pipeline_ddpm.py 5.12 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


16
from typing import List, Optional, Tuple, Union
Pedro Cuenca's avatar
Pedro Cuenca committed
17

Patrick von Platen's avatar
Patrick von Platen committed
18
19
import torch

hlky's avatar
hlky committed
20
from ...utils import is_torch_xla_available
Dhruv Nair's avatar
Dhruv Nair committed
21
from ...utils.torch_utils import randn_tensor
22
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
Patrick von Platen's avatar
Patrick von Platen committed
23
24


hlky's avatar
hlky committed
25
26
27
28
29
30
31
32
if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False


Patrick von Platen's avatar
Patrick von Platen committed
33
class DDPMPipeline(DiffusionPipeline):
34
    r"""
35
36
37
38
    Pipeline for image generation.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
39
40

    Parameters:
41
42
        unet ([`UNet2DModel`]):
            A `UNet2DModel` to denoise the encoded image latents.
43
44
45
46
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
            [`DDPMScheduler`], or [`DDIMScheduler`].
    """
47

48
    model_cpu_offload_seq = "unet"
49

50
    def __init__(self, unet, scheduler):
Patrick von Platen's avatar
Patrick von Platen committed
51
        super().__init__()
52
        self.register_modules(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
53

Patrick von Platen's avatar
Patrick von Platen committed
54
    @torch.no_grad()
55
    def __call__(
Sid Sahai's avatar
Sid Sahai committed
56
57
        self,
        batch_size: int = 1,
58
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
59
        num_inference_steps: int = 1000,
Sid Sahai's avatar
Sid Sahai committed
60
61
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
62
    ) -> Union[ImagePipelineOutput, Tuple]:
63
        r"""
64
65
        The call function to the pipeline for generation.

66
        Args:
67
            batch_size (`int`, *optional*, defaults to 1):
68
                The number of images to generate.
69
            generator (`torch.Generator`, *optional*):
70
71
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
72
73
74
            num_inference_steps (`int`, *optional*, defaults to 1000):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
75
            output_type (`str`, *optional*, defaults to `"pil"`):
76
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
77
            return_dict (`bool`, *optional*, defaults to `True`):
78
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
        Example:

        ```py
        >>> from diffusers import DDPMPipeline

        >>> # load model and scheduler
        >>> pipe = DDPMPipeline.from_pretrained("google/ddpm-cat-256")

        >>> # run pipeline in inference (sample random noise and denoise)
        >>> image = pipe().images[0]

        >>> # save image
        >>> image.save("ddpm_generated_image.png")
        ```

95
        Returns:
96
97
98
            [`~pipelines.ImagePipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
                returned where the first element is a list with the generated images
99
        """
Patrick von Platen's avatar
Patrick von Platen committed
100
        # Sample gaussian noise to begin loop
101
102
103
104
105
106
107
        if isinstance(self.unet.config.sample_size, int):
            image_shape = (
                batch_size,
                self.unet.config.in_channels,
                self.unet.config.sample_size,
                self.unet.config.sample_size,
            )
108
        else:
109
            image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
110

111
112
        if self.device.type == "mps":
            # randn does not work reproducibly on mps
113
            image = randn_tensor(image_shape, generator=generator, dtype=self.unet.dtype)
114
115
            image = image.to(self.device)
        else:
116
            image = randn_tensor(image_shape, generator=generator, device=self.device, dtype=self.unet.dtype)
Patrick von Platen's avatar
Patrick von Platen committed
117

118
        # set step values
119
        self.scheduler.set_timesteps(num_inference_steps)
120

hysts's avatar
hysts committed
121
        for t in self.progress_bar(self.scheduler.timesteps):
Patrick von Platen's avatar
Patrick von Platen committed
122
            # 1. predict noise model_output
123
            model_output = self.unet(image, t).sample
Patrick von Platen's avatar
Patrick von Platen committed
124

125
            # 2. compute previous image: x_t -> x_t-1
126
            image = self.scheduler.step(model_output, t, image, generator=generator).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
127

hlky's avatar
hlky committed
128
129
130
            if XLA_AVAILABLE:
                xm.mark_step()

131
132
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
133
134
        if output_type == "pil":
            image = self.numpy_to_pil(image)
135

136
137
138
139
        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)