configuration_utils.py 27.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" ConfigMixin base class and utilities."""
17
import dataclasses
18
import functools
19
import importlib
Patrick von Platen's avatar
improve  
Patrick von Platen committed
20
import inspect
21
22
23
import json
import os
import re
Patrick von Platen's avatar
Patrick von Platen committed
24
from collections import OrderedDict
25
from pathlib import PosixPath
26
27
from typing import Any, Dict, Tuple, Union

28
29
import numpy as np

30
from huggingface_hub import hf_hub_download
31
from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError
Patrick von Platen's avatar
Patrick von Platen committed
32
from requests import HTTPError
33

Patrick von Platen's avatar
Patrick von Platen committed
34
from . import __version__
35
from .utils import DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, DummyObject, deprecate, logging
36

37

38
39
40
41
42
logger = logging.get_logger(__name__)

_re_configuration_file = re.compile(r"config\.(.*)\.json")


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
class FrozenDict(OrderedDict):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        for key, value in self.items():
            setattr(self, key, value)

        self.__frozen = True

    def __delitem__(self, *args, **kwargs):
        raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")

    def setdefault(self, *args, **kwargs):
        raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")

    def pop(self, *args, **kwargs):
        raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")

    def update(self, *args, **kwargs):
        raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")

    def __setattr__(self, name, value):
        if hasattr(self, "__frozen") and self.__frozen:
            raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
        super().__setattr__(name, value)

    def __setitem__(self, name, value):
        if hasattr(self, "__frozen") and self.__frozen:
            raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
        super().__setitem__(name, value)


Patrick von Platen's avatar
Patrick von Platen committed
75
class ConfigMixin:
76
    r"""
Patrick von Platen's avatar
Patrick von Platen committed
77
78
79
80
81
82
83
    Base class for all configuration classes. Stores all configuration parameters under `self.config` Also handles all
    methods for loading/downloading/saving classes inheriting from [`ConfigMixin`] with
        - [`~ConfigMixin.from_config`]
        - [`~ConfigMixin.save_config`]

    Class attributes:
        - **config_name** (`str`) -- A filename under which the config should stored when calling
84
          [`~ConfigMixin.save_config`] (should be overridden by parent class).
Patrick von Platen's avatar
Patrick von Platen committed
85
        - **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be
86
87
88
89
90
          overridden by subclass).
        - **has_compatibles** (`bool`) -- Whether the class has compatible classes (should be overridden by subclass).
        - **_deprecated_kwargs** (`List[str]`) -- Keyword arguments that are deprecated. Note that the init function
          should only have a `kwargs` argument if at least one argument is deprecated (should be overridden by
          subclass).
91
    """
92
    config_name = None
Patrick von Platen's avatar
Patrick von Platen committed
93
    ignore_for_config = []
94
    has_compatibles = False
95

96
97
    _deprecated_kwargs = []

98
    def register_to_config(self, **kwargs):
99
100
        if self.config_name is None:
            raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
101
102
103
104
        # Special case for `kwargs` used in deprecation warning added to schedulers
        # TODO: remove this when we remove the deprecation warning, and the `kwargs` argument,
        # or solve in a more general way.
        kwargs.pop("kwargs", None)
105
106
107
108
109
110
        for key, value in kwargs.items():
            try:
                setattr(self, key, value)
            except AttributeError as err:
                logger.error(f"Can't set {key} with value {value} for {self}")
                raise err
111

Patrick von Platen's avatar
Patrick von Platen committed
112
113
114
115
116
117
        if not hasattr(self, "_internal_dict"):
            internal_dict = kwargs
        else:
            previous_dict = dict(self._internal_dict)
            internal_dict = {**self._internal_dict, **kwargs}
            logger.debug(f"Updating config from {previous_dict} to {internal_dict}")
118

Patrick von Platen's avatar
Patrick von Platen committed
119
        self._internal_dict = FrozenDict(internal_dict)
120

121
    def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
122
123
        """
        Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the
Patrick von Platen's avatar
Patrick von Platen committed
124
        [`~ConfigMixin.from_config`] class method.
125
126
127
128
129
130
131
132
133
134

        Args:
            save_directory (`str` or `os.PathLike`):
                Directory where the configuration JSON file will be saved (will be created if it does not exist).
        """
        if os.path.isfile(save_directory):
            raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")

        os.makedirs(save_directory, exist_ok=True)

135
136
        # If we save using the predefined names, we can load using `from_config`
        output_config_file = os.path.join(save_directory, self.config_name)
137

138
        self.to_json_file(output_config_file)
Pedro Cuenca's avatar
Pedro Cuenca committed
139
        logger.info(f"Configuration saved in {output_config_file}")
140

141
    @classmethod
142
    def from_config(cls, config: Union[FrozenDict, Dict[str, Any]] = None, return_unused_kwargs=False, **kwargs):
Patrick von Platen's avatar
Patrick von Platen committed
143
        r"""
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        Instantiate a Python class from a config dictionary

        Parameters:
            config (`Dict[str, Any]`):
                A config dictionary from which the Python class will be instantiated. Make sure to only load
                configuration files of compatible classes.
            return_unused_kwargs (`bool`, *optional*, defaults to `False`):
                Whether kwargs that are not consumed by the Python class should be returned or not.

            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to update the configuration object (after it being loaded) and initiate the Python class.
                `**kwargs` will be directly passed to the underlying scheduler/model's `__init__` method and eventually
                overwrite same named arguments of `config`.

        Examples:

        ```python
        >>> from diffusers import DDPMScheduler, DDIMScheduler, PNDMScheduler

        >>> # Download scheduler from huggingface.co and cache.
        >>> scheduler = DDPMScheduler.from_pretrained("google/ddpm-cifar10-32")

        >>> # Instantiate DDIM scheduler class with same config as DDPM
        >>> scheduler = DDIMScheduler.from_config(scheduler.config)

        >>> # Instantiate PNDM scheduler class with same config as DDPM
        >>> scheduler = PNDMScheduler.from_config(scheduler.config)
        ```
        """
        # <===== TO BE REMOVED WITH DEPRECATION
        # TODO(Patrick) - make sure to remove the following lines when config=="model_path" is deprecated
        if "pretrained_model_name_or_path" in kwargs:
            config = kwargs.pop("pretrained_model_name_or_path")

        if config is None:
            raise ValueError("Please make sure to provide a config as the first positional argument.")
        # ======>

        if not isinstance(config, dict):
            deprecation_message = "It is deprecated to pass a pretrained model name or path to `from_config`."
            if "Scheduler" in cls.__name__:
                deprecation_message += (
                    f"If you were trying to load a scheduler, please use {cls}.from_pretrained(...) instead."
                    " Otherwise, please make sure to pass a configuration dictionary instead. This functionality will"
                    " be removed in v1.0.0."
                )
            elif "Model" in cls.__name__:
                deprecation_message += (
                    f"If you were trying to load a model, please use {cls}.load_config(...) followed by"
                    f" {cls}.from_config(...) instead. Otherwise, please make sure to pass a configuration dictionary"
                    " instead. This functionality will be removed in v1.0.0."
                )
            deprecate("config-passed-as-path", "1.0.0", deprecation_message, standard_warn=False)
            config, kwargs = cls.load_config(pretrained_model_name_or_path=config, return_unused_kwargs=True, **kwargs)

        init_dict, unused_kwargs, hidden_dict = cls.extract_init_dict(config, **kwargs)

        # Allow dtype to be specified on initialization
        if "dtype" in unused_kwargs:
            init_dict["dtype"] = unused_kwargs.pop("dtype")

205
206
207
208
        # add possible deprecated kwargs
        for deprecated_kwarg in cls._deprecated_kwargs:
            if deprecated_kwarg in unused_kwargs:
                init_dict[deprecated_kwarg] = unused_kwargs.pop(deprecated_kwarg)
209

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        # Return model and optionally state and/or unused_kwargs
        model = cls(**init_dict)

        # make sure to also save config parameters that might be used for compatible classes
        model.register_to_config(**hidden_dict)

        # add hidden kwargs of compatible classes to unused_kwargs
        unused_kwargs = {**unused_kwargs, **hidden_dict}

        if return_unused_kwargs:
            return (model, unused_kwargs)
        else:
            return model

    @classmethod
    def get_config_dict(cls, *args, **kwargs):
        deprecation_message = (
            f" The function get_config_dict is deprecated. Please use {cls}.load_config instead. This function will be"
            " removed in version v1.0.0"
        )
        deprecate("get_config_dict", "1.0.0", deprecation_message, standard_warn=False)
        return cls.load_config(*args, **kwargs)

    @classmethod
    def load_config(
        cls, pretrained_model_name_or_path: Union[str, os.PathLike], return_unused_kwargs=False, **kwargs
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        r"""
        Instantiate a Python class from a config dictionary
Patrick von Platen's avatar
Patrick von Platen committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *model id* of a model repo on huggingface.co. Valid model ids should have an
                      organization name, like `google/ddpm-celebahq-256`.
                    - A path to a *directory* containing model weights saved using [`~ConfigMixin.save_config`], e.g.,
                      `./my_model_directory/`.

            cache_dir (`Union[str, os.PathLike]`, *optional*):
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
            proxies (`Dict[str, str]`, *optional*):
                A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
262
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Patrick von Platen's avatar
Patrick von Platen committed
263
264
265
266
267
268
269
270
271
            local_files_only(`bool`, *optional*, defaults to `False`):
                Whether or not to only look at local files (i.e., do not try to download the model).
            use_auth_token (`str` or *bool*, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `transformers-cli login` (stored in `~/.huggingface`).
            revision (`str`, *optional*, defaults to `"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
                identifier allowed by git.
272
273
274
            subfolder (`str`, *optional*, defaults to `""`):
                In case the relevant files are located inside a subfolder of the model repo (either remote in
                huggingface.co or downloaded locally), you can specify the folder name here.
Patrick von Platen's avatar
Patrick von Platen committed
275
276
277

        <Tip>

278
279
         It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated
         models](https://huggingface.co/docs/hub/models-gated#gated-models).
Patrick von Platen's avatar
Patrick von Platen committed
280
281
282
283
284
285
286
287
288
289

        </Tip>

        <Tip>

        Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
        use this method in a firewalled environment.

        </Tip>
        """
290
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
291
292
293
294
295
296
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        use_auth_token = kwargs.pop("use_auth_token", None)
        local_files_only = kwargs.pop("local_files_only", False)
        revision = kwargs.pop("revision", None)
297
        _ = kwargs.pop("mirror", None)
Patrick von Platen's avatar
Patrick von Platen committed
298
        subfolder = kwargs.pop("subfolder", None)
299
300
301
302
303

        user_agent = {"file_type": "config"}

        pretrained_model_name_or_path = str(pretrained_model_name_or_path)

304
305
306
307
308
309
        if cls.config_name is None:
            raise ValueError(
                "`self.config_name` is not defined. Note that one should not load a config from "
                "`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`"
            )

310
311
312
313
314
315
        if os.path.isfile(pretrained_model_name_or_path):
            config_file = pretrained_model_name_or_path
        elif os.path.isdir(pretrained_model_name_or_path):
            if os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)):
                # Load from a PyTorch checkpoint
                config_file = os.path.join(pretrained_model_name_or_path, cls.config_name)
Patrick von Platen's avatar
Patrick von Platen committed
316
317
318
319
            elif subfolder is not None and os.path.isfile(
                os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
            ):
                config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
320
            else:
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
                raise EnvironmentError(
                    f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}."
                )
        else:
            try:
                # Load from URL or cache if already cached
                config_file = hf_hub_download(
                    pretrained_model_name_or_path,
                    filename=cls.config_name,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
                    local_files_only=local_files_only,
                    use_auth_token=use_auth_token,
                    user_agent=user_agent,
Patrick von Platen's avatar
Patrick von Platen committed
337
                    subfolder=subfolder,
338
                    revision=revision,
339
340
                )

341
342
            except RepositoryNotFoundError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
343
344
345
                    f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier"
                    " listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a"
                    " token having permission to this repo with `use_auth_token` or log in with `huggingface-cli"
346
                    " login`."
347
348
349
                )
            except RevisionNotFoundError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
350
351
352
                    f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for"
                    " this model name. Check the model page at"
                    f" 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
353
354
355
356
357
358
359
                )
            except EntryNotFoundError:
                raise EnvironmentError(
                    f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}."
                )
            except HTTPError as err:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
360
361
                    "There was a specific connection error when trying to load"
                    f" {pretrained_model_name_or_path}:\n{err}"
362
363
364
                )
            except ValueError:
                raise EnvironmentError(
Patrick von Platen's avatar
Patrick von Platen committed
365
366
367
368
369
                    f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
                    f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
                    f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to"
                    " run the library in offline mode at"
                    " 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
370
371
372
373
374
375
376
377
                )
            except EnvironmentError:
                raise EnvironmentError(
                    f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                    "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                    f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                    f"containing a {cls.config_name} file"
                )
378

379
380
381
382
        try:
            # Load config dict
            config_dict = cls._dict_from_json_file(config_file)
        except (json.JSONDecodeError, UnicodeDecodeError):
Patrick von Platen's avatar
Patrick von Platen committed
383
            raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.")
384

385
386
387
        if return_unused_kwargs:
            return config_dict, kwargs

patil-suraj's avatar
patil-suraj committed
388
        return config_dict
389

390
391
392
393
    @staticmethod
    def _get_init_keys(cls):
        return set(dict(inspect.signature(cls.__init__).parameters).keys())

patil-suraj's avatar
patil-suraj committed
394
395
    @classmethod
    def extract_init_dict(cls, config_dict, **kwargs):
396
397
398
        # 0. Copy origin config dict
        original_dict = {k: v for k, v in config_dict.items()}

399
400
        # 1. Retrieve expected config attributes from __init__ signature
        expected_keys = cls._get_init_keys(cls)
401
        expected_keys.remove("self")
Patrick von Platen's avatar
hotfix  
Patrick von Platen committed
402
403
404
        # remove general kwargs if present in dict
        if "kwargs" in expected_keys:
            expected_keys.remove("kwargs")
Yuta Hayashibe's avatar
Yuta Hayashibe committed
405
        # remove flax internal keys
406
407
408
409
        if hasattr(cls, "_flax_internal_args"):
            for arg in cls._flax_internal_args:
                expected_keys.remove(arg)

410
        # 2. Remove attributes that cannot be expected from expected config attributes
Patrick von Platen's avatar
Patrick von Platen committed
411
412
413
        # remove keys to be ignored
        if len(cls.ignore_for_config) > 0:
            expected_keys = expected_keys - set(cls.ignore_for_config)
414
415
416
417

        # load diffusers library to import compatible and original scheduler
        diffusers_library = importlib.import_module(__name__.split(".")[0])

418
419
420
421
422
        if cls.has_compatibles:
            compatible_classes = [c for c in cls._get_compatibles() if not isinstance(c, DummyObject)]
        else:
            compatible_classes = []

423
424
425
426
427
428
429
430
431
        expected_keys_comp_cls = set()
        for c in compatible_classes:
            expected_keys_c = cls._get_init_keys(c)
            expected_keys_comp_cls = expected_keys_comp_cls.union(expected_keys_c)
        expected_keys_comp_cls = expected_keys_comp_cls - cls._get_init_keys(cls)
        config_dict = {k: v for k, v in config_dict.items() if k not in expected_keys_comp_cls}

        # remove attributes from orig class that cannot be expected
        orig_cls_name = config_dict.pop("_class_name", cls.__name__)
432
        if orig_cls_name != cls.__name__ and hasattr(diffusers_library, orig_cls_name):
433
434
435
436
437
438
439
440
            orig_cls = getattr(diffusers_library, orig_cls_name)
            unexpected_keys_from_orig = cls._get_init_keys(orig_cls) - expected_keys
            config_dict = {k: v for k, v in config_dict.items() if k not in unexpected_keys_from_orig}

        # remove private attributes
        config_dict = {k: v for k, v in config_dict.items() if not k.startswith("_")}

        # 3. Create keyword arguments that will be passed to __init__ from expected keyword arguments
patil-suraj's avatar
patil-suraj committed
441
        init_dict = {}
Patrick von Platen's avatar
improve  
Patrick von Platen committed
442
        for key in expected_keys:
443
444
445
446
447
            # if config param is passed to kwarg and is present in config dict
            # it should overwrite existing config dict key
            if key in kwargs and key in config_dict:
                config_dict[key] = kwargs.pop(key)

Patrick von Platen's avatar
improve  
Patrick von Platen committed
448
449
            if key in kwargs:
                # overwrite key
patil-suraj's avatar
patil-suraj committed
450
451
452
453
                init_dict[key] = kwargs.pop(key)
            elif key in config_dict:
                # use value from config dict
                init_dict[key] = config_dict.pop(key)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
454

455
        # 4. Give nice warning if unexpected values have been passed
456
457
458
459
460
461
462
        if len(config_dict) > 0:
            logger.warning(
                f"The config attributes {config_dict} were passed to {cls.__name__}, "
                "but are not expected and will be ignored. Please verify your "
                f"{cls.config_name} configuration file."
            )

463
        # 5. Give nice info if config attributes are initiliazed to default because they have not been passed
patil-suraj's avatar
patil-suraj committed
464
        passed_keys = set(init_dict.keys())
465
        if len(expected_keys - passed_keys) > 0:
466
            logger.info(
Patrick von Platen's avatar
improve  
Patrick von Platen committed
467
                f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
468
            )
469

470
471
472
        # 6. Define unused keyword arguments
        unused_kwargs = {**config_dict, **kwargs}

473
        # 7. Define "hidden" config parameters that were saved for compatible classes
474
        hidden_config_dict = {k: v for k, v in original_dict.items() if k not in init_dict}
475
476

        return init_dict, unused_kwargs, hidden_config_dict
Patrick von Platen's avatar
Patrick von Platen committed
477

478
479
480
481
482
483
    @classmethod
    def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
        with open(json_file, "r", encoding="utf-8") as reader:
            text = reader.read()
        return json.loads(text)

anton-l's avatar
anton-l committed
484
    def __repr__(self):
485
        return f"{self.__class__.__name__} {self.to_json_string()}"
486

487
488
    @property
    def config(self) -> Dict[str, Any]:
489
490
491
492
493
494
        """
        Returns the config of the class as a frozen dictionary

        Returns:
            `Dict[str, Any]`: Config of the class.
        """
Patrick von Platen's avatar
Patrick von Platen committed
495
        return self._internal_dict
496

497
    def to_json_string(self) -> str:
498
499
500
501
502
503
        """
        Serializes this instance to a JSON string.

        Returns:
            `str`: String containing all the attributes that make up this configuration instance in JSON format.
        """
504
        config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {}
505
506
507
        config_dict["_class_name"] = self.__class__.__name__
        config_dict["_diffusers_version"] = __version__

508
509
510
        def to_json_saveable(value):
            if isinstance(value, np.ndarray):
                value = value.tolist()
511
512
            elif isinstance(value, PosixPath):
                value = str(value)
513
514
515
            return value

        config_dict = {k: to_json_saveable(v) for k, v in config_dict.items()}
516
517
        return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"

518
    def to_json_file(self, json_file_path: Union[str, os.PathLike]):
519
520
521
522
523
524
525
526
        """
        Save this instance to a JSON file.

        Args:
            json_file_path (`str` or `os.PathLike`):
                Path to the JSON file in which this configuration instance's parameters will be saved.
        """
        with open(json_file_path, "w", encoding="utf-8") as writer:
527
            writer.write(self.to_json_string())
Patrick von Platen's avatar
Patrick von Platen committed
528
529


530
def register_to_config(init):
Patrick von Platen's avatar
Patrick von Platen committed
531
532
533
534
    r"""
    Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
    automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
    shouldn't be registered in the config, use the `ignore_for_config` class variable
535
536
537
538
539
540
541
542

    Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
    """

    @functools.wraps(init)
    def inner_init(self, *args, **kwargs):
        # Ignore private kwargs in the init.
        init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}
543
        config_init_kwargs = {k: v for k, v in kwargs.items() if k.startswith("_")}
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
        if not isinstance(self, ConfigMixin):
            raise RuntimeError(
                f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
                "not inherit from `ConfigMixin`."
            )

        ignore = getattr(self, "ignore_for_config", [])
        # Get positional arguments aligned with kwargs
        new_kwargs = {}
        signature = inspect.signature(init)
        parameters = {
            name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore
        }
        for arg, name in zip(args, parameters.keys()):
            new_kwargs[name] = arg

        # Then add all kwargs
        new_kwargs.update(
            {
                k: init_kwargs.get(k, default)
                for k, default in parameters.items()
                if k not in ignore and k not in new_kwargs
            }
        )
568
        new_kwargs = {**config_init_kwargs, **new_kwargs}
569
        getattr(self, "register_to_config")(**new_kwargs)
570
        init(self, *args, **init_kwargs)
571
572

    return inner_init
573
574
575
576
577
578
579
580
581
582
583
584
585
586


def flax_register_to_config(cls):
    original_init = cls.__init__

    @functools.wraps(original_init)
    def init(self, *args, **kwargs):
        if not isinstance(self, ConfigMixin):
            raise RuntimeError(
                f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
                "not inherit from `ConfigMixin`."
            )

        # Ignore private kwargs in the init. Retrieve all passed attributes
587
        init_kwargs = {k: v for k, v in kwargs.items()}
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602

        # Retrieve default values
        fields = dataclasses.fields(self)
        default_kwargs = {}
        for field in fields:
            # ignore flax specific attributes
            if field.name in self._flax_internal_args:
                continue
            if type(field.default) == dataclasses._MISSING_TYPE:
                default_kwargs[field.name] = None
            else:
                default_kwargs[field.name] = getattr(self, field.name)

        # Make sure init_kwargs override default kwargs
        new_kwargs = {**default_kwargs, **init_kwargs}
603
604
605
        # dtype should be part of `init_kwargs`, but not `new_kwargs`
        if "dtype" in new_kwargs:
            new_kwargs.pop("dtype")
606
607
608
609
610
611
612
613
614
615
616

        # Get positional arguments aligned with kwargs
        for i, arg in enumerate(args):
            name = fields[i].name
            new_kwargs[name] = arg

        getattr(self, "register_to_config")(**new_kwargs)
        original_init(self, *args, **kwargs)

    cls.__init__ = init
    return cls