test_controlnet_sd3.py 12.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2024 HuggingFace Inc and The InstantX Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest
18
from typing import Optional
19
20

import numpy as np
21
import pytest
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel

from diffusers import (
    AutoencoderKL,
    FlowMatchEulerDiscreteScheduler,
    SD3Transformer2DModel,
    StableDiffusion3ControlNetPipeline,
)
from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
    enable_full_determinism,
35
36
    numpy_cosine_similarity_distance,
    require_big_gpu_with_torch_cuda,
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    slow,
    torch_device,
)
from diffusers.utils.torch_utils import randn_tensor

from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class StableDiffusion3ControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
    pipeline_class = StableDiffusion3ControlNetPipeline
    params = frozenset(
        [
            "prompt",
            "height",
            "width",
            "guidance_scale",
            "negative_prompt",
            "prompt_embeds",
            "negative_prompt_embeds",
        ]
    )
    batch_params = frozenset(["prompt", "negative_prompt"])

63
    def get_dummy_components(self, num_controlnet_layers: int = 3, qk_norm: Optional[str] = "rms_norm"):
64
65
66
67
68
69
70
71
72
73
74
75
        torch.manual_seed(0)
        transformer = SD3Transformer2DModel(
            sample_size=32,
            patch_size=1,
            in_channels=8,
            num_layers=4,
            attention_head_dim=8,
            num_attention_heads=4,
            joint_attention_dim=32,
            caption_projection_dim=32,
            pooled_projection_dim=64,
            out_channels=8,
76
            qk_norm=qk_norm,
77
78
79
80
81
82
83
        )

        torch.manual_seed(0)
        controlnet = SD3ControlNetModel(
            sample_size=32,
            patch_size=1,
            in_channels=8,
84
            num_layers=num_controlnet_layers,
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
            attention_head_dim=8,
            num_attention_heads=4,
            joint_attention_dim=32,
            caption_projection_dim=32,
            pooled_projection_dim=64,
            out_channels=8,
        )
        clip_text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            hidden_act="gelu",
            projection_dim=32,
        )

        torch.manual_seed(0)
        text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config)

        torch.manual_seed(0)
        text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)

        torch.manual_seed(0)
        text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        vae = AutoencoderKL(
            sample_size=32,
            in_channels=3,
            out_channels=3,
            block_out_channels=(4,),
            layers_per_block=1,
            latent_channels=8,
            norm_num_groups=1,
            use_quant_conv=False,
            use_post_quant_conv=False,
            shift_factor=0.0609,
            scaling_factor=1.5035,
        )

        scheduler = FlowMatchEulerDiscreteScheduler()

        return {
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "text_encoder_3": text_encoder_3,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
            "tokenizer_3": tokenizer_3,
            "transformer": transformer,
            "vae": vae,
            "controlnet": controlnet,
        }

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        control_image = randn_tensor(
            (1, 3, 32, 32),
            generator=generator,
            device=torch.device(device),
            dtype=torch.float16,
        )

        controlnet_conditioning_scale = 0.5

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "output_type": "np",
            "control_image": control_image,
            "controlnet_conditioning_scale": controlnet_conditioning_scale,
        }

        return inputs

    def test_controlnet_sd3(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusion3ControlNetPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device, dtype=torch.float16)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]
187

188
189
        assert image.shape == (1, 32, 32, 3)

190
        expected_slice = np.array([0.5767, 0.7100, 0.5981, 0.5674, 0.5952, 0.4102, 0.5093, 0.5044, 0.6030])
191
192
193
194
195

        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        ), f"Expected: {expected_slice}, got: {image_slice.flatten()}"

Dhruv Nair's avatar
Dhruv Nair committed
196
197
198
199
    @unittest.skip("xFormersAttnProcessor does not work with SD3 Joint Attention")
    def test_xformers_attention_forwardGenerator_pass(self):
        pass

200
201

@slow
202
203
@require_big_gpu_with_torch_cuda
@pytest.mark.big_gpu_with_torch_cuda
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
class StableDiffusion3ControlNetPipelineSlowTests(unittest.TestCase):
    pipeline_class = StableDiffusion3ControlNetPipeline

    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_canny(self):
        controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16)
        pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text 'InstantX' on image"
        n_prompt = "NSFW, nude, naked, porn, ugly"
        control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")

        output = pipe(
            prompt,
            negative_prompt=n_prompt,
            control_image=control_image,
            controlnet_conditioning_scale=0.5,
            guidance_scale=5.0,
            num_inference_steps=2,
            output_type="np",
            generator=generator,
        )
        image = output.images[0]

        assert image.shape == (1024, 1024, 3)

        original_image = image[-3:, -3:, -1].flatten()

246
        expected_image = np.array([0.7314, 0.7075, 0.6611, 0.7539, 0.7563, 0.6650, 0.6123, 0.7275, 0.7222])
247

248
        assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

    def test_pose(self):
        controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Pose", torch_dtype=torch.float16)
        pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image'
        n_prompt = "NSFW, nude, naked, porn, ugly"
        control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Pose/resolve/main/pose.jpg")

        output = pipe(
            prompt,
            negative_prompt=n_prompt,
            control_image=control_image,
            controlnet_conditioning_scale=0.5,
            guidance_scale=5.0,
            num_inference_steps=2,
            output_type="np",
            generator=generator,
        )
        image = output.images[0]

        assert image.shape == (1024, 1024, 3)

        original_image = image[-3:, -3:, -1].flatten()
278
        expected_image = np.array([0.9048, 0.8740, 0.8936, 0.8516, 0.8799, 0.9360, 0.8379, 0.8408, 0.8652])
279

280
        assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2
281
282

    def test_tile(self):
283
        controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Tile", torch_dtype=torch.float16)
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
        pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image'
        n_prompt = "NSFW, nude, naked, porn, ugly"
        control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Tile/resolve/main/tile.jpg")

        output = pipe(
            prompt,
            negative_prompt=n_prompt,
            control_image=control_image,
            controlnet_conditioning_scale=0.5,
            guidance_scale=5.0,
            num_inference_steps=2,
            output_type="np",
            generator=generator,
        )
        image = output.images[0]

        assert image.shape == (1024, 1024, 3)

        original_image = image[-3:, -3:, -1].flatten()
310
        expected_image = np.array([0.6699, 0.6836, 0.6226, 0.6572, 0.7310, 0.6646, 0.6650, 0.6694, 0.6011])
311

312
        assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

    def test_multi_controlnet(self):
        controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16)
        controlnet = SD3MultiControlNetModel([controlnet, controlnet])

        pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text 'InstantX' on image"
        n_prompt = "NSFW, nude, naked, porn, ugly"
        control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")

        output = pipe(
            prompt,
            negative_prompt=n_prompt,
            control_image=[control_image, control_image],
            controlnet_conditioning_scale=[0.25, 0.25],
            guidance_scale=5.0,
            num_inference_steps=2,
            output_type="np",
            generator=generator,
        )
        image = output.images[0]

        assert image.shape == (1024, 1024, 3)

        original_image = image[-3:, -3:, -1].flatten()
344
        expected_image = np.array([0.7207, 0.7041, 0.6543, 0.7500, 0.7490, 0.6592, 0.6001, 0.7168, 0.7231])
345

346
        assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2