pipeline_ddpm.py 2.5 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


Pedro Cuenca's avatar
Pedro Cuenca committed
17
import warnings
18
from typing import Tuple, Union
Pedro Cuenca's avatar
Pedro Cuenca committed
19

Patrick von Platen's avatar
Patrick von Platen committed
20
21
import torch

22
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
Patrick von Platen's avatar
Patrick von Platen committed
23
24


Patrick von Platen's avatar
Patrick von Platen committed
25
class DDPMPipeline(DiffusionPipeline):
26
    def __init__(self, unet, scheduler):
Patrick von Platen's avatar
Patrick von Platen committed
27
        super().__init__()
28
29
        scheduler = scheduler.set_format("pt")
        self.register_modules(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
30

Patrick von Platen's avatar
Patrick von Platen committed
31
    @torch.no_grad()
32
33
34
    def __call__(
        self, batch_size=1, generator=None, output_type="pil", return_dict: bool = True, **kwargs
    ) -> Union[ImagePipelineOutput, Tuple]:
Pedro Cuenca's avatar
Pedro Cuenca committed
35
36
37
38
39
40
        if "torch_device" in kwargs:
            device = kwargs.pop("torch_device")
            warnings.warn(
                "`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
                " Consider using `pipe.to(torch_device)` instead."
            )
Patrick von Platen's avatar
Patrick von Platen committed
41

Pedro Cuenca's avatar
Pedro Cuenca committed
42
43
44
45
            # Set device as before (to be removed in 0.3.0)
            if device is None:
                device = "cuda" if torch.cuda.is_available() else "cpu"
            self.to(device)
Patrick von Platen's avatar
Patrick von Platen committed
46
47

        # Sample gaussian noise to begin loop
Patrick von Platen's avatar
Patrick von Platen committed
48
        image = torch.randn(
Patrick von Platen's avatar
Patrick von Platen committed
49
            (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
Patrick von Platen's avatar
Patrick von Platen committed
50
51
            generator=generator,
        )
Pedro Cuenca's avatar
Pedro Cuenca committed
52
        image = image.to(self.device)
Patrick von Platen's avatar
Patrick von Platen committed
53

54
55
56
        # set step values
        self.scheduler.set_timesteps(1000)

hysts's avatar
hysts committed
57
        for t in self.progress_bar(self.scheduler.timesteps):
Patrick von Platen's avatar
Patrick von Platen committed
58
            # 1. predict noise model_output
59
            model_output = self.unet(image, t).sample
Patrick von Platen's avatar
Patrick von Platen committed
60

Patrick von Platen's avatar
Patrick von Platen committed
61
            # 2. compute previous image: x_t -> t_t-1
62
            image = self.scheduler.step(model_output, t, image, generator=generator).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
63

64
65
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
66
67
        if output_type == "pil":
            image = self.numpy_to_pil(image)
68

69
70
71
72
        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)