pipeline_ddpm.py 4.8 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


16
from typing import List, Optional, Tuple, Union
Pedro Cuenca's avatar
Pedro Cuenca committed
17

Patrick von Platen's avatar
Patrick von Platen committed
18
19
import torch

20
from ...utils import randn_tensor
21
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
Patrick von Platen's avatar
Patrick von Platen committed
22
23


Patrick von Platen's avatar
Patrick von Platen committed
24
class DDPMPipeline(DiffusionPipeline):
25
    r"""
26
27
28
29
    Pipeline for image generation.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
30
31

    Parameters:
32
33
        unet ([`UNet2DModel`]):
            A `UNet2DModel` to denoise the encoded image latents.
34
35
36
37
38
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
            [`DDPMScheduler`], or [`DDIMScheduler`].
    """

39
    def __init__(self, unet, scheduler):
Patrick von Platen's avatar
Patrick von Platen committed
40
        super().__init__()
41
        self.register_modules(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
42

Patrick von Platen's avatar
Patrick von Platen committed
43
    @torch.no_grad()
44
    def __call__(
Sid Sahai's avatar
Sid Sahai committed
45
46
        self,
        batch_size: int = 1,
47
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
48
        num_inference_steps: int = 1000,
Sid Sahai's avatar
Sid Sahai committed
49
50
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
51
    ) -> Union[ImagePipelineOutput, Tuple]:
52
        r"""
53
54
        The call function to the pipeline for generation.

55
        Args:
56
            batch_size (`int`, *optional*, defaults to 1):
57
                The number of images to generate.
58
            generator (`torch.Generator`, *optional*):
59
60
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
61
62
63
            num_inference_steps (`int`, *optional*, defaults to 1000):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
64
            output_type (`str`, *optional*, defaults to `"pil"`):
65
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
66
            return_dict (`bool`, *optional*, defaults to `True`):
67
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        Example:

        ```py
        >>> from diffusers import DDPMPipeline

        >>> # load model and scheduler
        >>> pipe = DDPMPipeline.from_pretrained("google/ddpm-cat-256")

        >>> # run pipeline in inference (sample random noise and denoise)
        >>> image = pipe().images[0]

        >>> # save image
        >>> image.save("ddpm_generated_image.png")
        ```

84
        Returns:
85
86
87
            [`~pipelines.ImagePipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
                returned where the first element is a list with the generated images
88
        """
Patrick von Platen's avatar
Patrick von Platen committed
89
        # Sample gaussian noise to begin loop
90
91
92
93
94
95
96
        if isinstance(self.unet.config.sample_size, int):
            image_shape = (
                batch_size,
                self.unet.config.in_channels,
                self.unet.config.sample_size,
                self.unet.config.sample_size,
            )
97
        else:
98
            image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
99

100
101
        if self.device.type == "mps":
            # randn does not work reproducibly on mps
102
            image = randn_tensor(image_shape, generator=generator)
103
104
            image = image.to(self.device)
        else:
105
            image = randn_tensor(image_shape, generator=generator, device=self.device)
Patrick von Platen's avatar
Patrick von Platen committed
106

107
        # set step values
108
        self.scheduler.set_timesteps(num_inference_steps)
109

hysts's avatar
hysts committed
110
        for t in self.progress_bar(self.scheduler.timesteps):
Patrick von Platen's avatar
Patrick von Platen committed
111
            # 1. predict noise model_output
112
            model_output = self.unet(image, t).sample
Patrick von Platen's avatar
Patrick von Platen committed
113

114
            # 2. compute previous image: x_t -> x_t-1
115
            image = self.scheduler.step(model_output, t, image, generator=generator).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
116

117
118
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
119
120
        if output_type == "pil":
            image = self.numpy_to_pil(image)
121

122
123
124
125
        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)