test_config.py 9.41 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

vincedovy's avatar
vincedovy committed
16
import json
17
18
import tempfile
import unittest
vincedovy's avatar
vincedovy committed
19
from pathlib import Path
20

21
22
from diffusers import (
    DDIMScheduler,
23
    DDPMScheduler,
24
25
26
27
28
29
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    PNDMScheduler,
    logging,
)
30
from diffusers.configuration_utils import ConfigMixin, register_to_config
31
from diffusers.utils.testing_utils import CaptureLogger
32
33


34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
class SampleObject(ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 3],
    ):
        pass


49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
class SampleObject2(ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        f=[1, 3],
    ):
        pass


class SampleObject3(ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 3],
        f=[1, 3],
    ):
        pass


80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
class SampleObject4(ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 5],
        f=[5, 4],
    ):
        pass


vincedovy's avatar
vincedovy committed
96
97
98
99
100
101
102
103
class SampleObjectPaths(ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(self, test_file_1=Path("foo/bar"), test_file_2=Path("foo bar\\bar")):
        pass


104
105
106
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
107
            ConfigMixin.load_config("dummy_path")
108

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    def test_register_to_config(self):
        obj = SampleObject()
        config = obj.config
        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        # init ignore private arguments
        obj = SampleObject(_name_or_path="lalala")
        config = obj.config
        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
        # can override default
        obj = SampleObject(c=6)
        config = obj.config
        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == 6
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        # can use positional arguments.
        obj = SampleObject(1, c=6)
        config = obj.config
        assert config["a"] == 1
        assert config["b"] == 5
        assert config["c"] == 6
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

    def test_save_load(self):
146
147
148
149
150
151
152
153
154
155
156
        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
157
            new_obj = SampleObject.from_config(SampleObject.load_config(tmpdirname))
158
159
            new_config = new_obj.config

Patrick von Platen's avatar
Patrick von Platen committed
160
161
162
163
        # unfreeze configs
        config = dict(config)
        new_config = dict(new_config)

164
165
        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
166
        config.pop("_use_default_values")
167
        assert config == new_config
168
169
170

    def test_load_ddim_from_pndm(self):
        logger = logging.get_logger("diffusers.configuration_utils")
171
172
        # 30 for warning
        logger.setLevel(30)
173
174

        with CaptureLogger(logger) as cap_logger:
175
176
177
            ddim = DDIMScheduler.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
            )
178
179
180
181
182

        assert ddim.__class__ == DDIMScheduler
        # no warning should be thrown
        assert cap_logger.out == ""

183
    def test_load_euler_from_pndm(self):
184
        logger = logging.get_logger("diffusers.configuration_utils")
185
186
        # 30 for warning
        logger.setLevel(30)
187
188

        with CaptureLogger(logger) as cap_logger:
189
            euler = EulerDiscreteScheduler.from_pretrained(
190
191
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
            )
192
193
194
195
196

        assert euler.__class__ == EulerDiscreteScheduler
        # no warning should be thrown
        assert cap_logger.out == ""

197
    def test_load_euler_ancestral_from_pndm(self):
198
        logger = logging.get_logger("diffusers.configuration_utils")
199
200
        # 30 for warning
        logger.setLevel(30)
201
202

        with CaptureLogger(logger) as cap_logger:
203
            euler = EulerAncestralDiscreteScheduler.from_pretrained(
204
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
205
206
207
208
209
210
211
212
            )

        assert euler.__class__ == EulerAncestralDiscreteScheduler
        # no warning should be thrown
        assert cap_logger.out == ""

    def test_load_pndm(self):
        logger = logging.get_logger("diffusers.configuration_utils")
213
214
        # 30 for warning
        logger.setLevel(30)
215
216

        with CaptureLogger(logger) as cap_logger:
217
218
219
            pndm = PNDMScheduler.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
            )
220
221
222
223

        assert pndm.__class__ == PNDMScheduler
        # no warning should be thrown
        assert cap_logger.out == ""
224

225
226
    def test_overwrite_config_on_load(self):
        logger = logging.get_logger("diffusers.configuration_utils")
227
228
        # 30 for warning
        logger.setLevel(30)
229
230

        with CaptureLogger(logger) as cap_logger:
231
            ddpm = DDPMScheduler.from_pretrained(
232
233
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="scheduler",
234
                prediction_type="sample",
235
236
237
238
                beta_end=8,
            )

        with CaptureLogger(logger) as cap_logger_2:
239
            ddpm_2 = DDPMScheduler.from_pretrained("google/ddpm-celebahq-256", beta_start=88)
240
241

        assert ddpm.__class__ == DDPMScheduler
242
        assert ddpm.config.prediction_type == "sample"
243
244
245
246
247
248
249
        assert ddpm.config.beta_end == 8
        assert ddpm_2.config.beta_start == 88

        # no warning should be thrown
        assert cap_logger.out == ""
        assert cap_logger_2.out == ""

250
251
    def test_load_dpmsolver(self):
        logger = logging.get_logger("diffusers.configuration_utils")
252
253
        # 30 for warning
        logger.setLevel(30)
254
255

        with CaptureLogger(logger) as cap_logger:
256
            dpm = DPMSolverMultistepScheduler.from_pretrained(
257
258
259
260
261
262
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
            )

        assert dpm.__class__ == DPMSolverMultistepScheduler
        # no warning should be thrown
        assert cap_logger.out == ""
263
264
265
266
267
268
269
270
271
272
273
274
275
276

    def test_use_default_values(self):
        # let's first save a config that should be in the form
        #    a=2,
        #    b=5,
        #    c=(2, 5),
        #    d="for diffusion",
        #    e=[1, 3],

        config = SampleObject()

        config_dict = {k: v for k, v in config.config.items() if not k.startswith("_")}

        # make sure that default config has all keys in `_use_default_values`
277
        assert set(config_dict.keys()) == set(config.config._use_default_values)
278
279
280
281
282

        with tempfile.TemporaryDirectory() as tmpdirname:
            config.save_config(tmpdirname)

            # now loading it with SampleObject2 should put f into `_use_default_values`
283
            config = SampleObject2.from_config(SampleObject2.load_config(tmpdirname))
284

285
286
            assert "f" in config.config._use_default_values
            assert config.config.f == [1, 3]
287
288

        # now loading the config, should **NOT** use [1, 3] for `f`, but the default [1, 4] value
289
        # **BECAUSE** it is part of `config.config._use_default_values`
290
        new_config = SampleObject4.from_config(config.config)
291
        assert new_config.config.f == [5, 4]
292
293
294

        config.config._use_default_values.pop()
        new_config_2 = SampleObject4.from_config(config.config)
295
        assert new_config_2.config.f == [1, 3]
296
297

        # Nevertheless "e" should still be correctly loaded to [1, 3] from SampleObject2 instead of defaulting to [1, 5]
298
        assert new_config_2.config.e == [1, 3]
vincedovy's avatar
vincedovy committed
299
300
301
302
303
304
305
306

    def test_check_path_types(self):
        # Verify that we get a string returned from a WindowsPath or PosixPath (depending on system)
        config = SampleObjectPaths()
        json_string = config.to_json_string()
        result = json.loads(json_string)
        assert result["test_file_1"] == config.config.test_file_1.as_posix()
        assert result["test_file_2"] == config.config.test_file_2.as_posix()