb_pass):
        pipeline(prompt, num_inference_steps=num_inference_steps, height=512, width=512, guidance_scale=0.0)
    end = time.time()
    return (end - start) / nb_pass

##############     bf16 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe = StableDiffusionXLPipelineIpex.from_pretrained(model_id, low_cpu_mem_usage=True, use_safetensors=True)
pipe.prepare_for_ipex(torch.bfloat16, prompt, height=512, width=512)

# 2. Original Pipeline initialization
pipe2 = StableDiffusionXLPipeline.from_pretrained(model_id, low_cpu_mem_usage=True, use_safetensors=True)

# 3. Compare performance between Original Pipeline and IPEX Pipeline
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
    latency = elapsed_time(pipe, num_inference_steps=steps)
    print("Latency of StableDiffusionXLPipelineIpex--bf16", latency, "s for total", steps, "steps")
    latency = elapsed_time(pipe2, num_inference_steps=steps)
    print("Latency of StableDiffusionXLPipeline--bf16", latency, "s for total", steps, "steps")

##############     fp32 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe3 = StableDiffusionXLPipelineIpex.from_pretrained(model_id, low_cpu_mem_usage=True, use_safetensors=True)
pipe3.prepare_for_ipex(torch.float32, prompt, height=512, width=512)

# 2. Original Pipeline initialization
pipe4 = StableDiffusionXLPipeline.from_pretrained(model_id, low_cpu_mem_usage=True, use_safetensors=True)

# 3. Compare performance between Original Pipeline and IPEX Pipeline
latency = elapsed_time(pipe3, num_inference_steps=steps)
print("Latency of StableDiffusionXLPipelineIpex--fp32", latency, "s for total", steps, "steps")
latency = elapsed_time(pipe4, num_inference_steps=steps)
2236
print("Latency of StableDiffusionXLPipeline--fp32", latency, "s for total", steps, "steps")
2237
2238
```

2239
2240
2241
2242
### CLIP Guided Images Mixing With Stable Diffusion

![clip_guided_images_mixing_examples](https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/main.png)

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2243
2244
CLIP guided stable diffusion images mixing pipeline allows to combine two images using standard diffusion models.
This approach is using (optional) CoCa model to avoid writing image description.
2245
2246
[More code examples](https://github.com/TheDenk/images_mixing)

2247
2248
### Stable Diffusion XL Long Weighted Prompt Pipeline

2249
This SDXL pipeline supports unlimited length prompt and negative prompt, compatible with A1111 prompt weighted style.
2250

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2251
You can provide both `prompt` and `prompt_2`. If only one prompt is provided, `prompt_2` will be a copy of the provided `prompt`. Here is a sample code to use this pipeline.
2252
2253
2254

```python
from diffusers import DiffusionPipeline
2255
from diffusers.utils import load_image
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
import torch

pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0"
    , torch_dtype       = torch.float16
    , use_safetensors   = True
    , variant           = "fp16"
    , custom_pipeline   = "lpw_stable_diffusion_xl",
)

2266
2267
prompt = "photo of a cute (white) cat running on the grass" * 20
prompt2 = "chasing (birds:1.5)" * 20
2268
2269
2270
2271
prompt = f"{prompt},{prompt2}"
neg_prompt = "blur, low quality, carton, animate"

pipe.to("cuda")
2272
2273
2274
2275
2276

# text2img
t2i_images = pipe(
    prompt=prompt,
    negative_prompt=neg_prompt,
2277
).images  # alternatively, you can call the .text2img() function
2278
2279

# img2img
2280
input_image = load_image("/path/to/local/image.png")  # or URL to your input image
2281
2282
2283
2284
i2i_images = pipe.img2img(
  prompt=prompt,
  negative_prompt=neg_prompt,
  image=input_image,
2285
  strength=0.8,  # higher strength will result in more variation compared to original image
2286
2287
2288
).images

# inpaint
2289
input_mask = load_image("/path/to/local/mask.png")  # or URL to your input inpainting mask
2290
2291
2292
2293
2294
inpaint_images = pipe.inpaint(
  prompt="photo of a cute (black) cat running on the grass" * 20,
  negative_prompt=neg_prompt,
  image=input_image,
  mask=input_mask,
2295
  strength=0.6,  # higher strength will result in more variation compared to original image
2296
).images
2297
2298
2299

pipe.to("cpu")
torch.cuda.empty_cache()
2300

2301
from IPython.display import display  # assuming you are using this code in a notebook
2302
2303
2304
display(t2i_images[0])
display(i2i_images[0])
display(inpaint_images[0])
2305
2306
```

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2307
In the above code, the `prompt2` is appended to the `prompt`, which is more than 77 tokens. "birds" are showing up in the result.
2308
2309
![Stable Diffusion XL Long Weighted Prompt Pipeline sample](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_long_weighted_prompt.png)

2310
2311
For more results, checkout [PR #6114](https://github.com/huggingface/diffusers/pull/6114).

2312
### Example Images Mixing (with CoCa)
2313

2314
2315
2316
2317
2318
2319
2320
2321
2322
```python
import requests
from io import BytesIO

import PIL
import torch
import open_clip
from open_clip import SimpleTokenizer
from diffusers import DiffusionPipeline
2323
from transformers import CLIPImageProcessor, CLIPModel
2324
2325
2326
2327
2328
2329
2330


def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")

# Loading additional models
2331
feature_extractor = CLIPImageProcessor.from_pretrained(
2332
2333
2334
2335
2336
2337
2338
2339
2340
    "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
)
clip_model = CLIPModel.from_pretrained(
    "laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16
)
coca_model = open_clip.create_model('coca_ViT-L-14', pretrained='laion2B-s13B-b90k').to('cuda')
coca_model.dtype = torch.float16
coca_transform = open_clip.image_transform(
    coca_model.visual.image_size,
2341
2342
2343
    is_train=False,
    mean=getattr(coca_model.visual, 'image_mean', None),
    std=getattr(coca_model.visual, 'image_std', None),
2344
2345
2346
)
coca_tokenizer = SimpleTokenizer()

2347
# Pipeline creating
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
mixing_pipeline = DiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4",
    custom_pipeline="clip_guided_images_mixing_stable_diffusion",
    clip_model=clip_model,
    feature_extractor=feature_extractor,
    coca_model=coca_model,
    coca_tokenizer=coca_tokenizer,
    coca_transform=coca_transform,
    torch_dtype=torch.float16,
)
mixing_pipeline.enable_attention_slicing()
mixing_pipeline = mixing_pipeline.to("cuda")

2361
# Pipeline running
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2362
generator = torch.Generator(device="cuda").manual_seed(17)
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386

def download_image(url):
    response = requests.get(url)
    return PIL.Image.open(BytesIO(response.content)).convert("RGB")

content_image = download_image("https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/boromir.jpg")
style_image = download_image("https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/gigachad.jpg")

pipe_images = mixing_pipeline(
    num_inference_steps=50,
    content_image=content_image,
    style_image=style_image,
    noise_strength=0.65,
    slerp_latent_style_strength=0.9,
    slerp_prompt_style_strength=0.1,
    slerp_clip_image_style_strength=0.1,
    guidance_scale=9.0,
    batch_size=1,
    clip_guidance_scale=100,
    generator=generator,
).images
```

![image_mixing_result](https://huggingface.co/datasets/TheDenk/images_mixing/resolve/main/boromir_gigachad.png)
2387

2388
### Stable Diffusion Mixture Tiling
2389
2390

This pipeline uses the Mixture. Refer to the [Mixture](https://arxiv.org/abs/2302.02412) paper for more details.
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2391

2392
```python
2393
from diffusers import LMSDiscreteScheduler, DiffusionPipeline
2394

2395
# Create scheduler and model (similar to StableDiffusionPipeline)
2396
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
2397
2398
pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", scheduler=scheduler, custom_pipeline="mixture_tiling")
pipeline.to("cuda")
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415

# Mixture of Diffusers generation
image = pipeline(
    prompt=[[
        "A charming house in the countryside, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
        "A dirt road in the countryside crossing pastures, by jakub rozalski, sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece",
        "An old and rusty giant robot lying on a dirt road, by jakub rozalski, dark sunset lighting, elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece"
    ]],
    tile_height=640,
    tile_width=640,
    tile_row_overlap=0,
    tile_col_overlap=256,
    guidance_scale=8,
    seed=7178915308,
    num_inference_steps=50,
)["images"][0]
```
2416

2417
2418
![mixture_tiling_results](https://huggingface.co/datasets/kadirnar/diffusers_readme_images/resolve/main/mixture_tiling.png)

2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
### TensorRT Inpainting Stable Diffusion Pipeline

The TensorRT Pipeline can be used to accelerate the Inpainting Stable Diffusion Inference run.

NOTE: The ONNX conversions and TensorRT engine build may take up to 30 minutes.

```python
import requests
from io import BytesIO
from PIL import Image
import torch
from diffusers import PNDMScheduler
2431
from diffusers.pipelines import DiffusionPipeline
2432
2433
2434
2435

# Use the PNDMScheduler scheduler here instead
scheduler = PNDMScheduler.from_pretrained("stabilityai/stable-diffusion-2-inpainting", subfolder="scheduler")

2436
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-inpainting",
2437
    custom_pipeline="stable_diffusion_tensorrt_inpaint",
2438
    variant='fp16',
2439
2440
2441
2442
2443
    torch_dtype=torch.float16,
    scheduler=scheduler,
    )

# re-use cached folder to save ONNX models and TensorRT Engines
2444
pipe.set_cached_folder("stabilityai/stable-diffusion-2-inpainting", variant='fp16',)
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458

pipe = pipe.to("cuda")

url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
response = requests.get(url)
input_image = Image.open(BytesIO(response.content)).convert("RGB")

mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
response = requests.get(mask_url)
mask_image = Image.open(BytesIO(response.content)).convert("RGB")

prompt = "a mecha robot sitting on a bench"
image = pipe(prompt, image=input_image, mask_image=mask_image, strength=0.75,).images[0]
image.save('tensorrt_inpaint_mecha_robot.png')
2459
2460
2461
2462
2463
```

### Stable Diffusion Mixture Canvas

This pipeline uses the Mixture. Refer to the [Mixture](https://arxiv.org/abs/2302.02412) paper for more details.
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2464

2465
2466
2467
2468
2469
2470
2471
2472
2473
```python
from PIL import Image
from diffusers import LMSDiscreteScheduler, DiffusionPipeline
from diffusers.pipelines.pipeline_utils import Image2ImageRegion, Text2ImageRegion, preprocess_image


# Load and preprocess guide image
iic_image = preprocess_image(Image.open("input_image.png").convert("RGB"))

2474
# Create scheduler and model (similar to StableDiffusionPipeline)
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", scheduler=scheduler).to("cuda:0", custom_pipeline="mixture_canvas")
pipeline.to("cuda")

# Mixture of Diffusers generation
output = pipeline(
    canvas_height=800,
    canvas_width=352,
    regions=[
        Text2ImageRegion(0, 800, 0, 352, guidance_scale=8,
2485
            prompt=f"best quality, masterpiece, WLOP, sakimichan, art contest winner on pixiv, 8K, intricate details, wet effects, rain drops, ethereal, mysterious, futuristic, UHD, HDR, cinematic lighting, in a beautiful forest, rainy day, award winning, trending on artstation, beautiful confident cheerful young woman, wearing a futuristic sleeveless dress, ultra beautiful detailed  eyes, hyper-detailed face, complex,  perfect, model,  textured,  chiaroscuro, professional make-up, realistic, figure in frame, "),
2486
2487
2488
2489
2490
2491
        Image2ImageRegion(352-800, 352, 0, 352, reference_image=iic_image, strength=1.0),
    ],
    num_inference_steps=100,
    seed=5525475061,
)["images"][0]
```
2492

2493
2494
![Input_Image](https://huggingface.co/datasets/kadirnar/diffusers_readme_images/resolve/main/input_image.png)
![mixture_canvas_results](https://huggingface.co/datasets/kadirnar/diffusers_readme_images/resolve/main/canvas.png)
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507

### IADB pipeline

This pipeline is the implementation of the [α-(de)Blending: a Minimalist Deterministic Diffusion Model](https://arxiv.org/abs/2305.03486) paper.
It is a simple and minimalist diffusion model.

The following code shows how to use the IADB pipeline to generate images using a pretrained celebahq-256 model.

```python
pipeline_iadb = DiffusionPipeline.from_pretrained("thomasc4/iadb-celebahq-256", custom_pipeline='iadb')

pipeline_iadb = pipeline_iadb.to('cuda')

2508
output = pipeline_iadb(batch_size=4, num_inference_steps=128)
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
for i in range(len(output[0])):
    plt.imshow(output[0][i])
    plt.show()
```

Sampling with the IADB formulation is easy, and can be done in a few lines (the pipeline already implements it):

```python
def sample_iadb(model, x0, nb_step):
    x_alpha = x0
    for t in range(nb_step):
        alpha = (t/nb_step)
        alpha_next =((t+1)/nb_step)

        d = model(x_alpha, torch.tensor(alpha, device=x_alpha.device))['sample']
        x_alpha = x_alpha + (alpha_next-alpha)*d

    return x_alpha
```

The training loop is also straightforward:

```python
# Training loop
while True:
    x0 = sample_noise()
    x1 = sample_dataset()

    alpha = torch.rand(batch_size)

    # Blend
    x_alpha = (1-alpha) * x0 + alpha * x1

    # Loss
    loss = torch.sum((D(x_alpha, alpha)- (x1-x0))**2)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561

### Zero1to3 pipeline

This pipeline is the implementation of the [Zero-1-to-3: Zero-shot One Image to 3D Object](https://arxiv.org/abs/2303.11328) paper.
The original pytorch-lightning [repo](https://github.com/cvlab-columbia/zero123) and a diffusers [repo](https://github.com/kxhit/zero123-hf).

The following code shows how to use the Zero1to3 pipeline to generate novel view synthesis images using a pretrained stable diffusion model.

```python
import os
import torch
from pipeline_zero1to3 import Zero1to3StableDiffusionPipeline
from diffusers.utils import load_image

2562
model_id = "kxic/zero123-165000"  # zero123-105000, zero123-165000, zero123-xl
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573

pipe = Zero1to3StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)

pipe.enable_xformers_memory_efficient_attention()
pipe.enable_vae_tiling()
pipe.enable_attention_slicing()
pipe = pipe.to("cuda")

num_images_per_prompt = 4

# test inference pipeline
2574
# x y z, Polar angle (vertical rotation in degrees)  Azimuth angle (horizontal rotation in degrees)  Zoom (relative distance from center)
2575
2576
2577
2578
2579
2580
2581
2582
query_pose1 = [-75.0, 100.0, 0.0]
query_pose2 = [-20.0, 125.0, 0.0]
query_pose3 = [-55.0, 90.0, 0.0]

# load image
# H, W = (256, 256) # H, W = (512, 512)   # zero123 training is 256,256

# for batch input
2583
2584
2585
input_image1 = load_image("./demo/4_blackarm.png")  # load_image("https://cvlab-zero123-live.hf.space/file=/home/user/app/configs/4_blackarm.png")
input_image2 = load_image("./demo/8_motor.png")  # load_image("https://cvlab-zero123-live.hf.space/file=/home/user/app/configs/8_motor.png")
input_image3 = load_image("./demo/7_london.png")  # load_image("https://cvlab-zero123-live.hf.space/file=/home/user/app/configs/7_london.png")
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
input_images = [input_image1, input_image2, input_image3]
query_poses = [query_pose1, query_pose2, query_pose3]

# # for single input
# H, W = (256, 256)
# input_images = [input_image2.resize((H, W), PIL.Image.NEAREST)]
# query_poses = [query_pose2]


# better do preprocessing
from gradio_new import preprocess_image, create_carvekit_interface
import numpy as np
import PIL.Image as Image

pre_images = []
models = dict()
print('Instantiating Carvekit HiInterface...')
models['carvekit'] = create_carvekit_interface()
if not isinstance(input_images, list):
    input_images = [input_images]
for raw_im in input_images:
    input_im = preprocess_image(models, raw_im, True)
    H, W = input_im.shape[:2]
    pre_images.append(Image.fromarray((input_im * 255.0).astype(np.uint8)))
input_images = pre_images

# infer pipeline, in original zero123 num_inference_steps=76
images = pipe(input_imgs=input_images, prompt_imgs=input_images, poses=query_poses, height=H, width=W,
              guidance_scale=3.0, num_images_per_prompt=num_images_per_prompt, num_inference_steps=50).images

# save imgs
log_dir = "logs"
os.makedirs(log_dir, exist_ok=True)
bs = len(input_images)
i = 0
for obj in range(bs):
    for idx in range(num_images_per_prompt):
        images[i].save(os.path.join(log_dir,f"obj{obj}_{idx}.jpg"))
        i += 1
```

2627
2628
### Stable Diffusion XL Reference

2629
This pipeline uses the Reference. Refer to the [Stable Diffusion Reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-reference) section for more information.
2630
2631
2632

```py
import torch
2633
# from diffusers import DiffusionPipeline
2634
2635
from diffusers.utils import load_image
from diffusers.schedulers import UniPCMultistepScheduler
2636

2637
2638
2639
from .stable_diffusion_xl_reference import StableDiffusionXLReferencePipeline

input_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg")
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656

# pipe = DiffusionPipeline.from_pretrained(
#     "stabilityai/stable-diffusion-xl-base-1.0",
#     custom_pipeline="stable_diffusion_xl_reference",
#     torch_dtype=torch.float16,
#     use_safetensors=True,
#     variant="fp16").to('cuda:0')

pipe = StableDiffusionXLReferencePipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    torch_dtype=torch.float16,
    use_safetensors=True,
    variant="fp16").to('cuda:0')

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

result_img = pipe(ref_image=input_image,
2657
      prompt="a dog",
2658
2659
2660
2661
2662
2663
2664
      num_inference_steps=20,
      reference_attn=True,
      reference_adain=True).images[0]
```

Reference Image

2665
![reference_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg)
2666

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2667
Output Image
2668

2669
`prompt: a dog`
2670

2671
2672
`reference_attn=False, reference_adain=True, num_inference_steps=20`
![Output_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_adain_dog.png)
2673
2674
2675
2676

Reference Image
![reference_image](https://github.com/huggingface/diffusers/assets/34944964/449bdab6-e744-4fb2-9620-d4068d9a741b)

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2677
Output Image
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691

`prompt: A dog`

`reference_attn=True, reference_adain=False, num_inference_steps=20`
![Output_image](https://github.com/huggingface/diffusers/assets/34944964/fff2f16f-6e91-434b-abcc-5259d866c31e)

Reference Image
![reference_image](https://github.com/huggingface/diffusers/assets/34944964/077ed4fe-2991-4b79-99a1-009f056227d1)

Output Image

`prompt: An astronaut riding a lion`

`reference_attn=True, reference_adain=True, num_inference_steps=20`
Shauray Singh's avatar
Shauray Singh committed
2692
2693
![output_image](https://github.com/huggingface/diffusers/assets/34944964/9b2f1aca-886f-49c3-89ec-d2031c8e3670)

2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
### Stable Diffusion XL ControlNet Reference

This pipeline uses the Reference Control and with ControlNet. Refer to the [Stable Diffusion ControlNet Reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-controlnet-reference) and [Stable Diffusion XL Reference](https://github.com/huggingface/diffusers/blob/main/examples/community/README.md#stable-diffusion-xl-reference) sections for more information.

```py
from diffusers import ControlNetModel, AutoencoderKL
from diffusers.schedulers import UniPCMultistepScheduler
from diffusers.utils import load_image
import numpy as np
import torch

import cv2
from PIL import Image

from .stable_diffusion_xl_controlnet_reference import StableDiffusionXLControlNetReferencePipeline

# download an image
canny_image = load_image(
    "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg"
)

ref_image = load_image(
    "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
)

# initialize the models and pipeline
controlnet_conditioning_scale = 0.5  # recommended for good generalization
controlnet = ControlNetModel.from_pretrained(
    "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetReferencePipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
).to("cuda:0")

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

# get canny image
image = np.array(canny_image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)

# generate image
image = pipe(
    prompt="a cat",
    num_inference_steps=20,
    controlnet_conditioning_scale=controlnet_conditioning_scale,
    image=canny_image,
    ref_image=ref_image,
    reference_attn=False,
    reference_adain=True,
    style_fidelity=1.0,
    generator=torch.Generator("cuda").manual_seed(42)
).images[0]
```

Canny ControlNet Image

![canny_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg)

Reference Image

![ref_image](https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png)

Output Image

`prompt: a cat`

`reference_attn=True, reference_adain=True, num_inference_steps=20, style_fidelity=1.0`

![Output_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_attn_adain_canny_cat.png)

`reference_attn=False, reference_adain=True, num_inference_steps=20, style_fidelity=1.0`

![Output_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_adain_canny_cat.png)

`reference_attn=True, reference_adain=False, num_inference_steps=20, style_fidelity=1.0`

![Output_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_attn_canny_cat.png)

Shauray Singh's avatar
Shauray Singh committed
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
### Stable diffusion fabric pipeline

FABRIC approach applicable to a wide range of popular diffusion models, which exploits
the self-attention layer present in the most widely used architectures to condition
the diffusion process on a set of feedback images.

```python
import requests
import torch
from PIL import Image
from io import BytesIO

co63oc's avatar
co63oc committed
2788
from diffusers import DiffusionPipeline
Shauray Singh's avatar
Shauray Singh committed
2789
2790
2791

# load the pipeline
# make sure you're logged in with `huggingface-cli login`
2792
model_id_or_path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
2793
# can also be used with dreamlike-art/dreamlike-photoreal-2.0
Shauray Singh's avatar
Shauray Singh committed
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
pipe = DiffusionPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16, custom_pipeline="pipeline_fabric").to("cuda")

# let's specify a prompt
prompt = "An astronaut riding an elephant"
negative_prompt = "lowres, cropped"

# call the pipeline
image = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.manual_seed(12)
).images[0]

image.save("horse_to_elephant.jpg")

# let's try another example with feedback
url = "https://raw.githubusercontent.com/ChenWu98/cycle-diffusion/main/data/dalle2/A%20black%20colored%20car.png"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")

prompt = "photo, A blue colored car, fish eye"
liked = [init_image]
## same goes with disliked

# call the pipeline
torch.manual_seed(0)
image = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
2824
    liked=liked,
Shauray Singh's avatar
Shauray Singh committed
2825
2826
2827
2828
2829
2830
2831
2832
    num_inference_steps=20,
).images[0]

image.save("black_to_blue.png")
```

*With enough feedbacks you can create very similar high quality images.*

2833
The original codebase can be found at [sd-fabric/fabric](https://github.com/sd-fabric/fabric), and available checkpoints are [dreamlike-art/dreamlike-photoreal-2.0](https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0), [stable-diffusion-v1-5/stable-diffusion-v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5), and [stabilityai/stable-diffusion-2-1](https://huggingface.co/stabilityai/stable-diffusion-2-1) (may give unexpected results).
Shauray Singh's avatar
Shauray Singh committed
2834

2835
Let's have a look at the images (_512X512_)
Shauray Singh's avatar
Shauray Singh committed
2836
2837
2838

| Without Feedback            | With Feedback  (1st image)          |
|---------------------|---------------------|
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2839
| ![Image 1](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/fabric_wo_feedback.jpg) | ![Feedback Image 1](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/fabric_w_feedback.png) |
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865

### Masked Im2Im Stable Diffusion Pipeline

This pipeline reimplements sketch inpaint feature from A1111 for non-inpaint models. The following code reads two images, original and one with mask painted over it. It computes mask as a difference of two images and does the inpainting in the area defined by the mask.

```python
img = PIL.Image.open("./mech.png")
# read image with mask painted over
img_paint = PIL.Image.open("./mech_painted.png")
neq = numpy.any(numpy.array(img) != numpy.array(img_paint), axis=-1)
mask = neq / neq.max()

pipeline = MaskedStableDiffusionImg2ImgPipeline.from_pretrained("frankjoshua/icbinpICantBelieveIts_v8")

# works best with EulerAncestralDiscreteScheduler
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config)
generator = torch.Generator(device="cpu").manual_seed(4)

prompt = "a man wearing a mask"
result = pipeline(prompt=prompt, image=img_paint, mask=mask, strength=0.75,
                  generator=generator)
result.images[0].save("result.png")
```

original image mech.png

2866
<img src=https://github.com/noskill/diffusers/assets/733626/10ad972d-d655-43cb-8de1-039e3d79e849 width="25%" >
2867
2868
2869

image with mask mech_painted.png

2870
<img src=https://github.com/noskill/diffusers/assets/733626/c334466a-67fe-4377-9ff7-f46021b9c224 width="25%" >
2871
2872
2873

result:

2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
<img src=https://github.com/noskill/diffusers/assets/733626/23a0a71d-51db-471e-926a-107ac62512a8 width="25%" >

### Masked Im2Im Stable Diffusion Pipeline XL

This pipeline implements sketch inpaint feature from A1111 for non-inpaint models. The following code reads two images, original and one with mask painted over it. It computes mask as a difference of two images and does the inpainting in the area defined by the mask. Latent code is initialized from the image with the mask by default so the color of the mask affects the result.

```
img = PIL.Image.open("./mech.png")
# read image with mask painted over
img_paint = PIL.Image.open("./mech_painted.png")

pipeline = MaskedStableDiffusionXLImg2ImgPipeline.from_pretrained("frankjoshua/juggernautXL_v8Rundiffusion", dtype=torch.float16)

pipeline.to('cuda')
pipeline.enable_xformers_memory_efficient_attention()

prompt = "a mech warrior wearing a mask"
seed = 8348273636437
for i in range(10):
    generator = torch.Generator(device="cuda").manual_seed(seed + i)
    print(seed + i)
    result = pipeline(prompt=prompt, blur=48, image=img_paint, original_image=img, strength=0.9,
                          generator=generator, num_inference_steps=60, num_images_per_prompt=1)
    im = result.images[0]
    im.save(f"result{i}.png")
```

original image mech.png

<img src=https://github.com/noskill/diffusers/assets/733626/10ad972d-d655-43cb-8de1-039e3d79e849 width="25%" >

image with mask mech_painted.png

<img src=https://github.com/noskill/diffusers/assets/733626/c334466a-67fe-4377-9ff7-f46021b9c224 width="25%" >

2909
result:
2910
2911

<img src=https://github.com/noskill/diffusers/assets/733626/5043fb57-a785-4606-a5ba-a36704f7cb42 width="25%" >
UmerHA's avatar
UmerHA committed
2912
2913
2914
2915

### Prompt2Prompt Pipeline

Prompt2Prompt allows the following edits:
2916

UmerHA's avatar
UmerHA committed
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
- ReplaceEdit (change words in prompt)
- ReplaceEdit with local blend (change words in prompt, keep image part unrelated to changes constant)
- RefineEdit (add words to prompt)
- RefineEdit with local blend (add words to prompt, keep image part unrelated to changes constant)
- ReweightEdit (modulate importance of words)

Here's a full example for `ReplaceEdit``:

```python
import torch
import numpy as np
import matplotlib.pyplot as plt
2929
from diffusers import DiffusionPipeline
UmerHA's avatar
UmerHA committed
2930

2931
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="pipeline_prompt2prompt").to("cuda")
UmerHA's avatar
UmerHA committed
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947

prompts = ["A turtle playing with a ball",
           "A monkey playing with a ball"]

cross_attention_kwargs = {
    "edit_type": "replace",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4
}

outputs = pipe(prompt=prompts, height=512, width=512, num_inference_steps=50, cross_attention_kwargs=cross_attention_kwargs)
```

And abbreviated examples for the other edits:

`ReplaceEdit with local blend`
2948

UmerHA's avatar
UmerHA committed
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
```python
prompts = ["A turtle playing with a ball",
           "A monkey playing with a ball"]

cross_attention_kwargs = {
    "edit_type": "replace",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4,
    "local_blend_words": ["turtle", "monkey"]
}
```

`RefineEdit`
2962

UmerHA's avatar
UmerHA committed
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
```python
prompts = ["A turtle",
           "A turtle in a forest"]

cross_attention_kwargs = {
    "edit_type": "refine",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4,
}
```

`RefineEdit with local blend`
2975

UmerHA's avatar
UmerHA committed
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
```python
prompts = ["A turtle",
           "A turtle in a forest"]

cross_attention_kwargs = {
    "edit_type": "refine",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4,
    "local_blend_words": ["in", "a" , "forest"]
}
```

`ReweightEdit`
2989

UmerHA's avatar
UmerHA committed
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
```python
prompts = ["A smiling turtle"] * 2

edit_kcross_attention_kwargswargs = {
    "edit_type": "reweight",
    "cross_replace_steps": 0.4,
    "self_replace_steps": 0.4,
    "equalizer_words": ["smiling"],
    "equalizer_strengths": [5]
}
```

Side note: See [this GitHub gist](https://gist.github.com/UmerHA/b65bb5fb9626c9c73f3ade2869e36164) if you want to visualize the attention maps.
3003
3004
3005

### Latent Consistency Pipeline

3006
Latent Consistency Models was proposed in [Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference](https://arxiv.org/abs/2310.04378) by _Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, Hang Zhao_ from Tsinghua University.
3007
3008
3009
3010
3011
3012
3013

The abstract of the paper reads as follows:

*Latent Diffusion models (LDMs) have achieved remarkable results in synthesizing high-resolution images. However, the iterative sampling process is computationally intensive and leads to slow generation. Inspired by Consistency Models (song et al.), we propose Latent Consistency Models (LCMs), enabling swift inference with minimal steps on any pre-trained LDMs, including Stable Diffusion (rombach et al). Viewing the guided reverse diffusion process as solving an augmented probability flow ODE (PF-ODE), LCMs are designed to directly predict the solution of such ODE in latent space, mitigating the need for numerous iterations and allowing rapid, high-fidelity sampling. Efficiently distilled from pre-trained classifier-free guided diffusion models, a high-quality 768 x 768 2~4-step LCM takes only 32 A100 GPU hours for training. Furthermore, we introduce Latent Consistency Fine-tuning (LCF), a novel method that is tailored for fine-tuning LCMs on customized image datasets. Evaluation on the LAION-5B-Aesthetics dataset demonstrates that LCMs achieve state-of-the-art text-to-image generation performance with few-step inference. Project Page: [this https URL](https://latent-consistency-models.github.io/)*

The model can be used with `diffusers` as follows:

3014
- *1. Load the model from the community pipeline.*
3015
3016
3017
3018
3019

```py
from diffusers import DiffusionPipeline
import torch

Andrei Filatov's avatar
Andrei Filatov committed
3020
pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main")
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030

# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)
```

- 2. Run inference with as little as 4 steps:

```py
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"

3031
# Can be set to 1~50 steps. LCM supports fast inference even <= 4 steps. Recommend: 1~8 steps.
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3032
num_inference_steps = 4
3033
3034
3035
3036
3037
3038
3039

images = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=8.0, lcm_origin_steps=50, output_type="pil").images
```

For any questions or feedback, feel free to reach out to [Simian Luo](https://github.com/luosiallen).

You can also try this pipeline directly in the [🚀 official spaces](https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model).
Logan's avatar
Logan committed
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062

### Latent Consistency Img2img Pipeline

This pipeline extends the Latent Consistency Pipeline to allow it to take an input image.

```py
from diffusers import DiffusionPipeline
import torch

pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_img2img")

# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)
```

- 2. Run inference with as little as 4 steps:

```py
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"


input_image=Image.open("myimg.png")

3063
strength = 0.5  # strength =0 (no change) strength=1 (completely overwrite image)
Logan's avatar
Logan committed
3064

3065
# Can be set to 1~50 steps. LCM supports fast inference even <= 4 steps. Recommend: 1~8 steps.
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3066
num_inference_steps = 4
Logan's avatar
Logan committed
3067
3068
3069

images = pipe(prompt=prompt, image=input_image, strength=strength, num_inference_steps=num_inference_steps, guidance_scale=8.0, lcm_origin_steps=50, output_type="pil").images
```
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108

### Latent Consistency Interpolation Pipeline

This pipeline extends the Latent Consistency Pipeline to allow for interpolation of the latent space between multiple prompts. It is similar to the [Stable Diffusion Interpolate](https://github.com/huggingface/diffusers/blob/main/examples/community/interpolate_stable_diffusion.py) and [unCLIP Interpolate](https://github.com/huggingface/diffusers/blob/main/examples/community/unclip_text_interpolation.py) community pipelines.

```py
import torch
import numpy as np

from diffusers import DiffusionPipeline

pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_interpolate")

# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)

prompts = [
    "Self-portrait oil painting, a beautiful cyborg with golden hair, Margot Robbie, 8k",
    "Self-portrait oil painting, an extremely strong man, body builder, Huge Jackman, 8k",
    "An astronaut floating in space, renaissance art, realistic, high quality, 8k",
    "Oil painting of a cat, cute, dream-like",
    "Hugging face emoji, cute, realistic"
]
num_inference_steps = 4
num_interpolation_steps = 60
seed = 1337

torch.manual_seed(seed)
np.random.seed(seed)

images = pipe(
    prompt=prompts,
    height=512,
    width=512,
    num_inference_steps=num_inference_steps,
    num_interpolation_steps=num_interpolation_steps,
    guidance_scale=8.0,
    embedding_interpolation_type="lerp",
    latent_interpolation_type="slerp",
3109
    process_batch_size=4,  # Make it higher or lower based on your GPU memory
3110
3111
3112
3113
3114
    generator=torch.Generator(seed),
)

assert len(images) == (len(prompts) - 1) * num_interpolation_steps
```
3115

3116
3117
### StableDiffusionUpscaleLDM3D Pipeline

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3118
[LDM3D-VR](https://arxiv.org/pdf/2311.03226.pdf) is an extended version of LDM3D.
3119
3120
3121
3122
3123

The abstract from the paper is:
*Latent diffusion models have proven to be state-of-the-art in the creation and manipulation of visual outputs. However, as far as we know, the generation of depth maps jointly with RGB is still limited. We introduce LDM3D-VR, a suite of diffusion models targeting virtual reality development that includes LDM3D-pano and LDM3D-SR. These models enable the generation of panoramic RGBD based on textual prompts and the upscaling of low-resolution inputs to high-resolution RGBD, respectively. Our models are fine-tuned from existing pretrained models on datasets containing panoramic/high-resolution RGB images, depth maps and captions. Both models are evaluated in comparison to existing related methods*

Two checkpoints are available for use:
3124

3125
3126
3127
- [ldm3d-pano](https://huggingface.co/Intel/ldm3d-pano). This checkpoint enables the generation of panoramic images and requires the StableDiffusionLDM3DPipeline pipeline to be used.
- [ldm3d-sr](https://huggingface.co/Intel/ldm3d-sr). This checkpoint enables the upscaling of RGB and depth images. Can be used in cascade after the original LDM3D pipeline using the StableDiffusionUpscaleLDM3DPipeline pipeline.

3128
```py
3129
3130
3131
3132
3133
from PIL import Image
import os
import torch
from diffusers import StableDiffusionLDM3DPipeline, DiffusionPipeline

3134
3135
# Generate a rgb/depth output from LDM3D

3136
3137
3138
pipe_ldm3d = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d-4c")
pipe_ldm3d.to("cuda")

3139
prompt = "A picture of some lemons on a table"
3140
3141
output = pipe_ldm3d(prompt)
rgb_image, depth_image = output.rgb, output.depth
3142
3143
rgb_image[0].save("lemons_ldm3d_rgb.jpg")
depth_image[0].save("lemons_ldm3d_depth.png")
3144

3145
# Upscale the previous output to a resolution of (1024, 1024)
3146
3147
3148
3149
3150

pipe_ldm3d_upscale = DiffusionPipeline.from_pretrained("Intel/ldm3d-sr", custom_pipeline="pipeline_stable_diffusion_upscale_ldm3d")

pipe_ldm3d_upscale.to("cuda")

3151
3152
low_res_img = Image.open("lemons_ldm3d_rgb.jpg").convert("RGB")
low_res_depth = Image.open("lemons_ldm3d_depth.png").convert("L")
3153
3154
outputs = pipe_ldm3d_upscale(prompt="high quality high resolution uhd 4k image", rgb=low_res_img, depth=low_res_depth, num_inference_steps=50, target_res=[1024, 1024])

3155
3156
3157
3158
upscaled_rgb, upscaled_depth = outputs.rgb[0], outputs.depth[0]
upscaled_rgb.save("upscaled_lemons_rgb.png")
upscaled_depth.save("upscaled_lemons_depth.png")
```
3159

3160
### ControlNet + T2I Adapter Pipeline
3161

3162
3163
This pipeline combines both ControlNet and T2IAdapter into a single pipeline, where the forward pass is executed once.
It receives `control_image` and `adapter_image`, as well as `controlnet_conditioning_scale` and `adapter_conditioning_scale`, for the ControlNet and Adapter modules, respectively. Whenever `adapter_conditioning_scale=0` or `controlnet_conditioning_scale=0`, it will act as a full ControlNet module or as a full T2IAdapter module, respectively.
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228

```py
import cv2
import numpy as np
import torch
from controlnet_aux.midas import MidasDetector
from PIL import Image

from diffusers import AutoencoderKL, ControlNetModel, MultiAdapter, T2IAdapter
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.utils import load_image
from examples.community.pipeline_stable_diffusion_xl_controlnet_adapter import (
    StableDiffusionXLControlNetAdapterPipeline,
)

controlnet_depth = ControlNetModel.from_pretrained(
    "diffusers/controlnet-depth-sdxl-1.0",
    torch_dtype=torch.float16,
    variant="fp16",
    use_safetensors=True
)
adapter_depth = T2IAdapter.from_pretrained(
  "TencentARC/t2i-adapter-depth-midas-sdxl-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, use_safetensors=True)

pipe = StableDiffusionXLControlNetAdapterPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    controlnet=controlnet_depth,
    adapter=adapter_depth,
    vae=vae,
    variant="fp16",
    use_safetensors=True,
    torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
pipe.enable_xformers_memory_efficient_attention()
# pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
midas_depth = MidasDetector.from_pretrained(
  "valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large"
).to("cuda")

prompt = "a tiger sitting on a park bench"
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"

image = load_image(img_url).resize((1024, 1024))

depth_image = midas_depth(
  image, detect_resolution=512, image_resolution=1024
)

strength = 0.5

images = pipe(
    prompt,
    control_image=depth_image,
    adapter_image=depth_image,
    num_inference_steps=30,
    controlnet_conditioning_scale=strength,
    adapter_conditioning_scale=strength,
).images
images[0].save("controlnet_and_adapter.png")
```

### ControlNet + T2I Adapter + Inpainting Pipeline
3229

3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
```py
import cv2
import numpy as np
import torch
from controlnet_aux.midas import MidasDetector
from PIL import Image

from diffusers import AutoencoderKL, ControlNetModel, MultiAdapter, T2IAdapter
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.utils import load_image
from examples.community.pipeline_stable_diffusion_xl_controlnet_adapter_inpaint import (
    StableDiffusionXLControlNetAdapterInpaintPipeline,
)

controlnet_depth = ControlNetModel.from_pretrained(
    "diffusers/controlnet-depth-sdxl-1.0",
    torch_dtype=torch.float16,
    variant="fp16",
    use_safetensors=True
)
adapter_depth = T2IAdapter.from_pretrained(
  "TencentARC/t2i-adapter-depth-midas-sdxl-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, use_safetensors=True)

pipe = StableDiffusionXLControlNetAdapterInpaintPipeline.from_pretrained(
    "diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
    controlnet=controlnet_depth,
    adapter=adapter_depth,
    vae=vae,
    variant="fp16",
    use_safetensors=True,
    torch_dtype=torch.float16,
)
pipe = pipe.to("cuda")
pipe.enable_xformers_memory_efficient_attention()
# pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
midas_depth = MidasDetector.from_pretrained(
  "valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large"
).to("cuda")

prompt = "a tiger sitting on a park bench"
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

image = load_image(img_url).resize((1024, 1024))
mask_image = load_image(mask_url).resize((1024, 1024))

depth_image = midas_depth(
  image, detect_resolution=512, image_resolution=1024
)

strength = 0.4

images = pipe(
    prompt,
    image=image,
    mask_image=mask_image,
    control_image=depth_image,
    adapter_image=depth_image,
    num_inference_steps=30,
    controlnet_conditioning_scale=strength,
    adapter_conditioning_scale=strength,
    strength=0.7,
).images
images[0].save("controlnet_and_adapter_inpaint.png")
3296
3297
```

3298
### Regional Prompting Pipeline
3299

3300
This pipeline is a port of the [Regional Prompter extension](https://github.com/hako-mikan/sd-webui-regional-prompter) for [Stable Diffusion web UI](https://github.com/AUTOMATIC1111/stable-diffusion-webui) to `diffusers`.
3301
3302
3303
3304
3305
This code implements a pipeline for the Stable Diffusion model, enabling the division of the canvas into multiple regions, with different prompts applicable to each region. Users can specify regions in two ways: using `Cols` and `Rows` modes for grid-like divisions, or the `Prompt` mode for regions calculated based on prompts.

![sample](https://github.com/hako-mikan/sd-webui-regional-prompter/blob/imgs/rp_pipeline1.png)

### Usage
3306

3307
### Sample Code
3308

3309
3310
```py
from examples.community.regional_prompting_stable_diffusion import RegionalPromptingStableDiffusionPipeline
3311

3312
3313
3314
3315
3316
pipe = RegionalPromptingStableDiffusionPipeline.from_single_file(model_path, vae=vae)

rp_args = {
    "mode":"rows",
    "div": "1;1;1"
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3317
}
3318

3319
prompt = """
3320
3321
3322
3323
3324
3325
3326
3327
3328
green hair twintail BREAK
red blouse BREAK
blue skirt
"""

images = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    guidance_scale=7.5,
3329
3330
3331
3332
3333
3334
    height=768,
    width=512,
    num_inference_steps=20,
    num_images_per_prompt=1,
    rp_args=rp_args
    ).images
3335
3336
3337
3338
3339
3340
3341
3342

time = time.strftime(r"%Y%m%d%H%M%S")
i = 1
for image in images:
    i += 1
    fileName = f'img-{time}-{i+1}.png'
    image.save(fileName)
```
3343

3344
### Cols, Rows mode
3345

3346
3347
In the Cols, Rows mode, you can split the screen vertically and horizontally and assign prompts to each region. The split ratio can be specified by 'div', and you can set the division ratio like '3;3;2' or '0.1;0.5'. Furthermore, as will be described later, you can also subdivide the split Cols, Rows to specify more complex regions.

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3348
In this image, the image is divided into three parts, and a separate prompt is applied to each. The prompts are divided by 'BREAK', and each is applied to the respective region.
3349
![sample](https://github.com/hako-mikan/sd-webui-regional-prompter/blob/imgs/rp_pipeline2.png)
3350

3351
3352
3353
3354
3355
3356
3357
```
green hair twintail BREAK
red blouse BREAK
blue skirt
```

### 2-Dimentional division
3358

3359
The prompt consists of instructions separated by the term `BREAK` and is assigned to different regions of a two-dimensional space. The image is initially split in the main splitting direction, which in this case is rows, due to the presence of a single semicolon `;`, dividing the space into an upper and a lower section. Additional sub-splitting is then applied, indicated by commas. The upper row is split into ratios of `2:1:1`, while the lower row is split into a ratio of `4:6`. Rows themselves are split in a `1:2` ratio. According to the reference image, the blue sky is designated as the first region, green hair as the second, the bookshelf as the third, and so on, in a sequence based on their position from the top left. The terrarium is placed on the desk in the fourth region, and the orange dress and sofa are in the fifth region, conforming to their respective splits.
3360

3361
```py
3362
3363
3364
3365
3366
rp_args = {
    "mode":"rows",
    "div": "1,2,1,1;2,4,6"
}

3367
prompt = """
3368
3369
3370
blue sky BREAK
green hair BREAK
book shelf BREAK
3371
terrarium on the desk BREAK
3372
3373
3374
orange dress and sofa
"""
```
3375

3376
3377
3378
![sample](https://github.com/hako-mikan/sd-webui-regional-prompter/blob/imgs/rp_pipeline4.png)

### Prompt Mode
3379

3380
There are limitations to methods of specifying regions in advance. This is because specifying regions can be a hindrance when designating complex shapes or dynamic compositions. In the region specified by the prompt, the region is determined after the image generation has begun. This allows us to accommodate compositions and complex regions.
3381
For further infomagen, see [here](https://github.com/hako-mikan/sd-webui-regional-prompter/blob/main/prompt_en.md).
3382

3383
### Syntax
3384

3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
```
baseprompt target1 target2 BREAK
effect1, target1 BREAK
effect2 ,target2
```

First, write the base prompt. In the base prompt, write the words (target1, target2) for which you want to create a mask. Next, separate them with BREAK. Next, write the prompt corresponding to target1. Then enter a comma and write target1. The order of the targets in the base prompt and the order of the BREAK-separated targets can be back to back.

```
target2 baseprompt target1  BREAK
effect1, target1 BREAK
effect2 ,target2
```
3398

3399
3400
3401
is also effective.

### Sample
3402

3403
In this example, masks are calculated for shirt, tie, skirt, and color prompts are specified only for those regions.
3404

3405
```py
3406
rp_args = {
3407
3408
    "mode": "prompt-ex",
    "save_mask": True,
3409
3410
3411
    "th": "0.4,0.6,0.6",
}

3412
prompt = """
3413
3414
3415
a girl in street with shirt, tie, skirt BREAK
red, shirt BREAK
green, tie BREAK
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3416
blue , skirt
3417
3418
"""
```
3419

3420
![sample](https://github.com/hako-mikan/sd-webui-regional-prompter/blob/imgs/rp_pipeline3.png)
3421

3422
### Threshold
3423

3424
3425
3426
3427
3428
3429
3430
The threshold used to determine the mask created by the prompt. This can be set as many times as there are masks, as the range varies widely depending on the target prompt. If multiple regions are used, enter them separated by commas. For example, hair tends to be ambiguous and requires a small value, while face tends to be large and requires a small value. These should be ordered by BREAK.

```
a lady ,hair, face  BREAK
red, hair BREAK
tanned ,face
```
3431

3432
3433
3434
3435
`threshold : 0.4,0.6`
If only one input is given for multiple regions, they are all assumed to be the same value.

### Prompt and Prompt-EX
3436

3437
3438
3439
The difference is that in Prompt, duplicate regions are added, whereas in Prompt-EX, duplicate regions are overwritten sequentially. Since they are processed in order, setting a TARGET with a large regions first makes it easier for the effect of small regions to remain unmuffled.

### Accuracy
3440

3441
In the case of a 512x512 image, Attention mode reduces the size of the region to about 8x8 pixels deep in the U-Net, so that small regions get mixed up; Latent mode calculates 64*64, so that the region is exact.
3442

3443
3444
3445
3446
3447
3448
3449
```
girl hair twintail frills,ribbons, dress, face BREAK
girl, ,face
```

### Mask

3450
When an image is generated, the generated mask is displayed. It is generated at the same size as the image, but is actually used at a much smaller size.
3451
3452

### Use common prompt
3453

3454
You can attach the prompt up to ADDCOMM to all prompts by separating it first with ADDCOMM. This is useful when you want to include elements common to all regions. For example, when generating pictures of three people with different appearances, it's necessary to include the instruction of 'three people' in all regions. It's also useful when inserting quality tags and other things. "For example, if you write as follows:
3455

3456
3457
3458
3459
3460
3461
```
best quality, 3persons in garden, ADDCOMM
a girl white dress BREAK
a boy blue shirt BREAK
an old man red suit
```
3462

3463
If common is enabled, this prompt is converted to the following:
3464

3465
3466
3467
3468
3469
```
best quality, 3persons in garden, a girl white dress BREAK
best quality, 3persons in garden, a boy blue shirt BREAK
best quality, 3persons in garden, an old man red suit
```
3470

3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
### Use base prompt

You can use a base prompt to apply the prompt to all areas. You can set a base prompt by adding `ADDBASE` at the end. Base prompts can also be combined with common prompts, but the base prompt must be specified first.

```
2d animation style ADDBASE
masterpiece, high quality ADDCOMM
(blue sky)++ BREAK
green hair twintail BREAK
book shelf BREAK
messy desk BREAK
orange++ dress and sofa
```

3485
### Negative prompt
3486

3487
3488
3489
Negative prompts are equally effective across all regions, but it is possible to set region-specific prompts for negative prompts as well. The number of BREAKs must be the same as the number of prompts. If the number of prompts does not match, the negative prompts will be used without being divided into regions.

### Parameters
3490

3491
To activate Regional Prompter, it is necessary to enter settings in `rp_args`. The items that can be set are as follows. `rp_args` is a dictionary type.
3492
3493

### Input Parameters
3494

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3495
Parameters are specified through the `rp_arg`(dictionary type).
3496

3497
```py
3498
3499
3500
rp_args = {
    "mode":"rows",
    "div": "1;1;1"
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3501
}
3502

3503
pipe(prompt=prompt, rp_args=rp_args)
3504
3505
3506
```

### Required Parameters
3507

3508
- `mode`: Specifies the method for defining regions. Choose from `Cols`, `Rows`, `Prompt`, or `Prompt-Ex`. This parameter is case-insensitive.
3509
3510
3511
3512
- `divide`: Used in `Cols` and `Rows` modes. Details on how to specify this are provided under the respective `Cols` and `Rows` sections.
- `th`: Used in `Prompt` mode. The method of specification is detailed under the `Prompt` section.

### Optional Parameters
3513

3514
- `save_mask`: In `Prompt` mode, choose whether to output the generated mask along with the image. The default is `False`.
3515
- `base_ratio`: Used with `ADDBASE`. Sets the ratio of the base prompt; if base ratio is set to 0.2, then resulting images will consist of `20%*BASE_PROMPT + 80%*REGION_PROMPT`
3516
3517
3518

The Pipeline supports `compel` syntax. Input prompts using the `compel` structure will be automatically applied and processed.

3519
### Diffusion Posterior Sampling Pipeline
3520
3521
3522

- Reference paper

3523
    ```bibtex
3524
3525
3526
3527
3528
3529
3530
    @article{chung2022diffusion,
    title={Diffusion posterior sampling for general noisy inverse problems},
    author={Chung, Hyungjin and Kim, Jeongsol and Mccann, Michael T and Klasky, Marc L and Ye, Jong Chul},
    journal={arXiv preprint arXiv:2209.14687},
    year={2022}
    }
    ```
3531
3532
3533
3534

- This pipeline allows zero-shot conditional sampling from the posterior distribution $p(x|y)$, given observation on $y$, unconditional generative model $p(x)$ and differentiable operator $y=f(x)$.

- For example, $f(.)$ can be downsample operator, then $y$ is a downsampled image, and the pipeline becomes a super-resolution pipeline.
3535
- To use this pipeline, you need to know your operator $f(.)$ and corrupted image $y$, and pass them during the call. For example, as in the main function of `dps_pipeline.py`, you need to first define the Gaussian blurring operator $f(.)$. The operator should be a callable `nn.Module`, with all the parameter gradient disabled:
3536

3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
    ```python
    import torch.nn.functional as F
    import scipy
    from torch import nn

    # define the Gaussian blurring operator first
    class GaussialBlurOperator(nn.Module):
        def __init__(self, kernel_size, intensity):
            super().__init__()

            class Blurkernel(nn.Module):
                def __init__(self, blur_type='gaussian', kernel_size=31, std=3.0):
                    super().__init__()
                    self.blur_type = blur_type
                    self.kernel_size = kernel_size
                    self.std = std
                    self.seq = nn.Sequential(
                        nn.ReflectionPad2d(self.kernel_size//2),
                        nn.Conv2d(3, 3, self.kernel_size, stride=1, padding=0, bias=False, groups=3)
                    )
                    self.weights_init()

                def forward(self, x):
                    return self.seq(x)

                def weights_init(self):
                    if self.blur_type == "gaussian":
                        n = np.zeros((self.kernel_size, self.kernel_size))
3565
                        n[self.kernel_size // 2, self.kernel_size // 2] = 1
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
                        k = scipy.ndimage.gaussian_filter(n, sigma=self.std)
                        k = torch.from_numpy(k)
                        self.k = k
                        for name, f in self.named_parameters():
                            f.data.copy_(k)
                    elif self.blur_type == "motion":
                        k = Kernel(size=(self.kernel_size, self.kernel_size), intensity=self.std).kernelMatrix
                        k = torch.from_numpy(k)
                        self.k = k
                        for name, f in self.named_parameters():
                            f.data.copy_(k)

                def update_weights(self, k):
                    if not torch.is_tensor(k):
                        k = torch.from_numpy(k)
                    for name, f in self.named_parameters():
                        f.data.copy_(k)

                def get_kernel(self):
                    return self.k
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3586

3587
3588
3589
3590
3591
3592
3593
3594
            self.kernel_size = kernel_size
            self.conv = Blurkernel(blur_type='gaussian',
                                kernel_size=kernel_size,
                                std=intensity)
            self.kernel = self.conv.get_kernel()
            self.conv.update_weights(self.kernel.type(torch.float32))

            for param in self.parameters():
3595
                param.requires_grad = False
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605

        def forward(self, data, **kwargs):
            return self.conv(data)

        def transpose(self, data, **kwargs):
            return data

        def get_kernel(self):
            return self.kernel.view(1, 1, self.kernel_size, self.kernel_size)
    ```
3606
3607
3608

- Next, you should obtain the corrupted image $y$ by the operator. In this example, we generate $y$ from the source image $x$. However in practice, having the operator $f(.)$ and corrupted image $y$ is enough:

3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
    ```python
    # set up source image
    src = Image.open('sample.png')
    # read image into [1,3,H,W]
    src = torch.from_numpy(np.array(src, dtype=np.float32)).permute(2,0,1)[None]
    # normalize image to [-1,1]
    src = (src / 127.5) - 1.0
    src = src.to("cuda")

    # set up operator and measurement
    operator = GaussialBlurOperator(kernel_size=61, intensity=3.0).to("cuda")
    measurement = operator(src)

    # save the source and corrupted images
    save_image((src+1.0)/2.0, "dps_src.png")
    save_image((measurement+1.0)/2.0, "dps_mea.png")
    ```
3626
3627
3628
3629
3630
3631

- We provide an example pair of saved source and corrupted images, using the Gaussian blur operator above
  - Source image:
  - ![sample](https://github.com/tongdaxu/Images/assets/22267548/4d2a1216-08d1-4aeb-9ce3-7a2d87561d65)
  - Gaussian blurred image:
  - ![ddpm_generated_image](https://github.com/tongdaxu/Images/assets/22267548/65076258-344b-4ed8-b704-a04edaade8ae)
3632
  - You can download those images to run the example on your own.
3633
3634
3635

- Next, we need to define a loss function used for diffusion posterior sample. For most of the cases, the RMSE is fine:

3636
3637
3638
3639
    ```python
    def RMSELoss(yhat, y):
        return torch.sqrt(torch.sum((yhat-y)**2))
    ```
3640

3641
- And next, as any other diffusion models, we need the score estimator and scheduler. As we are working with $256x256$ face images, we use ddpm-celebahq-256:
3642

3643
3644
3645
3646
3647
3648
3649
3650
    ```python
    # set up scheduler
    scheduler = DDPMScheduler.from_pretrained("google/ddpm-celebahq-256")
    scheduler.set_timesteps(1000)

    # set up model
    model = UNet2DModel.from_pretrained("google/ddpm-celebahq-256").to("cuda")
    ```
3651
3652
3653

- And finally, run the pipeline:

3654
3655
3656
3657
    ```python
    # finally, the pipeline
    dpspipe = DPSPipeline(model, scheduler)
    image = dpspipe(
3658
3659
3660
3661
        measurement=measurement,
        operator=operator,
        loss_fn=RMSELoss,
        zeta=1.0,
3662
3663
3664
    ).images[0]
    image.save("dps_generated_image.png")
    ```
3665

3666
- The `zeta` is a hyperparameter that is in range of $[0,1]$. It needs to be tuned for best effect. By setting `zeta=1`, you should be able to have the reconstructed result:
3667
3668
3669
3670
  - Reconstructed image:
  - ![sample](https://github.com/tongdaxu/Images/assets/22267548/0ceb5575-d42e-4f0b-99c0-50e69c982209)

- The reconstruction is perceptually similar to the source image, but different in details.
3671
- In `dps_pipeline.py`, we also provide a super-resolution example, which should produce:
3672
3673
3674
3675
  - Downsampled image:
  - ![dps_mea](https://github.com/tongdaxu/Images/assets/22267548/ff6a33d6-26f0-42aa-88ce-f8a76ba45a13)
  - Reconstructed image:
  - ![dps_generated_image](https://github.com/tongdaxu/Images/assets/22267548/b74f084d-93f4-4845-83d8-44c0fa758a5f)
3676

3677
3678
3679
3680
3681
3682
### AnimateDiff ControlNet Pipeline

This pipeline combines AnimateDiff and ControlNet. Enjoy precise motion control for your videos! Refer to [this](https://github.com/huggingface/diffusers/issues/5866) issue for more details.

```py
import torch
3683
3684
from diffusers import AutoencoderKL, ControlNetModel, MotionAdapter, DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_gif
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
from PIL import Image

motion_id = "guoyww/animatediff-motion-adapter-v1-5-2"
adapter = MotionAdapter.from_pretrained(motion_id)
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)

model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = DiffusionPipeline.from_pretrained(
    model_id,
    motion_adapter=adapter,
    controlnet=controlnet,
    vae=vae,
    custom_pipeline="pipeline_animatediff_controlnet",
3699
3700
    torch_dtype=torch.float16,
).to(device="cuda")
3701
pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained(
3702
    model_id, subfolder="scheduler", beta_schedule="linear", clip_sample=False, timestep_spacing="linspace", steps_offset=1
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
)
pipe.enable_vae_slicing()

conditioning_frames = []
for i in range(1, 16 + 1):
    conditioning_frames.append(Image.open(f"frame_{i}.png"))

prompt = "astronaut in space, dancing"
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
result = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    width=512,
    height=768,
    conditioning_frames=conditioning_frames,
3718
    num_inference_steps=20,
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
).frames[0]

export_to_gif(result.frames[0], "result.gif")
```

<table>
  <tr><td colspan="2" align=center><b>Conditioning Frames</b></td></tr>
  <tr align=center>
    <td align=center><img src="https://user-images.githubusercontent.com/7365912/265043418-23291941-864d-495a-8ba8-d02e05756396.gif" alt="input-frames"></td>
  </tr>
  <tr><td colspan="2" align=center><b>AnimateDiff model: SG161222/Realistic_Vision_V5.1_noVAE</b></td></tr>
  <tr>
    <td align=center><img src="https://github.com/huggingface/diffusers/assets/72266394/baf301e2-d03c-4129-bd84-203a1de2b2be" alt="gif-1"></td>
    <td align=center><img src="https://github.com/huggingface/diffusers/assets/72266394/9f923475-ecaf-452b-92c8-4e42171182d8" alt="gif-2"></td>
  </tr>
  <tr><td colspan="2" align=center><b>AnimateDiff model: CardosAnime</b></td></tr>
  <tr>
    <td align=center><img src="https://github.com/huggingface/diffusers/assets/72266394/b2c41028-38a0-45d6-86ed-fec7446b87f7" alt="gif-1"></td>
    <td align=center><img src="https://github.com/huggingface/diffusers/assets/72266394/eb7d2952-72e4-44fa-b664-077c79b4fc70" alt="gif-2"></td>
  </tr>
</table>
3740

3741
3742
3743
3744
You can also use multiple controlnets at once!

```python
import torch
3745
3746
from diffusers import AutoencoderKL, ControlNetModel, MotionAdapter, DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_gif
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
from PIL import Image

motion_id = "guoyww/animatediff-motion-adapter-v1-5-2"
adapter = MotionAdapter.from_pretrained(motion_id)
controlnet1 = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch.float16)
controlnet2 = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)

model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
pipe = DiffusionPipeline.from_pretrained(
    model_id,
    motion_adapter=adapter,
    controlnet=[controlnet1, controlnet2],
    vae=vae,
    custom_pipeline="pipeline_animatediff_controlnet",
3762
3763
    torch_dtype=torch.float16,
).to(device="cuda")
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
pipe.scheduler = DPMSolverMultistepScheduler.from_pretrained(
    model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", steps_offset=1, beta_schedule="linear",
)
pipe.enable_vae_slicing()

def load_video(file_path: str):
    images = []

    if file_path.startswith(('http://', 'https://')):
        # If the file_path is a URL
        response = requests.get(file_path)
        response.raise_for_status()
        content = BytesIO(response.content)
        vid = imageio.get_reader(content)
    else:
        # Assuming it's a local file path
        vid = imageio.get_reader(file_path)

    for frame in vid:
        pil_image = Image.fromarray(frame)
        images.append(pil_image)

    return images

video = load_video("dance.gif")

# You need to install it using `pip install controlnet_aux`
from controlnet_aux.processor import Processor

p1 = Processor("openpose_full")
cn1 = [p1(frame) for frame in video]

p2 = Processor("canny")
cn2 = [p2(frame) for frame in video]

prompt = "astronaut in space, dancing"
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
result = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    width=512,
    height=768,
    conditioning_frames=[cn1, cn2],
    num_inference_steps=20,
)

export_to_gif(result.frames[0], "result.gif")
```

3813
### DemoFusion
3814

3815
3816
This pipeline is the official implementation of [DemoFusion: Democratising High-Resolution Image Generation With No $$$](https://arxiv.org/abs/2311.16973).
The original repo can be found at [repo](https://github.com/PRIS-CV/DemoFusion).
3817

3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
- `view_batch_size` (`int`, defaults to 16):
  The batch size for multiple denoising paths. Typically, a larger batch size can result in higher efficiency but comes with increased GPU memory requirements.

- `stride` (`int`, defaults to 64):
  The stride of moving local patches. A smaller stride is better for alleviating seam issues, but it also introduces additional computational overhead and inference time.

- `cosine_scale_1` (`float`, defaults to 3):
  Control the strength of skip-residual. For specific impacts, please refer to Appendix C in the DemoFusion paper.

- `cosine_scale_2` (`float`, defaults to 1):
  Control the strength of dilated sampling. For specific impacts, please refer to Appendix C in the DemoFusion paper.

- `cosine_scale_3` (`float`, defaults to 1):
  Control the strength of the Gaussian filter. For specific impacts, please refer to Appendix C in the DemoFusion paper.

- `sigma` (`float`, defaults to 1):
  The standard value of the Gaussian filter. Larger sigma promotes the global guidance of dilated sampling, but has the potential of over-smoothing.

- `multi_decoder` (`bool`, defaults to True):
  Determine whether to use a tiled decoder. Generally, when the resolution exceeds 3072x3072, a tiled decoder becomes necessary.

- `show_image` (`bool`, defaults to False):
  Determine whether to show intermediate results during generation.
3841

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3842
```py
Radamés Ajna's avatar
Radamés Ajna committed
3843
from diffusers import DiffusionPipeline
3844
import torch
3845

Radamés Ajna's avatar
Radamés Ajna committed
3846
3847
3848
3849
3850
3851
pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    custom_pipeline="pipeline_demofusion_sdxl",
    custom_revision="main",
    torch_dtype=torch.float16,
)
3852
3853
3854
3855
3856
3857
pipe = pipe.to("cuda")

prompt = "Envision a portrait of an elderly woman, her face a canvas of time, framed by a headscarf with muted tones of rust and cream. Her eyes, blue like faded denim. Her attire, simple yet dignified."
negative_prompt = "blurry, ugly, duplicate, poorly drawn, deformed, mosaic"

images = pipe(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3858
    prompt,
3859
    negative_prompt=negative_prompt,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3860
3861
3862
    height=3072,
    width=3072,
    view_batch_size=16,
3863
    stride=64,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3864
    num_inference_steps=50,
3865
    guidance_scale=7.5,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3866
3867
3868
    cosine_scale_1=3,
    cosine_scale_2=1,
    cosine_scale_3=1,
3869
    sigma=0.8,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3870
    multi_decoder=True,
3871
3872
3873
    show_image=True
)
```
3874

3875
You can display and save the generated images as:
3876

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3877
```py
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
def image_grid(imgs, save_path=None):

    w = 0
    for i, img in enumerate(imgs):
        h_, w_ = imgs[i].size
        w += w_
    h = h_
    grid = Image.new('RGB', size=(w, h))
    grid_w, grid_h = grid.size

    w = 0
    for i, img in enumerate(imgs):
        h_, w_ = imgs[i].size
        grid.paste(img, box=(w, h - h_))
        if save_path != None:
            img.save(save_path + "/img_{}.jpg".format((i + 1) * 1024))
        w += w_
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
3895

3896
3897
3898
3899
    return grid

image_grid(images, save_path="./outputs/")
```
3900

3901
 ![output_example](https://github.com/PRIS-CV/DemoFusion/blob/main/output_example.png)
3902
3903
3904
3905
3906
3907
3908

### SDE Drag pipeline

This pipeline provides drag-and-drop image editing using stochastic differential equations. It enables image editing by inputting prompt, image, mask_image, source_points, and target_points.

![SDE Drag Image](https://github.com/huggingface/diffusers/assets/75928535/bd54f52f-f002-4951-9934-b2a4592771a5)

3909
See [paper](https://arxiv.org/abs/2311.01410), [paper page](https://ml-gsai.github.io/SDE-Drag-demo/), [original repo](https://github.com/ML-GSAI/SDE-Drag) for more information.
3910
3911
3912
3913
3914
3915
3916

```py
import PIL
import torch
from diffusers import DDIMScheduler, DiffusionPipeline

# Load the pipeline
3917
model_path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
scheduler = DDIMScheduler.from_pretrained(model_path, subfolder="scheduler")
pipe = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler, custom_pipeline="sde_drag")
pipe.to('cuda')

# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
# If not training LoRA, please avoid using torch.float16
# pipe.to(torch.float16)

# Provide prompt, image, mask image, and the starting and target points for drag editing.
prompt = "prompt of the image"
image = PIL.Image.open('/path/to/image')
mask_image = PIL.Image.open('/path/to/mask_image')
source_points = [[123, 456]]
target_points = [[234, 567]]

# train_lora is optional, and in most cases, using train_lora can better preserve consistency with the original image.
pipe.train_lora(prompt, image)

output = pipe(prompt, image, mask_image, source_points, target_points)
output_image = PIL.Image.fromarray(output)
output_image.save("./output.png")
```
3940

3941
### Instaflow Pipeline
3942

3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
InstaFlow is an ultra-fast, one-step image generator that achieves image quality close to Stable Diffusion, significantly reducing the demand of computational resources. This efficiency is made possible through a recent [Rectified Flow](https://github.com/gnobitab/RectifiedFlow) technique, which trains probability flows with straight trajectories, hence inherently requiring only a single step for fast inference.

```python
from diffusers import DiffusionPipeline
import torch


pipe = DiffusionPipeline.from_pretrained("XCLIU/instaflow_0_9B_from_sd_1_5", torch_dtype=torch.float16, custom_pipeline="instaflow_one_step")
pipe.to("cuda")  ### if GPU is not available, comment this line
prompt = "A hyper-realistic photo of a cute cat."

images = pipe(prompt=prompt,
            num_inference_steps=1,
            guidance_scale=0.0).images
images[0].save("./image.png")
```
3959

3960
3961
![image1](https://huggingface.co/datasets/ayushtues/instaflow_images/resolve/main/instaflow_cat.png)

3962
You can also combine it with LORA out of the box, like <https://huggingface.co/artificialguybr/logo-redmond-1-5v-logo-lora-for-liberteredmond-sd-1-5>, to unlock cool use cases in single step!
3963
3964
3965
3966
3967

```python
from diffusers import DiffusionPipeline
import torch

3968
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
3969
3970

pipe = DiffusionPipeline.from_pretrained("XCLIU/instaflow_0_9B_from_sd_1_5", torch_dtype=torch.float16, custom_pipeline="instaflow_one_step")
3971
pipe.to(device)  ### if GPU is not available, comment this line
3972
3973
3974
3975
3976
3977
3978
pipe.load_lora_weights("artificialguybr/logo-redmond-1-5v-logo-lora-for-liberteredmond-sd-1-5")
prompt = "logo, A logo for a fitness app, dynamic running figure, energetic colors (red, orange) ),LogoRedAF ,"
images = pipe(prompt=prompt,
            num_inference_steps=1,
            guidance_scale=0.0).images
images[0].save("./image.png")
```
3979

3980
3981
![image0](https://huggingface.co/datasets/ayushtues/instaflow_images/resolve/main/instaflow_logo.png)

3982
3983
3984
### Null-Text Inversion pipeline

This pipeline provides null-text inversion for editing real images. It enables null-text optimization, and DDIM reconstruction via w, w/o null-text optimization. No prompt-to-prompt code is implemented as there is a Prompt2PromptPipeline.
3985
3986
3987

- Reference paper

3988
3989
3990
3991
3992
3993
    ```bibtex
    @article{hertz2022prompt,
    title={Prompt-to-prompt image editing with cross attention control},
    author={Hertz, Amir and Mokady, Ron and Tenenbaum, Jay and Aberman, Kfir and Pritch, Yael and Cohen-Or, Daniel},
    booktitle={arXiv preprint arXiv:2208.01626},
    year={2022}
3994
3995
3996
    ```}

```py
3997
from diffusers import DDIMScheduler
3998
3999
4000
4001
4002
4003
4004
4005
4006
from examples.community.pipeline_null_text_inversion import NullTextPipeline
import torch

device = "cuda"
# Provide invert_prompt and the image for null-text optimization.
invert_prompt = "A lying cat"
input_image = "siamese.jpg"
steps = 50

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4007
# Provide prompt used for generation. Same if reconstruction
4008
4009
4010
4011
prompt = "A lying cat"
# or different if editing.
prompt = "A lying dog"

4012
# Float32 is essential to a well optimization
4013
model_path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
4014
scheduler = DDIMScheduler(num_train_timesteps=1000, beta_start=0.00085, beta_end=0.0120, beta_schedule="scaled_linear")
4015
pipeline = NullTextPipeline.from_pretrained(model_path, scheduler=scheduler, torch_dtype=torch.float32).to(device)
4016

4017
4018
# Saves the inverted_latent to save time
inverted_latent, uncond = pipeline.invert(input_image, invert_prompt, num_inner_steps=10, early_stop_epsilon=1e-5, num_inference_steps=steps)
4019
pipeline(prompt, uncond, inverted_latent, guidance_scale=7.5, num_inference_steps=steps).images[0].save(input_image+".output.jpg")
4020
```
Aryan V S's avatar
Aryan V S committed
4021

pravdomil's avatar
pravdomil committed
4022
### Rerender A Video
4023

pravdomil's avatar
pravdomil committed
4024
This is the Diffusers implementation of zero-shot video-to-video translation pipeline [Rerender A Video](https://github.com/williamyang1991/Rerender_A_Video) (without Ebsynth postprocessing). To run the code, please install gmflow. Then modify the path in `gmflow_dir`. After that, you can run the pipeline with:
4025
4026

```py
pravdomil's avatar
pravdomil committed
4027
import sys
4028
gmflow_dir = "/path/to/gmflow"
pravdomil's avatar
pravdomil committed
4029
sys.path.insert(0, gmflow_dir)
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074

from diffusers import ControlNetModel, AutoencoderKL, DDIMScheduler
from diffusers.utils import export_to_video
import numpy as np
import torch

import cv2
from PIL import Image

def video_to_frame(video_path: str, interval: int):
    vidcap = cv2.VideoCapture(video_path)
    success = True

    count = 0
    res = []
    while success:
        count += 1
        success, image = vidcap.read()
        if count % interval != 1:
            continue
        if image is not None:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            res.append(image)

    vidcap.release()
    return res

input_video_path = 'path/to/video'
input_interval = 10
frames = video_to_frame(
    input_video_path, input_interval)

control_frames = []
# get canny image
for frame in frames:
    np_image = cv2.Canny(frame, 50, 100)
    np_image = np_image[:, :, None]
    np_image = np.concatenate([np_image, np_image, np_image], axis=2)
    canny_image = Image.fromarray(np_image)
    control_frames.append(canny_image)

# You can use any ControlNet here
controlnet = ControlNetModel.from_pretrained(
    "lllyasviel/sd-controlnet-canny").to('cuda')

4075
# You can use any finetuned SD here
4076
pipe = DiffusionPipeline.from_pretrained(
4077
    "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, custom_pipeline='rerender_a_video').to('cuda')
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100

# Optional: you can download vae-ft-mse-840000-ema-pruned.ckpt to enhance the results
# pipe.vae = AutoencoderKL.from_single_file(
#     "path/to/vae-ft-mse-840000-ema-pruned.ckpt").to('cuda')

pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)

generator = torch.manual_seed(0)
frames = [Image.fromarray(frame) for frame in frames]
output_frames = pipe(
    "a beautiful woman in CG style, best quality, extremely detailed",
    frames,
    control_frames,
    num_inference_steps=20,
    strength=0.75,
    controlnet_conditioning_scale=0.7,
    generator=generator,
    warp_start=0.0,
    warp_end=0.1,
    mask_start=0.5,
    mask_end=0.8,
    mask_strength=0.5,
    negative_prompt='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4101
).frames[0]
4102
4103
4104

export_to_video(
    output_frames, "/path/to/video.mp4", 5)
4105
4106
4107
4108
```

### StyleAligned Pipeline

Aryan V S's avatar
Aryan V S committed
4109
This pipeline is the implementation of [Style Aligned Image Generation via Shared Attention](https://arxiv.org/abs/2312.02133). You can find more results [here](https://github.com/huggingface/diffusers/pull/6489#issuecomment-1881209354).
4110
4111
4112
4113
4114
4115
4116

> Large-scale Text-to-Image (T2I) models have rapidly gained prominence across creative fields, generating visually compelling outputs from textual prompts. However, controlling these models to ensure consistent style remains challenging, with existing methods necessitating fine-tuning and manual intervention to disentangle content and style. In this paper, we introduce StyleAligned, a novel technique designed to establish style alignment among a series of generated images. By employing minimal `attention sharing' during the diffusion process, our method maintains style consistency across images within T2I models. This approach allows for the creation of style-consistent images using a reference style through a straightforward inversion operation. Our method's evaluation across diverse styles and text prompts demonstrates high-quality synthesis and fidelity, underscoring its efficacy in achieving consistent style across various inputs.

```python
from typing import List

import torch
4117
from diffusers import DiffusionPipeline
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
from PIL import Image

model_id = "a-r-r-o-w/dreamshaper-xl-turbo"
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", custom_pipeline="pipeline_sdxl_style_aligned")
pipe = pipe.to("cuda")

# Enable memory saving techniques
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()

prompt = [
  "a toy train. macro photo. 3d game asset",
  "a toy airplane. macro photo. 3d game asset",
  "a toy bicycle. macro photo. 3d game asset",
  "a toy car. macro photo. 3d game asset",
]
negative_prompt = "low quality, worst quality, "

# Enable StyleAligned
pipe.enable_style_aligned(
    share_group_norm=False,
    share_layer_norm=False,
    share_attention=True,
    adain_queries=True,
    adain_keys=True,
    adain_values=False,
    full_attention_share=False,
    shared_score_scale=1.0,
    shared_score_shift=0.0,
    only_self_level=0.0,
)

# Run inference
images = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    guidance_scale=2,
    height=1024,
    width=1024,
    num_inference_steps=10,
    generator=torch.Generator().manual_seed(42),
).images

# Disable StyleAligned if you do not wish to use it anymore
pipe.disable_style_aligned()
4163
4164
```

4165
4166
4167
4168
### AnimateDiff Image-To-Video Pipeline

This pipeline adds experimental support for the image-to-video task using AnimateDiff. Refer to [this](https://github.com/huggingface/diffusers/pull/6328) PR for more examples and results.

4169
4170
This pipeline relies on a "hack" discovered by the community that allows the generation of videos given an input image with AnimateDiff. It works by creating a copy of the image `num_frames` times and progressively adding more noise to the image based on the strength and latent interpolation method.

4171
4172
4173
4174
4175
```py
import torch
from diffusers import MotionAdapter, DiffusionPipeline, DDIMScheduler
from diffusers.utils import export_to_gif, load_image

4176
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"
4177
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2")
4178
4179
pipe = DiffusionPipeline.from_pretrained(model_id, motion_adapter=adapter, custom_pipeline="pipeline_animatediff_img2video").to("cuda")
pipe.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", beta_schedule="linear", steps_offset=1)
4180
4181
4182
4183
4184
4185

image = load_image("snail.png")
output = pipe(
  image=image,
  prompt="A snail moving on the ground",
  strength=0.8,
4186
  latent_interpolation_method="slerp",  # can be lerp, slerp, or your own callback
4187
4188
4189
4190
4191
)
frames = output.frames[0]
export_to_gif(frames, "animation.gif")
```

4192
### IP Adapter Face ID
4193

4194
4195
IP Adapter FaceID is an experimental IP Adapter model that uses image embeddings generated by `insightface`, so no image encoder needs to be loaded.
You need to install `insightface` and all its requirements to use this model.
4196
You must pass the image embedding tensor as `image_embeds` to the `DiffusionPipeline` instead of `ip_adapter_image`.
Aryan V S's avatar
Aryan V S committed
4197
You can find more results [here](https://github.com/huggingface/diffusers/pull/6276).
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228

```py
import torch
from diffusers.utils import load_image
import cv2
import numpy as np
from diffusers import DiffusionPipeline, AutoencoderKL, DDIMScheduler
from insightface.app import FaceAnalysis


noise_scheduler = DDIMScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
    steps_offset=1,
)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained(
    "SG161222/Realistic_Vision_V4.0_noVAE",
    torch_dtype=torch.float16,
    scheduler=noise_scheduler,
    vae=vae,
    custom_pipeline="ip_adapter_face_id"
)
pipeline.load_ip_adapter_face_id("h94/IP-Adapter-FaceID", "ip-adapter-faceid_sd15.bin")
pipeline.to("cuda")

generator = torch.Generator(device="cpu").manual_seed(42)
4229
num_images = 2
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240

image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ai_face2.png")

app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_BGR2RGB)
faces = app.get(image)
image = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
images = pipeline(
    prompt="A photo of a girl wearing a black dress, holding red roses in hand, upper body, behind is the Eiffel Tower",
    image_embeds=image,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4241
4242
    negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
    num_inference_steps=20, num_images_per_prompt=num_images, width=512, height=704,
4243
4244
4245
4246
4247
4248
    generator=generator
).images

for i in range(num_images):
    images[i].save(f"c{i}.png")
```
Haofan Wang's avatar
Haofan Wang committed
4249
4250
4251

### InstantID Pipeline

4252
InstantID is a new state-of-the-art tuning-free method to achieve ID-Preserving generation with only single image, supporting various downstream tasks. For any usage question, please refer to the [official implementation](https://github.com/InstantID/InstantID).
Haofan Wang's avatar
Haofan Wang committed
4253
4254

```py
4255
# !pip install diffusers opencv-python transformers accelerate insightface
Haofan Wang's avatar
Haofan Wang committed
4256
4257
import diffusers
from diffusers.utils import load_image
4258
from diffusers import ControlNetModel
Haofan Wang's avatar
Haofan Wang committed
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275

import cv2
import torch
import numpy as np
from PIL import Image

from insightface.app import FaceAnalysis
from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline, draw_kps

# prepare 'antelopev2' under ./models
# https://github.com/deepinsight/insightface/issues/1896#issuecomment-1023867304
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

# prepare models under ./checkpoints
# https://huggingface.co/InstantX/InstantID
from huggingface_hub import hf_hub_download
4276

Haofan Wang's avatar
Haofan Wang committed
4277
4278
4279
4280
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/diffusion_pytorch_model.safetensors", local_dir="./checkpoints")
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")

4281
4282
face_adapter = './checkpoints/ip-adapter.bin'
controlnet_path = './checkpoints/ControlNetModel'
Haofan Wang's avatar
Haofan Wang committed
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292

# load IdentityNet
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)

base_model = 'wangqixun/YamerMIX_v8'
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
    base_model,
    controlnet=controlnet,
    torch_dtype=torch.float16
)
4293
pipe.to("cuda")
Haofan Wang's avatar
Haofan Wang committed
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319

# load adapter
pipe.load_ip_adapter_instantid(face_adapter)

# load an image
face_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ai_face2.png")

# prepare face emb
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1]  # only use the maximum face
face_emb = face_info['embedding']
face_kps = draw_kps(face_image, face_info['kps'])

# prompt
prompt = "film noir style, ink sketch|vector, male man, highly detailed, sharp focus, ultra sharpness, monochrome, high contrast, dramatic shadows, 1940s style, mysterious, cinematic"
negative_prompt = "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, vibrant, colorful"

# generate image
pipe.set_ip_adapter_scale(0.8)
image = pipe(
    prompt,
    image_embeds=face_emb,
    image=face_kps,
    controlnet_conditioning_scale=0.8,
).images[0]
```
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348

### UFOGen Scheduler

[UFOGen](https://arxiv.org/abs/2311.09257) is a generative model designed for fast one-step text-to-image generation, trained via adversarial training starting from an initial pretrained diffusion model such as Stable Diffusion. `scheduling_ufogen.py` implements a onestep and multistep sampling algorithm for UFOGen models compatible with pipelines like `StableDiffusionPipeline`. A usage example is as follows:

```py
import torch
from diffusers import StableDiffusionPipeline

from scheduling_ufogen import UFOGenScheduler

# NOTE: currently, I am not aware of any publicly available UFOGen model checkpoints trained from SD v1.5.
ufogen_model_id_or_path = "/path/to/ufogen/model"
pipe = StableDiffusionPipeline(
    ufogen_model_id_or_path,
    torch_dtype=torch.float16,
)

# You can initialize a UFOGenScheduler as follows:
pipe.scheduler = UFOGenScheduler.from_config(pipe.scheduler.config)

prompt = "Three cats having dinner at a table at new years eve, cinematic shot, 8k."

# Onestep sampling
onestep_image = pipe(prompt, num_inference_steps=1).images[0]

# Multistep sampling
multistep_image = pipe(prompt, num_inference_steps=4).images[0]
```
4349

4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
### FRESCO

This is the Diffusers implementation of zero-shot video-to-video translation pipeline [FRESCO](https://github.com/williamyang1991/FRESCO) (without Ebsynth postprocessing and background smooth). To run the code, please install gmflow. Then modify the path in `gmflow_dir`. After that, you can run the pipeline with:

```py
from PIL import Image
import cv2
import torch
import numpy as np

4360
from diffusers import ControlNetModel, DDIMScheduler, DiffusionPipeline
4361
import sys
4362

4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
gmflow_dir = "/path/to/gmflow"
sys.path.insert(0, gmflow_dir)

def video_to_frame(video_path: str, interval: int):
    vidcap = cv2.VideoCapture(video_path)
    success = True

    count = 0
    res = []
    while success:
        count += 1
        success, image = vidcap.read()
        if count % interval != 1:
            continue
        if image is not None:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            res.append(image)
            if len(res) >= 8:
                break

    vidcap.release()
    return res


input_video_path = 'https://github.com/williamyang1991/FRESCO/raw/main/data/car-turn.mp4'
output_video_path = 'car.gif'

4390
# You can use any finetuned SD here
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
model_path = 'SG161222/Realistic_Vision_V2.0'

prompt = 'a red car turns in the winter'
a_prompt = ', RAW photo, subject, (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3, '
n_prompt = '(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation'

input_interval = 5
frames = video_to_frame(
    input_video_path, input_interval)

control_frames = []
# get canny image
for frame in frames:
    image = cv2.Canny(frame, 50, 100)
    np_image = np.array(image)
    np_image = np_image[:, :, None]
    np_image = np.concatenate([np_image, np_image, np_image], axis=2)
    canny_image = Image.fromarray(np_image)
    control_frames.append(canny_image)

# You can use any ControlNet here
controlnet = ControlNetModel.from_pretrained(
    "lllyasviel/sd-controlnet-canny").to('cuda')

pipe = DiffusionPipeline.from_pretrained(
    model_path, controlnet=controlnet, custom_pipeline='fresco_v2v').to('cuda')
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)

generator = torch.manual_seed(0)
frames = [Image.fromarray(frame) for frame in frames]

output_frames = pipe(
    prompt + a_prompt,
    frames,
    control_frames,
    num_inference_steps=20,
    strength=0.75,
    controlnet_conditioning_scale=0.7,
    generator=generator,
    negative_prompt=n_prompt
).images

output_frames[0].save(output_video_path, save_all=True,
                 append_images=output_frames[1:], duration=100, loop=0)
```

4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
### AnimateDiff on IPEX

This diffusion pipeline aims to accelerate the inference of AnimateDiff on Intel Xeon CPUs with BF16/FP32 precision using [IPEX](https://github.com/intel/intel-extension-for-pytorch).

To use this pipeline, you need to:
1. Install [IPEX](https://github.com/intel/intel-extension-for-pytorch)

**Note:** For each PyTorch release, there is a corresponding release of IPEX. Here is the mapping relationship. It is recommended to install Pytorch/IPEX2.3 to get the best performance.

|PyTorch Version|IPEX Version|
|--|--|
|[v2.3.\*](https://github.com/pytorch/pytorch/tree/v2.3.0 "v2.3.0")|[v2.3.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v2.3.0+cpu)|
|[v1.13.\*](https://github.com/pytorch/pytorch/tree/v1.13.0 "v1.13.0")|[v1.13.\*](https://github.com/intel/intel-extension-for-pytorch/tree/v1.13.100+cpu)|

You can simply use pip to install IPEX with the latest version.
```python
python -m pip install intel_extension_for_pytorch
```
**Note:** To install a specific version, run with the following command:
```
python -m pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
```
2. After pipeline initialization, `prepare_for_ipex()` should be called to enable IPEX accelaration. Supported inference datatypes are Float32 and BFloat16.

```python
pipe = AnimateDiffPipelineIpex.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
# For Float32
pipe.prepare_for_ipex(torch.float32, prompt="A girl smiling")
# For BFloat16
pipe.prepare_for_ipex(torch.bfloat16, prompt="A girl smiling")
```

Then you can use the ipex pipeline in a similar way to the default animatediff pipeline.
```python
# For Float32
output = pipe(prompt="A girl smiling", guidance_scale=1.0, num_inference_steps=step)
# For BFloat16
with torch.cpu.amp.autocast(enabled = True, dtype = torch.bfloat16):
    output = pipe(prompt="A girl smiling", guidance_scale=1.0, num_inference_steps=step)
```

The following code compares the performance of the original animatediff pipeline with the ipex-optimized pipeline.
By using this optimized pipeline, we can get about 1.5-2.2 times performance boost with BFloat16 on the fifth generation of Intel Xeon CPUs, code-named Emerald Rapids.

```python
import torch
from diffusers import MotionAdapter, AnimateDiffPipeline, EulerDiscreteScheduler
from safetensors.torch import load_file
from pipeline_animatediff_ipex import AnimateDiffPipelineIpex
import time

device = "cpu"
dtype = torch.float32

prompt = "A girl smiling"
step = 8  # Options: [1,2,4,8]
repo = "ByteDance/AnimateDiff-Lightning"
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
base = "emilianJR/epiCRealism"  # Choose to your favorite base model.

adapter = MotionAdapter().to(device, dtype)
adapter.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device))

# Helper function for time evaluation
def elapsed_time(pipeline, nb_pass=3, num_inference_steps=1):
    # warmup
    for _ in range(2):
        output = pipeline(prompt = prompt, guidance_scale=1.0, num_inference_steps = num_inference_steps)
    #time evaluation
    start = time.time()
    for _ in range(nb_pass):
        pipeline(prompt = prompt, guidance_scale=1.0, num_inference_steps = num_inference_steps)
    end = time.time()
    return (end - start) / nb_pass

##############     bf16 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe = AnimateDiffPipelineIpex.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
pipe.prepare_for_ipex(torch.bfloat16, prompt = prompt)

# 2. Original Pipeline initialization
pipe2 = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe2.scheduler = EulerDiscreteScheduler.from_config(pipe2.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")

# 3. Compare performance between Original Pipeline and IPEX Pipeline
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
    latency = elapsed_time(pipe, num_inference_steps=step)
    print("Latency of AnimateDiffPipelineIpex--bf16", latency, "s for total", step, "steps")
    latency = elapsed_time(pipe2, num_inference_steps=step)
    print("Latency of AnimateDiffPipeline--bf16", latency, "s for total", step, "steps")

##############     fp32 inference performance    ###############

# 1. IPEX Pipeline initialization
pipe3 = AnimateDiffPipelineIpex.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe3.scheduler = EulerDiscreteScheduler.from_config(pipe3.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
pipe3.prepare_for_ipex(torch.float32, prompt = prompt)

# 2. Original Pipeline initialization
pipe4 = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
pipe4.scheduler = EulerDiscreteScheduler.from_config(pipe4.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")

# 3. Compare performance between Original Pipeline and IPEX Pipeline
latency = elapsed_time(pipe3, num_inference_steps=step)
print("Latency of AnimateDiffPipelineIpex--fp32", latency, "s for total", step, "steps")
latency = elapsed_time(pipe4, num_inference_steps=step)
print("Latency of AnimateDiffPipeline--fp32",latency, "s for total", step, "steps")
```
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
### HunyuanDiT with Differential Diffusion

#### Usage

```python
import torch
from diffusers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import load_image
from PIL import Image
from torchvision import transforms

from pipeline_hunyuandit_differential_img2img import (
    HunyuanDiTDifferentialImg2ImgPipeline,
)


pipe = HunyuanDiTDifferentialImg2ImgPipeline.from_pretrained(
    "Tencent-Hunyuan/HunyuanDiT-Diffusers", torch_dtype=torch.float16
).to("cuda")


source_image = load_image(
    "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png"
)
map = load_image(
    "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask_2.png"
)
prompt = "a green pear"
negative_prompt = "blurry"

image = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    image=source_image,
    num_inference_steps=28,
    guidance_scale=4.5,
    strength=1.0,
    map=map,
).images[0]
```

| ![Gradient](https://github.com/user-attachments/assets/e38ce4d5-1ae6-4df0-ab43-adc1b45716b5) | ![Input](https://github.com/user-attachments/assets/9c95679c-e9d7-4f5a-90d6-560203acd6b3) | ![Output](https://github.com/user-attachments/assets/5313ff64-a0c4-418b-8b55-a38f1a5e7532) |
4589
4590
| -------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------ |
| Gradient                                                                                     | Input                                                                                     | Output                                                                                     |
4591
4592

A colab notebook demonstrating all results can be found [here](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing). Depth Maps have also been added in the same colab.
4593

4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
### 🪆Matryoshka Diffusion Models

![🪆Matryoshka Diffusion Models](https://github.com/user-attachments/assets/bf90b53b-48c3-4769-a805-d9dfe4a7c572)

The Abstract of the paper:
>Diffusion models are the _de-facto_ approach for generating high-quality images and videos but learning high-dimensional models remains a formidable task due to computational and optimization challenges. Existing methods often resort to training cascaded models in pixel space, or using a downsampled latent space of a separately trained auto-encoder. In this paper, we introduce Matryoshka Diffusion (MDM), **a novel framework for high-resolution image and video synthesis**. We propose a diffusion process that denoises inputs at multiple resolutions jointly and uses a **NestedUNet** architecture where features and parameters for small scale inputs are nested within those of the large scales. In addition, MDM enables a progressive training schedule from lower to higher resolutions which leads to significant improvements in optimization for high-resolution generation. We demonstrate the effectiveness of our approach on various benchmarks, including class-conditioned image generation, high-resolution text-to-image, and text-to-video applications. Remarkably, we can train a **_single pixel-space model_ at resolutions of up to 1024 × 1024 pixels**, demonstrating strong zero shot generalization using the **CC12M dataset, which contains only 12 million images**. Code and pre-trained checkpoints are released at https://github.com/apple/ml-mdm.

- `64×64, nesting_level=0`: 1.719 GiB. With `50` DDIM inference steps:

**64x64**
:-------------------------:
4605
| <img src="https://github.com/user-attachments/assets/032738eb-c6cd-4fd9-b4d7-a7317b4b6528" width="222" height="222" alt="bird_64_64"> |
4606
4607
4608
4609
4610

- `256×256, nesting_level=1`: 1.776 GiB. With `150` DDIM inference steps:

**64x64**             |  **256x256**
:-------------------------:|:-------------------------:
4611
| <img src="https://github.com/user-attachments/assets/21b9ad8b-eea6-4603-80a2-31180f391589" width="222" height="222" alt="bird_256_64"> | <img src="https://github.com/user-attachments/assets/fc411682-8a36-422c-9488-395b77d4406e" width="222" height="222" alt="bird_256_256"> |
4612

4613
- `1024×1024, nesting_level=2`: 1.792 GiB. As one can realize the cost of adding another layer is really negligible in this context! With `250` DDIM inference steps:
4614
4615
4616

**64x64**             |  **256x256**  |  **1024x1024**
:-------------------------:|:-------------------------:|:-------------------------:
4617
| <img src="https://github.com/user-attachments/assets/febf4b98-3dee-4a8e-9946-fd42e1f232e6" width="222" height="222" alt="bird_1024_64"> | <img src="https://github.com/user-attachments/assets/c5f85b40-5d6d-4267-a92a-c89dff015b9b" width="222" height="222" alt="bird_1024_256"> | <img src="https://github.com/user-attachments/assets/ad66b913-4367-4cb9-889e-bc06f4d96148" width="222" height="222" alt="bird_1024_1024"> |
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630

```py
from diffusers import DiffusionPipeline
from diffusers.utils import make_image_grid

# nesting_level=0 -> 64x64; nesting_level=1 -> 256x256 - 64x64; nesting_level=2 -> 1024x1024 - 256x256 - 64x64
pipe = DiffusionPipeline.from_pretrained("tolgacangoz/matryoshka-diffusion-models",
                                         nesting_level=0,
                                         trust_remote_code=False,  # One needs to give permission for this code to run
                                         ).to("cuda")

prompt0 = "a blue jay stops on the top of a helmet of Japanese samurai, background with sakura tree"
prompt = f"breathtaking {prompt0}. award-winning, professional, highly detailed"
4631
image = pipe(prompt, num_inference_steps=50).images
4632
4633
4634
4635
4636
4637
make_image_grid(image, rows=1, cols=len(image))

# pipe.change_nesting_level(<int>)  # 0, 1, or 2
# 50+, 100+, and 250+ num_inference_steps are recommended for nesting levels 0, 1, and 2 respectively.
```

4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
### Stable Diffusion XL Attentive Eraser Pipeline
<img src="https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/fenmian.png"  width="600" />

**Stable Diffusion XL Attentive Eraser Pipeline** is an advanced object removal pipeline that leverages SDXL for precise content suppression and seamless region completion. This pipeline uses **self-attention redirection guidance** to modify the model’s self-attention mechanism, allowing for effective removal and inpainting across various levels of mask precision, including semantic segmentation masks, bounding boxes, and hand-drawn masks. If you are interested in more detailed information and have any questions, please refer to the [paper](https://arxiv.org/abs/2412.12974) and [official implementation](https://github.com/Anonym0u3/AttentiveEraser).

#### Key features

- **Tuning-Free**: No additional training is required, making it easy to integrate and use.
- **Flexible Mask Support**: Works with different types of masks for targeted object removal.
- **High-Quality Results**: Utilizes the inherent generative power of diffusion models for realistic content completion.

#### Usage example
To use the Stable Diffusion XL Attentive Eraser Pipeline, you can initialize it as follows:
```py
import torch
from diffusers import DDIMScheduler, DiffusionPipeline
from diffusers.utils import load_image
import torch.nn.functional as F
from torchvision.transforms.functional import to_tensor, gaussian_blur

dtype = torch.float16
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") 

scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
pipeline = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    custom_pipeline="pipeline_stable_diffusion_xl_attentive_eraser",
    scheduler=scheduler,
    variant="fp16",
    use_safetensors=True,
    torch_dtype=dtype,
).to(device)


def preprocess_image(image_path, device):
    image = to_tensor((load_image(image_path)))
    image = image.unsqueeze_(0).float() * 2 - 1 # [0,1] --> [-1,1]
    if image.shape[1] != 3:
        image = image.expand(-1, 3, -1, -1)
        image = F.interpolate(image, (1024, 1024))
        image = image.to(dtype).to(device)
        return image

def preprocess_mask(mask_path, device):
    mask = to_tensor((load_image(mask_path, convert_method=lambda img: img.convert('L'))))
    mask = mask.unsqueeze_(0).float()  # 0 or 1
    mask = F.interpolate(mask, (1024, 1024))
    mask = gaussian_blur(mask, kernel_size=(77, 77))
    mask[mask < 0.1] = 0
    mask[mask >= 0.1] = 1
    mask = mask.to(dtype).to(device)
    return mask

prompt = "" # Set prompt to null
seed=123 
generator = torch.Generator(device=device).manual_seed(seed)
source_image_path = "https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/an1024.png"
mask_path = "https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/an1024_mask.png"
source_image = preprocess_image(source_image_path, device)
mask = preprocess_mask(mask_path, device)

image = pipeline(
    prompt=prompt, 
    image=source_image,
    mask_image=mask,
    height=1024,
    width=1024,
    AAS=True, # enable AAS
    strength=0.8, # inpainting strength
    rm_guidance_scale=9, # removal guidance scale
    ss_steps = 9, # similarity suppression steps
    ss_scale = 0.3, # similarity suppression scale
    AAS_start_step=0, # AAS start step
    AAS_start_layer=34, # AAS start layer
    AAS_end_layer=70, # AAS end layer
    num_inference_steps=50, # number of inference steps # AAS_end_step = int(strength*num_inference_steps)
    generator=generator,
    guidance_scale=1,
).images[0]
image.save('./removed_img.png')
print("Object removal completed")
```

| Source Image                                                                                   | Mask                                                                                        | Output                                                                                              |
| ---------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------- |
| ![Source Image](https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/an1024.png) | ![Mask](https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/an1024_mask.png) | ![Output](https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/AE_step40_layer34.png) |

4725
4726
4727
4728
# Perturbed-Attention Guidance

[Project](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) / [arXiv](https://arxiv.org/abs/2403.17377) / [GitHub](https://github.com/KU-CVLAB/Perturbed-Attention-Guidance)

4729
This implementation is based on [Diffusers](https://huggingface.co/docs/diffusers/index). `StableDiffusionPAGPipeline` is a modification of `StableDiffusionPipeline` to support Perturbed-Attention Guidance (PAG).
4730
4731
4732

## Example Usage

4733
```py
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
import os
import torch

from accelerate.utils import set_seed

from diffusers import StableDiffusionPipeline
from diffusers.utils import load_image, make_image_grid
from diffusers.utils.torch_utils import randn_tensor

pipe = StableDiffusionPipeline.from_pretrained(
4744
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
4745
4746
4747
4748
    custom_pipeline="hyoungwoncho/sd_perturbed_attention_guidance",
    torch_dtype=torch.float16
)

4749
device = "cuda"
4750
4751
4752
4753
4754
4755
pipe = pipe.to(device)

pag_scale = 5.0
pag_applied_layers_index = ['m0']

batch_size = 4
4756
seed = 10
4757
4758
4759
4760
4761
4762
4763
4764
4765

base_dir = "./results/"
grid_dir = base_dir + "/pag" + str(pag_scale) + "/"

if not os.path.exists(grid_dir):
    os.makedirs(grid_dir)

set_seed(seed)

4766
latent_input = randn_tensor(shape=(batch_size,4,64,64), generator=None, device=device, dtype=torch.float16)
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797

output_baseline = pipe(
    "",
    width=512,
    height=512,
    num_inference_steps=50,
    guidance_scale=0.0,
    pag_scale=0.0,
    pag_applied_layers_index=pag_applied_layers_index,
    num_images_per_prompt=batch_size,
    latents=latent_input
).images

output_pag = pipe(
    "",
    width=512,
    height=512,
    num_inference_steps=50,
    guidance_scale=0.0,
    pag_scale=5.0,
    pag_applied_layers_index=pag_applied_layers_index,
    num_images_per_prompt=batch_size,
    latents=latent_input
).images

grid_image = make_image_grid(output_baseline + output_pag, rows=2, cols=batch_size)
grid_image.save(grid_dir + "sample.png")
```

## PAG Parameters

4798
`pag_scale` : guidance scale of PAG (ex: 5.0)
4799

4800
`pag_applied_layers_index` : index of the layer to apply perturbation (ex: ['m0'])
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890

# PIXART-α Controlnet pipeline

[Project](https://pixart-alpha.github.io/) / [GitHub](https://github.com/PixArt-alpha/PixArt-alpha/blob/master/asset/docs/pixart_controlnet.md)

This the implementation of the controlnet model and the pipelne for the Pixart-alpha model, adapted to use the HuggingFace Diffusers.

## Example Usage

This example uses the Pixart HED Controlnet model, converted from the control net model as trained by the authors of the paper.

```py
import sys
import os
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as TF

from pipeline_pixart_alpha_controlnet import PixArtAlphaControlnetPipeline
from diffusers.utils import load_image

from diffusers.image_processor import PixArtImageProcessor

from controlnet_aux import HEDdetector

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from pixart.controlnet_pixart_alpha import PixArtControlNetAdapterModel

controlnet_repo_id = "raulc0399/pixart-alpha-hed-controlnet"

weight_dtype = torch.float16
image_size = 1024

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

torch.manual_seed(0)

# load controlnet
controlnet = PixArtControlNetAdapterModel.from_pretrained(
    controlnet_repo_id,
    torch_dtype=weight_dtype,
    use_safetensors=True,
).to(device)

pipe = PixArtAlphaControlnetPipeline.from_pretrained(
    "PixArt-alpha/PixArt-XL-2-1024-MS",
    controlnet=controlnet,
    torch_dtype=weight_dtype,
    use_safetensors=True,
).to(device)

images_path = "images"
control_image_file = "0_7.jpg"

prompt = "battleship in space, galaxy in background"

control_image_name = control_image_file.split('.')[0]

control_image = load_image(f"{images_path}/{control_image_file}")
print(control_image.size)
height, width = control_image.size

hed = HEDdetector.from_pretrained("lllyasviel/Annotators")

condition_transform = T.Compose([
    T.Lambda(lambda img: img.convert('RGB')),
    T.CenterCrop([image_size, image_size]),
])

control_image = condition_transform(control_image)
hed_edge = hed(control_image, detect_resolution=image_size, image_resolution=image_size)

hed_edge.save(f"{images_path}/{control_image_name}_hed.jpg")

# run pipeline
with torch.no_grad():
    out = pipe(
        prompt=prompt,
        image=hed_edge,
        num_inference_steps=14,
        guidance_scale=4.5,
        height=image_size,
        width=image_size,
    )

    out.images[0].save(f"{images_path}//{control_image_name}_output.jpg")
    
```

In the folder examples/pixart there is also a script that can be used to train new models.
4891
Please check the script `train_controlnet_hf_diffusers.sh` on how to start the training.