pipeline_ddim.py 5.33 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from typing import List, Optional, Tuple, Union
Pedro Cuenca's avatar
Pedro Cuenca committed
16

Patrick von Platen's avatar
Patrick von Platen committed
17
18
import torch

19
from ...schedulers import DDIMScheduler
20
from ...utils import randn_tensor
21
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
Patrick von Platen's avatar
Patrick von Platen committed
22
23


Patrick von Platen's avatar
Patrick von Platen committed
24
class DDIMPipeline(DiffusionPipeline):
Kashif Rasul's avatar
Kashif Rasul committed
25
26
27
28
29
30
31
32
33
34
35
    r"""
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Parameters:
        unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
            [`DDPMScheduler`], or [`DDIMScheduler`].
    """

36
    def __init__(self, unet, scheduler):
Patrick von Platen's avatar
Patrick von Platen committed
37
        super().__init__()
38
39
40
41

        # make sure scheduler can always be converted to DDIM
        scheduler = DDIMScheduler.from_config(scheduler.config)

42
        self.register_modules(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
43

Patrick von Platen's avatar
Patrick von Platen committed
44
    @torch.no_grad()
45
46
    def __call__(
        self,
Sid Sahai's avatar
Sid Sahai committed
47
        batch_size: int = 1,
48
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
Sid Sahai's avatar
Sid Sahai committed
49
50
        eta: float = 0.0,
        num_inference_steps: int = 50,
51
        use_clipped_model_output: Optional[bool] = None,
Sid Sahai's avatar
Sid Sahai committed
52
        output_type: Optional[str] = "pil",
53
54
        return_dict: bool = True,
    ) -> Union[ImagePipelineOutput, Tuple]:
Kashif Rasul's avatar
Kashif Rasul committed
55
56
        r"""
        Args:
57
            batch_size (`int`, *optional*, defaults to 1):
Kashif Rasul's avatar
Kashif Rasul committed
58
                The number of images to generate.
59
            generator (`torch.Generator`, *optional*):
60
61
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
62
            eta (`float`, *optional*, defaults to 0.0):
Kashif Rasul's avatar
Kashif Rasul committed
63
                The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
64
            num_inference_steps (`int`, *optional*, defaults to 50):
Kashif Rasul's avatar
Kashif Rasul committed
65
66
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
67
68
69
            use_clipped_model_output (`bool`, *optional*, defaults to `None`):
                if `True` or `False`, see documentation for `DDIMScheduler.step`. If `None`, nothing is passed
                downstream to the scheduler. So use `None` for schedulers which don't support this argument.
70
            output_type (`str`, *optional*, defaults to `"pil"`):
Kashif Rasul's avatar
Kashif Rasul committed
71
                The output format of the generate image. Choose between
72
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
73
            return_dict (`bool`, *optional*, defaults to `True`):
74
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
75
76

        Returns:
77
78
            [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is
            True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
Kashif Rasul's avatar
Kashif Rasul committed
79
        """
Pedro Cuenca's avatar
Pedro Cuenca committed
80

Patrick von Platen's avatar
Patrick von Platen committed
81
        # Sample gaussian noise to begin loop
82
83
84
85
86
        if isinstance(self.unet.sample_size, int):
            image_shape = (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size)
        else:
            image_shape = (batch_size, self.unet.in_channels, *self.unet.sample_size)

87
88
89
90
91
92
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

93
        image = randn_tensor(image_shape, generator=generator, device=self.device, dtype=self.unet.dtype)
Patrick von Platen's avatar
Patrick von Platen committed
94

95
96
        # set step values
        self.scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
97

hysts's avatar
hysts committed
98
        for t in self.progress_bar(self.scheduler.timesteps):
Patrick von Platen's avatar
Patrick von Platen committed
99
            # 1. predict noise model_output
100
            model_output = self.unet(image, t).sample
Patrick von Platen's avatar
Patrick von Platen committed
101

102
            # 2. predict previous mean of image x_t-1 and add variance depending on eta
103
            # eta corresponds to η in paper and should be between [0, 1]
104
            # do x_t -> x_t-1
105
106
107
            image = self.scheduler.step(
                model_output, t, image, eta=eta, use_clipped_model_output=use_clipped_model_output, generator=generator
            ).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
108

109
110
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
anton-l's avatar
anton-l committed
111
112
        if output_type == "pil":
            image = self.numpy_to_pil(image)
113

114
115
116
117
        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)