test_config.py 7.04 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

19
20
from diffusers import (
    DDIMScheduler,
21
    DDPMScheduler,
22
23
24
25
26
27
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    PNDMScheduler,
    logging,
)
28
from diffusers.configuration_utils import ConfigMixin, register_to_config
29
from diffusers.utils.testing_utils import CaptureLogger
30
31


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class SampleObject(ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 3],
    ):
        pass


47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
class SampleObject2(ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        f=[1, 3],
    ):
        pass


class SampleObject3(ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 3],
        f=[1, 3],
    ):
        pass


78
79
80
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
81
            ConfigMixin.load_config("dummy_path")
82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    def test_register_to_config(self):
        obj = SampleObject()
        config = obj.config
        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        # init ignore private arguments
        obj = SampleObject(_name_or_path="lalala")
        config = obj.config
        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]
100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        # can override default
        obj = SampleObject(c=6)
        config = obj.config
        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == 6
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        # can use positional arguments.
        obj = SampleObject(1, c=6)
        config = obj.config
        assert config["a"] == 1
        assert config["b"] == 5
        assert config["c"] == 6
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

    def test_save_load(self):
120
121
122
123
124
125
126
127
128
129
130
        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
131
            new_obj = SampleObject.from_config(SampleObject.load_config(tmpdirname))
132
133
            new_config = new_obj.config

Patrick von Platen's avatar
Patrick von Platen committed
134
135
136
137
        # unfreeze configs
        config = dict(config)
        new_config = dict(new_config)

138
139
140
        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
        assert config == new_config
141
142
143

    def test_load_ddim_from_pndm(self):
        logger = logging.get_logger("diffusers.configuration_utils")
144
145
        # 30 for warning
        logger.setLevel(30)
146
147

        with CaptureLogger(logger) as cap_logger:
148
149
150
            ddim = DDIMScheduler.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
            )
151
152
153
154
155

        assert ddim.__class__ == DDIMScheduler
        # no warning should be thrown
        assert cap_logger.out == ""

156
    def test_load_euler_from_pndm(self):
157
        logger = logging.get_logger("diffusers.configuration_utils")
158
159
        # 30 for warning
        logger.setLevel(30)
160
161

        with CaptureLogger(logger) as cap_logger:
162
            euler = EulerDiscreteScheduler.from_pretrained(
163
164
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
            )
165
166
167
168
169

        assert euler.__class__ == EulerDiscreteScheduler
        # no warning should be thrown
        assert cap_logger.out == ""

170
    def test_load_euler_ancestral_from_pndm(self):
171
        logger = logging.get_logger("diffusers.configuration_utils")
172
173
        # 30 for warning
        logger.setLevel(30)
174
175

        with CaptureLogger(logger) as cap_logger:
176
            euler = EulerAncestralDiscreteScheduler.from_pretrained(
177
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
178
179
180
181
182
183
184
185
            )

        assert euler.__class__ == EulerAncestralDiscreteScheduler
        # no warning should be thrown
        assert cap_logger.out == ""

    def test_load_pndm(self):
        logger = logging.get_logger("diffusers.configuration_utils")
186
187
        # 30 for warning
        logger.setLevel(30)
188
189

        with CaptureLogger(logger) as cap_logger:
190
191
192
            pndm = PNDMScheduler.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
            )
193
194
195
196

        assert pndm.__class__ == PNDMScheduler
        # no warning should be thrown
        assert cap_logger.out == ""
197

198
199
    def test_overwrite_config_on_load(self):
        logger = logging.get_logger("diffusers.configuration_utils")
200
201
        # 30 for warning
        logger.setLevel(30)
202
203

        with CaptureLogger(logger) as cap_logger:
204
            ddpm = DDPMScheduler.from_pretrained(
205
206
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="scheduler",
207
                prediction_type="sample",
208
209
210
211
                beta_end=8,
            )

        with CaptureLogger(logger) as cap_logger_2:
212
            ddpm_2 = DDPMScheduler.from_pretrained("google/ddpm-celebahq-256", beta_start=88)
213
214

        assert ddpm.__class__ == DDPMScheduler
215
        assert ddpm.config.prediction_type == "sample"
216
217
218
219
220
221
222
        assert ddpm.config.beta_end == 8
        assert ddpm_2.config.beta_start == 88

        # no warning should be thrown
        assert cap_logger.out == ""
        assert cap_logger_2.out == ""

223
224
    def test_load_dpmsolver(self):
        logger = logging.get_logger("diffusers.configuration_utils")
225
226
        # 30 for warning
        logger.setLevel(30)
227
228

        with CaptureLogger(logger) as cap_logger:
229
            dpm = DPMSolverMultistepScheduler.from_pretrained(
230
231
232
233
234
235
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
            )

        assert dpm.__class__ == DPMSolverMultistepScheduler
        # no warning should be thrown
        assert cap_logger.out == ""