test_controlnet_sd3.py 13.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2024 HuggingFace Inc and The InstantX Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest
18
from typing import Optional
19
20

import numpy as np
21
import pytest
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel

from diffusers import (
    AutoencoderKL,
    FlowMatchEulerDiscreteScheduler,
    SD3Transformer2DModel,
    StableDiffusion3ControlNetPipeline,
)
from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
    enable_full_determinism,
35
36
    numpy_cosine_similarity_distance,
    require_big_gpu_with_torch_cuda,
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    slow,
    torch_device,
)
from diffusers.utils.torch_utils import randn_tensor

from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class StableDiffusion3ControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
    pipeline_class = StableDiffusion3ControlNetPipeline
    params = frozenset(
        [
            "prompt",
            "height",
            "width",
            "guidance_scale",
            "negative_prompt",
            "prompt_embeds",
            "negative_prompt_embeds",
        ]
    )
    batch_params = frozenset(["prompt", "negative_prompt"])

63
64
65
    def get_dummy_components(
        self, num_controlnet_layers: int = 3, qk_norm: Optional[str] = "rms_norm", use_dual_attention=False
    ):
66
67
68
69
70
71
72
73
74
75
76
77
        torch.manual_seed(0)
        transformer = SD3Transformer2DModel(
            sample_size=32,
            patch_size=1,
            in_channels=8,
            num_layers=4,
            attention_head_dim=8,
            num_attention_heads=4,
            joint_attention_dim=32,
            caption_projection_dim=32,
            pooled_projection_dim=64,
            out_channels=8,
78
            qk_norm=qk_norm,
79
            dual_attention_layers=() if not use_dual_attention else (0, 1),
80
81
82
83
84
85
86
        )

        torch.manual_seed(0)
        controlnet = SD3ControlNetModel(
            sample_size=32,
            patch_size=1,
            in_channels=8,
87
            num_layers=num_controlnet_layers,
88
89
90
91
92
93
            attention_head_dim=8,
            num_attention_heads=4,
            joint_attention_dim=32,
            caption_projection_dim=32,
            pooled_projection_dim=64,
            out_channels=8,
94
95
            qk_norm=qk_norm,
            dual_attention_layers=() if not use_dual_attention else (0,),
96
        )
97

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
        clip_text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            hidden_act="gelu",
            projection_dim=32,
        )

        torch.manual_seed(0)
        text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config)

        torch.manual_seed(0)
        text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)

        torch.manual_seed(0)
        text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        vae = AutoencoderKL(
            sample_size=32,
            in_channels=3,
            out_channels=3,
            block_out_channels=(4,),
            layers_per_block=1,
            latent_channels=8,
            norm_num_groups=1,
            use_quant_conv=False,
            use_post_quant_conv=False,
            shift_factor=0.0609,
            scaling_factor=1.5035,
        )

        scheduler = FlowMatchEulerDiscreteScheduler()

        return {
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "text_encoder_3": text_encoder_3,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
            "tokenizer_3": tokenizer_3,
            "transformer": transformer,
            "vae": vae,
            "controlnet": controlnet,
        }

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        control_image = randn_tensor(
            (1, 3, 32, 32),
            generator=generator,
            device=torch.device(device),
            dtype=torch.float16,
        )

        controlnet_conditioning_scale = 0.5

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "output_type": "np",
            "control_image": control_image,
            "controlnet_conditioning_scale": controlnet_conditioning_scale,
        }

        return inputs

182
    def run_pipe(self, components, use_sd35=False):
183
184
185
186
187
188
189
190
191
        sd_pipe = StableDiffusion3ControlNetPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device, dtype=torch.float16)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]
192

193
194
        assert image.shape == (1, 32, 32, 3)

195
196
197
198
        if not use_sd35:
            expected_slice = np.array([0.5767, 0.7100, 0.5981, 0.5674, 0.5952, 0.4102, 0.5093, 0.5044, 0.6030])
        else:
            expected_slice = np.array([1.0000, 0.9072, 0.4209, 0.2744, 0.5737, 0.3840, 0.6113, 0.6250, 0.6328])
199
200
201
202
203

        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        ), f"Expected: {expected_slice}, got: {image_slice.flatten()}"

204
205
206
207
208
209
210
211
    def test_controlnet_sd3(self):
        components = self.get_dummy_components()
        self.run_pipe(components)

    def test_controlnet_sd35(self):
        components = self.get_dummy_components(num_controlnet_layers=1, qk_norm="rms_norm", use_dual_attention=True)
        self.run_pipe(components, use_sd35=True)

Dhruv Nair's avatar
Dhruv Nair committed
212
213
214
215
    @unittest.skip("xFormersAttnProcessor does not work with SD3 Joint Attention")
    def test_xformers_attention_forwardGenerator_pass(self):
        pass

216
217

@slow
218
219
@require_big_gpu_with_torch_cuda
@pytest.mark.big_gpu_with_torch_cuda
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
class StableDiffusion3ControlNetPipelineSlowTests(unittest.TestCase):
    pipeline_class = StableDiffusion3ControlNetPipeline

    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_canny(self):
        controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16)
        pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text 'InstantX' on image"
        n_prompt = "NSFW, nude, naked, porn, ugly"
        control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")

        output = pipe(
            prompt,
            negative_prompt=n_prompt,
            control_image=control_image,
            controlnet_conditioning_scale=0.5,
            guidance_scale=5.0,
            num_inference_steps=2,
            output_type="np",
            generator=generator,
        )
        image = output.images[0]

        assert image.shape == (1024, 1024, 3)

        original_image = image[-3:, -3:, -1].flatten()

262
        expected_image = np.array([0.7314, 0.7075, 0.6611, 0.7539, 0.7563, 0.6650, 0.6123, 0.7275, 0.7222])
263

264
        assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

    def test_pose(self):
        controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Pose", torch_dtype=torch.float16)
        pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image'
        n_prompt = "NSFW, nude, naked, porn, ugly"
        control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Pose/resolve/main/pose.jpg")

        output = pipe(
            prompt,
            negative_prompt=n_prompt,
            control_image=control_image,
            controlnet_conditioning_scale=0.5,
            guidance_scale=5.0,
            num_inference_steps=2,
            output_type="np",
            generator=generator,
        )
        image = output.images[0]

        assert image.shape == (1024, 1024, 3)

        original_image = image[-3:, -3:, -1].flatten()
294
        expected_image = np.array([0.9048, 0.8740, 0.8936, 0.8516, 0.8799, 0.9360, 0.8379, 0.8408, 0.8652])
295

296
        assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2
297
298

    def test_tile(self):
299
        controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Tile", torch_dtype=torch.float16)
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
        pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image'
        n_prompt = "NSFW, nude, naked, porn, ugly"
        control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Tile/resolve/main/tile.jpg")

        output = pipe(
            prompt,
            negative_prompt=n_prompt,
            control_image=control_image,
            controlnet_conditioning_scale=0.5,
            guidance_scale=5.0,
            num_inference_steps=2,
            output_type="np",
            generator=generator,
        )
        image = output.images[0]

        assert image.shape == (1024, 1024, 3)

        original_image = image[-3:, -3:, -1].flatten()
326
        expected_image = np.array([0.6699, 0.6836, 0.6226, 0.6572, 0.7310, 0.6646, 0.6650, 0.6694, 0.6011])
327

328
        assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

    def test_multi_controlnet(self):
        controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16)
        controlnet = SD3MultiControlNetModel([controlnet, controlnet])

        pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text 'InstantX' on image"
        n_prompt = "NSFW, nude, naked, porn, ugly"
        control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")

        output = pipe(
            prompt,
            negative_prompt=n_prompt,
            control_image=[control_image, control_image],
            controlnet_conditioning_scale=[0.25, 0.25],
            guidance_scale=5.0,
            num_inference_steps=2,
            output_type="np",
            generator=generator,
        )
        image = output.images[0]

        assert image.shape == (1024, 1024, 3)

        original_image = image[-3:, -3:, -1].flatten()
360
        expected_image = np.array([0.7207, 0.7041, 0.6543, 0.7500, 0.7490, 0.6592, 0.6001, 0.7168, 0.7231])
361

362
        assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2