scheduling_lms_discrete.py 12.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import warnings
15
from dataclasses import dataclass
16
from typing import List, Optional, Tuple, Union
17
18
19
20
21
22

import numpy as np
import torch
from scipy import integrate

from ..configuration_utils import ConfigMixin, register_to_config
Kashif Rasul's avatar
Kashif Rasul committed
23
24
from ..utils import BaseOutput
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
25
26
27


@dataclass
28
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->LMSDiscrete
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class LMSDiscreteSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
44
45
46


class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
47
48
49
50
51
    """
    Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by
    Katherine Crowson:
    https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181

52
53
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
54
55
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
56

57
58
59
60
61
62
63
    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear` or `scaled_linear`.
Nathan Lambert's avatar
Nathan Lambert committed
64
65
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
66
67
68
69
        prediction_type (`str`, default `epsilon`, optional):
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
            process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
            https://imagen.research.google/video/paper.pdf)
70
71
    """

Kashif Rasul's avatar
Kashif Rasul committed
72
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
73
    order = 1
74

75
76
77
    @register_to_config
    def __init__(
        self,
78
79
80
81
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
82
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
83
        prediction_type: str = "epsilon",
84
    ):
85
        if trained_betas is not None:
86
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
87
        elif beta_schedule == "linear":
88
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
89
90
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
91
92
93
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
94
95
96
97
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
98
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
99

100
101
102
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas)
103

104
105
106
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = self.sigmas.max()

107
108
        # setable values
        self.num_inference_steps = None
109
110
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
111
        self.derivatives = []
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        self.is_scale_input_called = False

    def scale_model_input(
        self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
    ) -> torch.FloatTensor:
        """
        Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
        step_index = (self.timesteps == timestep).nonzero().item()
        sigma = self.sigmas[step_index]
        sample = sample / ((sigma**2 + 1) ** 0.5)
        self.is_scale_input_called = True
        return sample
134
135
136

    def get_lms_coefficient(self, order, t, current_order):
        """
137
138
139
140
141
142
        Compute a linear multistep coefficient.

        Args:
            order (TODO):
            t (TODO):
            current_order (TODO):
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        """

        def lms_derivative(tau):
            prod = 1.0
            for k in range(order):
                if current_order == k:
                    continue
                prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k])
            return prod

        integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0]

        return integrated_coeff

157
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
158
159
160
161
162
163
        """
        Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
164
165
            device (`str` or `torch.device`, optional):
                the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
166
        """
167
168
        self.num_inference_steps = num_inference_steps

169
        timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
170
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
171
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
172
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
173

174
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
175
176
177
178
179
        if str(device).startswith("mps"):
            # mps does not support float64
            self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
        else:
            self.timesteps = torch.from_numpy(timesteps).to(device=device)
180
181
182
183
184

        self.derivatives = []

    def step(
        self,
185
        model_output: torch.FloatTensor,
186
        timestep: Union[float, torch.FloatTensor],
187
        sample: torch.FloatTensor,
188
        order: int = 4,
189
        return_dict: bool = True,
190
    ) -> Union[LMSDiscreteSchedulerOutput, Tuple]:
191
192
193
194
195
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
196
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
197
            timestep (`float`): current timestep in the diffusion chain.
198
            sample (`torch.FloatTensor`):
199
200
                current instance of sample being created by diffusion process.
            order: coefficient for multi-step inference.
201
            return_dict (`bool`): option for returning tuple rather than LMSDiscreteSchedulerOutput class
202
203

        Returns:
204
205
206
            [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.
207
208

        """
209
210
211
212
213
214
215
216
        if not self.is_scale_input_called:
            warnings.warn(
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
Anton Lozhkov's avatar
Anton Lozhkov committed
217
        step_index = (self.timesteps == timestep).nonzero().item()
218
        sigma = self.sigmas[step_index]
219
220

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
221
222
223
224
225
226
227
228
229
        if self.config.prediction_type == "epsilon":
            pred_original_sample = sample - sigma * model_output
        elif self.config.prediction_type == "v_prediction":
            # * c_out + input * c_skip
            pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )
230
231
232
233
234
235
236
237

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma
        self.derivatives.append(derivative)
        if len(self.derivatives) > order:
            self.derivatives.pop(0)

        # 3. Compute linear multistep coefficients
238
239
        order = min(step_index + 1, order)
        lms_coeffs = [self.get_lms_coefficient(order, step_index, curr_order) for curr_order in range(order)]
240
241
242
243
244
245

        # 4. Compute previous sample based on the derivatives path
        prev_sample = sample + sum(
            coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives))
        )

246
247
248
        if not return_dict:
            return (prev_sample,)

249
        return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
250

251
252
    def add_noise(
        self,
253
254
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
255
        timesteps: torch.FloatTensor,
256
    ) -> torch.FloatTensor:
257
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
258
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
259
260
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
261
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
262
263
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
264
            schedule_timesteps = self.timesteps.to(original_samples.device)
265
            timesteps = timesteps.to(original_samples.device)
266

Anton Lozhkov's avatar
Anton Lozhkov committed
267
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
268

269
        sigma = sigmas[step_indices].flatten()
270
271
272
273
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
274
275
276
277
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps