pipeline_ddim.py 6.45 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from typing import List, Optional, Tuple, Union
Pedro Cuenca's avatar
Pedro Cuenca committed
16

Patrick von Platen's avatar
Patrick von Platen committed
17
18
import torch

19
from ...schedulers import DDIMScheduler
Dhruv Nair's avatar
Dhruv Nair committed
20
from ...utils.torch_utils import randn_tensor
21
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
Patrick von Platen's avatar
Patrick von Platen committed
22
23


Patrick von Platen's avatar
Patrick von Platen committed
24
class DDIMPipeline(DiffusionPipeline):
Kashif Rasul's avatar
Kashif Rasul committed
25
    r"""
26
27
28
29
    Pipeline for image generation.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Kashif Rasul's avatar
Kashif Rasul committed
30
31

    Parameters:
32
33
        unet ([`UNet2DModel`]):
            A `UNet2DModel` to denoise the encoded image latents.
Kashif Rasul's avatar
Kashif Rasul committed
34
35
36
37
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
            [`DDPMScheduler`], or [`DDIMScheduler`].
    """
38
    model_cpu_offload_seq = "unet"
Kashif Rasul's avatar
Kashif Rasul committed
39

40
    def __init__(self, unet, scheduler):
Patrick von Platen's avatar
Patrick von Platen committed
41
        super().__init__()
42
43
44
45

        # make sure scheduler can always be converted to DDIM
        scheduler = DDIMScheduler.from_config(scheduler.config)

46
        self.register_modules(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
47

Patrick von Platen's avatar
Patrick von Platen committed
48
    @torch.no_grad()
49
50
    def __call__(
        self,
Sid Sahai's avatar
Sid Sahai committed
51
        batch_size: int = 1,
52
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
Sid Sahai's avatar
Sid Sahai committed
53
54
        eta: float = 0.0,
        num_inference_steps: int = 50,
55
        use_clipped_model_output: Optional[bool] = None,
Sid Sahai's avatar
Sid Sahai committed
56
        output_type: Optional[str] = "pil",
57
58
        return_dict: bool = True,
    ) -> Union[ImagePipelineOutput, Tuple]:
Kashif Rasul's avatar
Kashif Rasul committed
59
        r"""
60
61
        The call function to the pipeline for generation.

Kashif Rasul's avatar
Kashif Rasul committed
62
        Args:
63
            batch_size (`int`, *optional*, defaults to 1):
Kashif Rasul's avatar
Kashif Rasul committed
64
                The number of images to generate.
65
            generator (`torch.Generator`, *optional*):
66
67
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
68
            eta (`float`, *optional*, defaults to 0.0):
69
70
71
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. A value of `0` corresponds to
                DDIM and `1` corresponds to DDPM.
72
            num_inference_steps (`int`, *optional*, defaults to 50):
Kashif Rasul's avatar
Kashif Rasul committed
73
74
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
75
            use_clipped_model_output (`bool`, *optional*, defaults to `None`):
76
77
                If `True` or `False`, see documentation for [`DDIMScheduler.step`]. If `None`, nothing is passed
                downstream to the scheduler (use `None` for schedulers which don't support this argument).
78
            output_type (`str`, *optional*, defaults to `"pil"`):
79
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
80
            return_dict (`bool`, *optional*, defaults to `True`):
81
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        Example:

        ```py
        >>> from diffusers import DDIMPipeline
        >>> import PIL.Image
        >>> import numpy as np

        >>> # load model and scheduler
        >>> pipe = DDIMPipeline.from_pretrained("fusing/ddim-lsun-bedroom")

        >>> # run pipeline in inference (sample random noise and denoise)
        >>> image = pipe(eta=0.0, num_inference_steps=50)

        >>> # process image to PIL
        >>> image_processed = image.cpu().permute(0, 2, 3, 1)
        >>> image_processed = (image_processed + 1.0) * 127.5
        >>> image_processed = image_processed.numpy().astype(np.uint8)
        >>> image_pil = PIL.Image.fromarray(image_processed[0])

        >>> # save image
        >>> image_pil.save("test.png")
        ```

106
        Returns:
107
108
109
            [`~pipelines.ImagePipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
                returned where the first element is a list with the generated images
Kashif Rasul's avatar
Kashif Rasul committed
110
        """
Pedro Cuenca's avatar
Pedro Cuenca committed
111

Patrick von Platen's avatar
Patrick von Platen committed
112
        # Sample gaussian noise to begin loop
113
114
115
116
117
118
119
        if isinstance(self.unet.config.sample_size, int):
            image_shape = (
                batch_size,
                self.unet.config.in_channels,
                self.unet.config.sample_size,
                self.unet.config.sample_size,
            )
120
        else:
121
            image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
122

123
124
125
126
127
128
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

129
        image = randn_tensor(image_shape, generator=generator, device=self._execution_device, dtype=self.unet.dtype)
Patrick von Platen's avatar
Patrick von Platen committed
130

131
132
        # set step values
        self.scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
133

hysts's avatar
hysts committed
134
        for t in self.progress_bar(self.scheduler.timesteps):
Patrick von Platen's avatar
Patrick von Platen committed
135
            # 1. predict noise model_output
136
            model_output = self.unet(image, t).sample
Patrick von Platen's avatar
Patrick von Platen committed
137

138
            # 2. predict previous mean of image x_t-1 and add variance depending on eta
139
            # eta corresponds to η in paper and should be between [0, 1]
140
            # do x_t -> x_t-1
141
142
143
            image = self.scheduler.step(
                model_output, t, image, eta=eta, use_clipped_model_output=use_clipped_model_output, generator=generator
            ).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
144

145
146
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
anton-l's avatar
anton-l committed
147
148
        if output_type == "pil":
            image = self.numpy_to_pil(image)
149

150
151
152
153
        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)