scheduling_lms_discrete.py 11.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import warnings
15
from dataclasses import dataclass
16
from typing import Optional, Tuple, Union
17
18
19
20
21
22
23

import numpy as np
import torch

from scipy import integrate

from ..configuration_utils import ConfigMixin, register_to_config
24
from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, BaseOutput
25
26
27
28
from .scheduling_utils import SchedulerMixin


@dataclass
29
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->LMSDiscrete
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
class LMSDiscreteSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46
47


class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
48
49
50
51
52
    """
    Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by
    Katherine Crowson:
    https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181

53
54
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
55
56
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
57

58
59
60
61
62
63
64
    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear` or `scaled_linear`.
Nathan Lambert's avatar
Nathan Lambert committed
65
66
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
67
68
69

    """

70
    _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
71

72
73
74
    @register_to_config
    def __init__(
        self,
75
76
77
78
79
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
80
    ):
81
        if trained_betas is not None:
82
            self.betas = torch.from_numpy(trained_betas)
83
        elif beta_schedule == "linear":
84
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
85
86
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
87
88
89
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
90
91
92
93
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
94
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
95

96
97
98
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas)
99

100
101
102
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = self.sigmas.max()

103
104
        # setable values
        self.num_inference_steps = None
105
106
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
107
        self.derivatives = []
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        self.is_scale_input_called = False

    def scale_model_input(
        self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
    ) -> torch.FloatTensor:
        """
        Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
        step_index = (self.timesteps == timestep).nonzero().item()
        sigma = self.sigmas[step_index]
        sample = sample / ((sigma**2 + 1) ** 0.5)
        self.is_scale_input_called = True
        return sample
130
131
132

    def get_lms_coefficient(self, order, t, current_order):
        """
133
134
135
136
137
138
        Compute a linear multistep coefficient.

        Args:
            order (TODO):
            t (TODO):
            current_order (TODO):
139
140
141
142
143
144
145
146
147
148
149
150
151
152
        """

        def lms_derivative(tau):
            prod = 1.0
            for k in range(order):
                if current_order == k:
                    continue
                prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k])
            return prod

        integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0]

        return integrated_coeff

153
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
154
155
156
157
158
159
        """
        Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
160
161
            device (`str` or `torch.device`, optional):
                the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
162
        """
163
164
        self.num_inference_steps = num_inference_steps

165
        timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
166
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
167
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
168
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
169

170
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
171
172
173
174
175
        if str(device).startswith("mps"):
            # mps does not support float64
            self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
        else:
            self.timesteps = torch.from_numpy(timesteps).to(device=device)
176
177
178
179
180

        self.derivatives = []

    def step(
        self,
181
        model_output: torch.FloatTensor,
182
        timestep: Union[float, torch.FloatTensor],
183
        sample: torch.FloatTensor,
184
        order: int = 4,
185
        return_dict: bool = True,
186
    ) -> Union[LMSDiscreteSchedulerOutput, Tuple]:
187
188
189
190
191
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
192
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
193
            timestep (`float`): current timestep in the diffusion chain.
194
            sample (`torch.FloatTensor`):
195
196
                current instance of sample being created by diffusion process.
            order: coefficient for multi-step inference.
197
            return_dict (`bool`): option for returning tuple rather than LMSDiscreteSchedulerOutput class
198
199

        Returns:
200
201
202
            [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.
203
204

        """
205
206
207
208
209
210
211
212
        if not self.is_scale_input_called:
            warnings.warn(
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
Anton Lozhkov's avatar
Anton Lozhkov committed
213
        step_index = (self.timesteps == timestep).nonzero().item()
214
        sigma = self.sigmas[step_index]
215
216
217
218
219
220
221
222
223
224
225

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
        pred_original_sample = sample - sigma * model_output

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma
        self.derivatives.append(derivative)
        if len(self.derivatives) > order:
            self.derivatives.pop(0)

        # 3. Compute linear multistep coefficients
226
227
        order = min(step_index + 1, order)
        lms_coeffs = [self.get_lms_coefficient(order, step_index, curr_order) for curr_order in range(order)]
228
229
230
231
232
233

        # 4. Compute previous sample based on the derivatives path
        prev_sample = sample + sum(
            coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives))
        )

234
235
236
        if not return_dict:
            return (prev_sample,)

237
        return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
238

239
240
    def add_noise(
        self,
241
242
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
243
        timesteps: torch.FloatTensor,
244
    ) -> torch.FloatTensor:
245
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
246
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
247
248
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
249
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
250
251
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
252
            schedule_timesteps = self.timesteps.to(original_samples.device)
253
            timesteps = timesteps.to(original_samples.device)
254

Anton Lozhkov's avatar
Anton Lozhkov committed
255
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
256

257
        sigma = sigmas[step_indices].flatten()
258
259
260
261
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
262
263
264
265
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps