"docs/vscode:/vscode.git/clone" did not exist on "bf2a70872ee4b5da52e9b3a497005c8372484273"
test_controlnet_sd3.py 13.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2024 HuggingFace Inc and The InstantX Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest
18
from typing import Optional
19
20

import numpy as np
21
import pytest
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel

from diffusers import (
    AutoencoderKL,
    FlowMatchEulerDiscreteScheduler,
    SD3Transformer2DModel,
    StableDiffusion3ControlNetPipeline,
)
from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
    enable_full_determinism,
35
36
    numpy_cosine_similarity_distance,
    require_big_gpu_with_torch_cuda,
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    slow,
    torch_device,
)
from diffusers.utils.torch_utils import randn_tensor

from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class StableDiffusion3ControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
    pipeline_class = StableDiffusion3ControlNetPipeline
    params = frozenset(
        [
            "prompt",
            "height",
            "width",
            "guidance_scale",
            "negative_prompt",
            "prompt_embeds",
            "negative_prompt_embeds",
        ]
    )
    batch_params = frozenset(["prompt", "negative_prompt"])
Aryan's avatar
Aryan committed
62
    test_layerwise_casting = True
Aryan's avatar
Aryan committed
63
    test_group_offloading = True
64

65
66
67
    def get_dummy_components(
        self, num_controlnet_layers: int = 3, qk_norm: Optional[str] = "rms_norm", use_dual_attention=False
    ):
68
69
70
71
72
73
74
75
76
77
78
79
        torch.manual_seed(0)
        transformer = SD3Transformer2DModel(
            sample_size=32,
            patch_size=1,
            in_channels=8,
            num_layers=4,
            attention_head_dim=8,
            num_attention_heads=4,
            joint_attention_dim=32,
            caption_projection_dim=32,
            pooled_projection_dim=64,
            out_channels=8,
80
            qk_norm=qk_norm,
81
            dual_attention_layers=() if not use_dual_attention else (0, 1),
82
83
84
85
86
87
88
        )

        torch.manual_seed(0)
        controlnet = SD3ControlNetModel(
            sample_size=32,
            patch_size=1,
            in_channels=8,
89
            num_layers=num_controlnet_layers,
90
91
92
93
94
95
            attention_head_dim=8,
            num_attention_heads=4,
            joint_attention_dim=32,
            caption_projection_dim=32,
            pooled_projection_dim=64,
            out_channels=8,
96
97
            qk_norm=qk_norm,
            dual_attention_layers=() if not use_dual_attention else (0,),
98
        )
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
        clip_text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            hidden_act="gelu",
            projection_dim=32,
        )

        torch.manual_seed(0)
        text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config)

        torch.manual_seed(0)
        text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)

        torch.manual_seed(0)
        text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        vae = AutoencoderKL(
            sample_size=32,
            in_channels=3,
            out_channels=3,
            block_out_channels=(4,),
            layers_per_block=1,
            latent_channels=8,
            norm_num_groups=1,
            use_quant_conv=False,
            use_post_quant_conv=False,
            shift_factor=0.0609,
            scaling_factor=1.5035,
        )

        scheduler = FlowMatchEulerDiscreteScheduler()

        return {
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "text_encoder_3": text_encoder_3,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
            "tokenizer_3": tokenizer_3,
            "transformer": transformer,
            "vae": vae,
            "controlnet": controlnet,
155
156
            "image_encoder": None,
            "feature_extractor": None,
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
        }

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        control_image = randn_tensor(
            (1, 3, 32, 32),
            generator=generator,
            device=torch.device(device),
            dtype=torch.float16,
        )

        controlnet_conditioning_scale = 0.5

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "output_type": "np",
            "control_image": control_image,
            "controlnet_conditioning_scale": controlnet_conditioning_scale,
        }

        return inputs

186
    def run_pipe(self, components, use_sd35=False):
187
188
189
190
191
192
193
194
195
        sd_pipe = StableDiffusion3ControlNetPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device, dtype=torch.float16)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]
196

197
198
        assert image.shape == (1, 32, 32, 3)

199
200
201
202
        if not use_sd35:
            expected_slice = np.array([0.5767, 0.7100, 0.5981, 0.5674, 0.5952, 0.4102, 0.5093, 0.5044, 0.6030])
        else:
            expected_slice = np.array([1.0000, 0.9072, 0.4209, 0.2744, 0.5737, 0.3840, 0.6113, 0.6250, 0.6328])
203
204
205
206
207

        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        ), f"Expected: {expected_slice}, got: {image_slice.flatten()}"

208
209
210
211
212
213
214
215
    def test_controlnet_sd3(self):
        components = self.get_dummy_components()
        self.run_pipe(components)

    def test_controlnet_sd35(self):
        components = self.get_dummy_components(num_controlnet_layers=1, qk_norm="rms_norm", use_dual_attention=True)
        self.run_pipe(components, use_sd35=True)

Dhruv Nair's avatar
Dhruv Nair committed
216
217
218
219
    @unittest.skip("xFormersAttnProcessor does not work with SD3 Joint Attention")
    def test_xformers_attention_forwardGenerator_pass(self):
        pass

220
221

@slow
222
223
@require_big_gpu_with_torch_cuda
@pytest.mark.big_gpu_with_torch_cuda
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
class StableDiffusion3ControlNetPipelineSlowTests(unittest.TestCase):
    pipeline_class = StableDiffusion3ControlNetPipeline

    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_canny(self):
        controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16)
        pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text 'InstantX' on image"
        n_prompt = "NSFW, nude, naked, porn, ugly"
        control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")

        output = pipe(
            prompt,
            negative_prompt=n_prompt,
            control_image=control_image,
            controlnet_conditioning_scale=0.5,
            guidance_scale=5.0,
            num_inference_steps=2,
            output_type="np",
            generator=generator,
        )
        image = output.images[0]

        assert image.shape == (1024, 1024, 3)

        original_image = image[-3:, -3:, -1].flatten()

266
        expected_image = np.array([0.7314, 0.7075, 0.6611, 0.7539, 0.7563, 0.6650, 0.6123, 0.7275, 0.7222])
267

268
        assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

    def test_pose(self):
        controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Pose", torch_dtype=torch.float16)
        pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image'
        n_prompt = "NSFW, nude, naked, porn, ugly"
        control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Pose/resolve/main/pose.jpg")

        output = pipe(
            prompt,
            negative_prompt=n_prompt,
            control_image=control_image,
            controlnet_conditioning_scale=0.5,
            guidance_scale=5.0,
            num_inference_steps=2,
            output_type="np",
            generator=generator,
        )
        image = output.images[0]

        assert image.shape == (1024, 1024, 3)

        original_image = image[-3:, -3:, -1].flatten()
298
        expected_image = np.array([0.9048, 0.8740, 0.8936, 0.8516, 0.8799, 0.9360, 0.8379, 0.8408, 0.8652])
299

300
        assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2
301
302

    def test_tile(self):
303
        controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Tile", torch_dtype=torch.float16)
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
        pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image'
        n_prompt = "NSFW, nude, naked, porn, ugly"
        control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Tile/resolve/main/tile.jpg")

        output = pipe(
            prompt,
            negative_prompt=n_prompt,
            control_image=control_image,
            controlnet_conditioning_scale=0.5,
            guidance_scale=5.0,
            num_inference_steps=2,
            output_type="np",
            generator=generator,
        )
        image = output.images[0]

        assert image.shape == (1024, 1024, 3)

        original_image = image[-3:, -3:, -1].flatten()
330
        expected_image = np.array([0.6699, 0.6836, 0.6226, 0.6572, 0.7310, 0.6646, 0.6650, 0.6694, 0.6011])
331

332
        assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

    def test_multi_controlnet(self):
        controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16)
        controlnet = SD3MultiControlNetModel([controlnet, controlnet])

        pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text 'InstantX' on image"
        n_prompt = "NSFW, nude, naked, porn, ugly"
        control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")

        output = pipe(
            prompt,
            negative_prompt=n_prompt,
            control_image=[control_image, control_image],
            controlnet_conditioning_scale=[0.25, 0.25],
            guidance_scale=5.0,
            num_inference_steps=2,
            output_type="np",
            generator=generator,
        )
        image = output.images[0]

        assert image.shape == (1024, 1024, 3)

        original_image = image[-3:, -3:, -1].flatten()
364
        expected_image = np.array([0.7207, 0.7041, 0.6543, 0.7500, 0.7490, 0.6592, 0.6001, 0.7168, 0.7231])
365

366
        assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2