"docs/source/en/api/pipelines/ddpm.mdx" did not exist on "ac3738462b1732193908b0fb7e557bedac3c57a5"
pipeline_ddim.py 4.5 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.


Pedro Cuenca's avatar
Pedro Cuenca committed
17
import warnings
Sid Sahai's avatar
Sid Sahai committed
18
from typing import Optional, Tuple, Union
Pedro Cuenca's avatar
Pedro Cuenca committed
19

Patrick von Platen's avatar
Patrick von Platen committed
20
21
import torch

22
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
Patrick von Platen's avatar
Patrick von Platen committed
23
24


Patrick von Platen's avatar
Patrick von Platen committed
25
class DDIMPipeline(DiffusionPipeline):
Kashif Rasul's avatar
Kashif Rasul committed
26
27
28
29
30
31
32
33
34
35
36
    r"""
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Parameters:
        unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
            [`DDPMScheduler`], or [`DDIMScheduler`].
    """

37
    def __init__(self, unet, scheduler):
Patrick von Platen's avatar
Patrick von Platen committed
38
        super().__init__()
39
40
        scheduler = scheduler.set_format("pt")
        self.register_modules(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
41

Patrick von Platen's avatar
Patrick von Platen committed
42
    @torch.no_grad()
43
44
    def __call__(
        self,
Sid Sahai's avatar
Sid Sahai committed
45
46
47
48
49
        batch_size: int = 1,
        generator: Optional[torch.Generator] = None,
        eta: float = 0.0,
        num_inference_steps: int = 50,
        output_type: Optional[str] = "pil",
50
51
52
        return_dict: bool = True,
        **kwargs,
    ) -> Union[ImagePipelineOutput, Tuple]:
Kashif Rasul's avatar
Kashif Rasul committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        r"""
        Args:
            batch_size (:obj:`int`, *optional*, defaults to 1):
                The number of images to generate.
            generator (:obj:`torch.Generator`, *optional*):
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
            eta (:obj:`float`, *optional*, defaults to 0.0):
                The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
            num_inference_steps (:obj:`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            output_type (:obj:`str`, *optional*, defaults to :obj:`"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
            return_dict (:obj:`bool`, *optional*, defaults to :obj:`True`):
                Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
        """
Pedro Cuenca's avatar
Pedro Cuenca committed
71
72
73
74
75
76
77

        if "torch_device" in kwargs:
            device = kwargs.pop("torch_device")
            warnings.warn(
                "`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
                " Consider using `pipe.to(torch_device)` instead."
            )
Patrick von Platen's avatar
Patrick von Platen committed
78

Pedro Cuenca's avatar
Pedro Cuenca committed
79
80
81
82
83
84
            # Set device as before (to be removed in 0.3.0)
            if device is None:
                device = "cuda" if torch.cuda.is_available() else "cpu"
            self.to(device)

        # eta corresponds to η in paper and should be between [0, 1]
Patrick von Platen's avatar
Patrick von Platen committed
85
86

        # Sample gaussian noise to begin loop
Patrick von Platen's avatar
Patrick von Platen committed
87
        image = torch.randn(
Patrick von Platen's avatar
Patrick von Platen committed
88
            (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
Patrick von Platen's avatar
Patrick von Platen committed
89
90
            generator=generator,
        )
Pedro Cuenca's avatar
Pedro Cuenca committed
91
        image = image.to(self.device)
Patrick von Platen's avatar
Patrick von Platen committed
92

93
94
        # set step values
        self.scheduler.set_timesteps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
95

hysts's avatar
hysts committed
96
        for t in self.progress_bar(self.scheduler.timesteps):
Patrick von Platen's avatar
Patrick von Platen committed
97
            # 1. predict noise model_output
98
            model_output = self.unet(image, t).sample
Patrick von Platen's avatar
Patrick von Platen committed
99

100
101
            # 2. predict previous mean of image x_t-1 and add variance depending on eta
            # do x_t -> x_t-1
102
            image = self.scheduler.step(model_output, t, image, eta).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
103

104
105
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
anton-l's avatar
anton-l committed
106
107
        if output_type == "pil":
            image = self.numpy_to_pil(image)
108

109
110
111
112
        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)