denoise.py 11.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, List, Tuple

import torch

from ...models import FluxTransformer2DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import logging
from ..modular_pipeline import (
    BlockState,
    LoopSequentialPipelineBlocks,
25
    ModularPipelineBlocks,
26
27
28
29
30
31
32
33
34
    PipelineState,
)
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
from .modular_pipeline import FluxModularPipeline


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


35
class FluxLoopDenoiser(ModularPipelineBlocks):
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    model_name = "flux"

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [ComponentSpec("transformer", FluxTransformer2DModel)]

    @property
    def description(self) -> str:
        return (
            "Step within the denoising loop that denoise the latents. "
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `FluxDenoiseLoopWrapper`)"
        )

    @property
    def inputs(self) -> List[Tuple[str, Any]]:
        return [
53
            InputParam("joint_attention_kwargs"),
54
55
56
57
58
59
60
61
            InputParam(
                "latents",
                required=True,
                type_hint=torch.Tensor,
                description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
            ),
            InputParam(
                "guidance",
62
                required=False,
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
                type_hint=torch.Tensor,
                description="Guidance scale as a tensor",
            ),
            InputParam(
                "prompt_embeds",
                required=True,
                type_hint=torch.Tensor,
                description="Prompt embeddings",
            ),
            InputParam(
                "pooled_prompt_embeds",
                required=True,
                type_hint=torch.Tensor,
                description="Pooled prompt embeddings",
            ),
            InputParam(
79
                "txt_ids",
80
81
82
83
84
                required=True,
                type_hint=torch.Tensor,
                description="IDs computed from text sequence needed for RoPE",
            ),
            InputParam(
85
                "img_ids",
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
                required=True,
                type_hint=torch.Tensor,
                description="IDs computed from image sequence needed for RoPE",
            ),
        ]

    @torch.no_grad()
    def __call__(
        self, components: FluxModularPipeline, block_state: BlockState, i: int, t: torch.Tensor
    ) -> PipelineState:
        noise_pred = components.transformer(
            hidden_states=block_state.latents,
            timestep=t.flatten() / 1000,
            guidance=block_state.guidance,
            encoder_hidden_states=block_state.prompt_embeds,
            pooled_projections=block_state.pooled_prompt_embeds,
            joint_attention_kwargs=block_state.joint_attention_kwargs,
103
104
            txt_ids=block_state.txt_ids,
            img_ids=block_state.img_ids,
105
106
107
108
109
110
111
            return_dict=False,
        )[0]
        block_state.noise_pred = noise_pred

        return components, block_state


112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
class FluxKontextLoopDenoiser(ModularPipelineBlocks):
    model_name = "flux-kontext"

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [ComponentSpec("transformer", FluxTransformer2DModel)]

    @property
    def description(self) -> str:
        return (
            "Step within the denoising loop that denoise the latents for Flux Kontext. "
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `FluxDenoiseLoopWrapper`)"
        )

    @property
    def inputs(self) -> List[Tuple[str, Any]]:
        return [
            InputParam("joint_attention_kwargs"),
            InputParam(
                "latents",
                required=True,
                type_hint=torch.Tensor,
                description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
            ),
            InputParam(
                "image_latents",
                type_hint=torch.Tensor,
                description="Image latents to use for the denoising process. Can be generated in prepare_latent step.",
            ),
            InputParam(
                "guidance",
144
                required=False,
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
                type_hint=torch.Tensor,
                description="Guidance scale as a tensor",
            ),
            InputParam(
                "prompt_embeds",
                required=True,
                type_hint=torch.Tensor,
                description="Prompt embeddings",
            ),
            InputParam(
                "pooled_prompt_embeds",
                required=True,
                type_hint=torch.Tensor,
                description="Pooled prompt embeddings",
            ),
            InputParam(
                "txt_ids",
                required=True,
                type_hint=torch.Tensor,
                description="IDs computed from text sequence needed for RoPE",
            ),
            InputParam(
                "img_ids",
                required=True,
                type_hint=torch.Tensor,
                description="IDs computed from latent sequence needed for RoPE",
            ),
        ]

    @torch.no_grad()
    def __call__(
        self, components: FluxModularPipeline, block_state: BlockState, i: int, t: torch.Tensor
    ) -> PipelineState:
        latents = block_state.latents
        latent_model_input = latents
        image_latents = block_state.image_latents
        if image_latents is not None:
            latent_model_input = torch.cat([latent_model_input, image_latents], dim=1)

        timestep = t.expand(latents.shape[0]).to(latents.dtype)
        noise_pred = components.transformer(
            hidden_states=latent_model_input,
            timestep=timestep / 1000,
            guidance=block_state.guidance,
            encoder_hidden_states=block_state.prompt_embeds,
            pooled_projections=block_state.pooled_prompt_embeds,
            joint_attention_kwargs=block_state.joint_attention_kwargs,
            txt_ids=block_state.txt_ids,
            img_ids=block_state.img_ids,
            return_dict=False,
        )[0]
        noise_pred = noise_pred[:, : latents.size(1)]
        block_state.noise_pred = noise_pred

        return components, block_state


202
class FluxLoopAfterDenoiser(ModularPipelineBlocks):
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    model_name = "flux"

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [ComponentSpec("scheduler", FlowMatchEulerDiscreteScheduler)]

    @property
    def description(self) -> str:
        return (
            "step within the denoising loop that update the latents. "
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `FluxDenoiseLoopWrapper`)"
        )

    @property
    def inputs(self) -> List[Tuple[str, Any]]:
        return []

    @property
    def intermediate_inputs(self) -> List[str]:
        return [InputParam("generator")]

    @property
    def intermediate_outputs(self) -> List[OutputParam]:
        return [OutputParam("latents", type_hint=torch.Tensor, description="The denoised latents")]

    @torch.no_grad()
    def __call__(self, components: FluxModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
        # Perform scheduler step using the predicted output
        latents_dtype = block_state.latents.dtype
        block_state.latents = components.scheduler.step(
            block_state.noise_pred,
            t,
            block_state.latents,
            return_dict=False,
        )[0]

        if block_state.latents.dtype != latents_dtype:
            block_state.latents = block_state.latents.to(latents_dtype)

        return components, block_state


class FluxDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
    model_name = "flux"

    @property
    def description(self) -> str:
        return (
            "Pipeline block that iteratively denoise the latents over `timesteps`. "
            "The specific steps with each iteration can be customized with `sub_blocks` attributes"
        )

    @property
    def loop_expected_components(self) -> List[ComponentSpec]:
        return [
            ComponentSpec("scheduler", FlowMatchEulerDiscreteScheduler),
            ComponentSpec("transformer", FluxTransformer2DModel),
        ]

    @property
264
    def loop_inputs(self) -> List[InputParam]:
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
        return [
            InputParam(
                "timesteps",
                required=True,
                type_hint=torch.Tensor,
                description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
            InputParam(
                "num_inference_steps",
                required=True,
                type_hint=int,
                description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
        ]

    @torch.no_grad()
    def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
        block_state = self.get_block_state(state)

        block_state.num_warmup_steps = max(
            len(block_state.timesteps) - block_state.num_inference_steps * components.scheduler.order, 0
        )
        with self.progress_bar(total=block_state.num_inference_steps) as progress_bar:
            for i, t in enumerate(block_state.timesteps):
                components, block_state = self.loop_step(components, block_state, i=i, t=t)
                if i == len(block_state.timesteps) - 1 or (
                    (i + 1) > block_state.num_warmup_steps and (i + 1) % components.scheduler.order == 0
                ):
                    progress_bar.update()

        self.set_block_state(state, block_state)

        return components, state


class FluxDenoiseStep(FluxDenoiseLoopWrapper):
    block_classes = [FluxLoopDenoiser, FluxLoopAfterDenoiser]
    block_names = ["denoiser", "after_denoiser"]

    @property
    def description(self) -> str:
        return (
            "Denoise step that iteratively denoise the latents. \n"
            "Its loop logic is defined in `FluxDenoiseLoopWrapper.__call__` method \n"
co63oc's avatar
co63oc committed
309
            "At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
310
311
            " - `FluxLoopDenoiser`\n"
            " - `FluxLoopAfterDenoiser`\n"
312
            "This block supports both text2image and img2img tasks."
313
        )
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330


class FluxKontextDenoiseStep(FluxDenoiseLoopWrapper):
    model_name = "flux-kontext"
    block_classes = [FluxKontextLoopDenoiser, FluxLoopAfterDenoiser]
    block_names = ["denoiser", "after_denoiser"]

    @property
    def description(self) -> str:
        return (
            "Denoise step that iteratively denoise the latents. \n"
            "Its loop logic is defined in `FluxDenoiseLoopWrapper.__call__` method \n"
            "At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
            " - `FluxKontextLoopDenoiser`\n"
            " - `FluxLoopAfterDenoiser`\n"
            "This block supports both text2image and img2img tasks."
        )