denoise.py 7.84 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, List, Tuple

import torch

from ...models import FluxTransformer2DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import logging
from ..modular_pipeline import (
    BlockState,
    LoopSequentialPipelineBlocks,
25
    ModularPipelineBlocks,
26
27
28
29
30
31
32
33
34
    PipelineState,
)
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
from .modular_pipeline import FluxModularPipeline


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


35
class FluxLoopDenoiser(ModularPipelineBlocks):
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    model_name = "flux"

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [ComponentSpec("transformer", FluxTransformer2DModel)]

    @property
    def description(self) -> str:
        return (
            "Step within the denoising loop that denoise the latents. "
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `FluxDenoiseLoopWrapper`)"
        )

    @property
    def inputs(self) -> List[Tuple[str, Any]]:
        return [
53
            InputParam("joint_attention_kwargs"),
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
            InputParam(
                "latents",
                required=True,
                type_hint=torch.Tensor,
                description="The initial latents to use for the denoising process. Can be generated in prepare_latent step.",
            ),
            InputParam(
                "guidance",
                required=True,
                type_hint=torch.Tensor,
                description="Guidance scale as a tensor",
            ),
            InputParam(
                "prompt_embeds",
                required=True,
                type_hint=torch.Tensor,
                description="Prompt embeddings",
            ),
            InputParam(
                "pooled_prompt_embeds",
                required=True,
                type_hint=torch.Tensor,
                description="Pooled prompt embeddings",
            ),
            InputParam(
79
                "txt_ids",
80
81
82
83
84
                required=True,
                type_hint=torch.Tensor,
                description="IDs computed from text sequence needed for RoPE",
            ),
            InputParam(
85
                "img_ids",
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
                required=True,
                type_hint=torch.Tensor,
                description="IDs computed from image sequence needed for RoPE",
            ),
        ]

    @torch.no_grad()
    def __call__(
        self, components: FluxModularPipeline, block_state: BlockState, i: int, t: torch.Tensor
    ) -> PipelineState:
        noise_pred = components.transformer(
            hidden_states=block_state.latents,
            timestep=t.flatten() / 1000,
            guidance=block_state.guidance,
            encoder_hidden_states=block_state.prompt_embeds,
            pooled_projections=block_state.pooled_prompt_embeds,
            joint_attention_kwargs=block_state.joint_attention_kwargs,
103
104
            txt_ids=block_state.txt_ids,
            img_ids=block_state.img_ids,
105
106
107
108
109
110
111
            return_dict=False,
        )[0]
        block_state.noise_pred = noise_pred

        return components, block_state


112
class FluxLoopAfterDenoiser(ModularPipelineBlocks):
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    model_name = "flux"

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [ComponentSpec("scheduler", FlowMatchEulerDiscreteScheduler)]

    @property
    def description(self) -> str:
        return (
            "step within the denoising loop that update the latents. "
            "This block should be used to compose the `sub_blocks` attribute of a `LoopSequentialPipelineBlocks` "
            "object (e.g. `FluxDenoiseLoopWrapper`)"
        )

    @property
    def inputs(self) -> List[Tuple[str, Any]]:
        return []

    @property
    def intermediate_inputs(self) -> List[str]:
        return [InputParam("generator")]

    @property
    def intermediate_outputs(self) -> List[OutputParam]:
        return [OutputParam("latents", type_hint=torch.Tensor, description="The denoised latents")]

    @torch.no_grad()
    def __call__(self, components: FluxModularPipeline, block_state: BlockState, i: int, t: torch.Tensor):
        # Perform scheduler step using the predicted output
        latents_dtype = block_state.latents.dtype
        block_state.latents = components.scheduler.step(
            block_state.noise_pred,
            t,
            block_state.latents,
            return_dict=False,
        )[0]

        if block_state.latents.dtype != latents_dtype:
            block_state.latents = block_state.latents.to(latents_dtype)

        return components, block_state


class FluxDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
    model_name = "flux"

    @property
    def description(self) -> str:
        return (
            "Pipeline block that iteratively denoise the latents over `timesteps`. "
            "The specific steps with each iteration can be customized with `sub_blocks` attributes"
        )

    @property
    def loop_expected_components(self) -> List[ComponentSpec]:
        return [
            ComponentSpec("scheduler", FlowMatchEulerDiscreteScheduler),
            ComponentSpec("transformer", FluxTransformer2DModel),
        ]

    @property
174
    def loop_inputs(self) -> List[InputParam]:
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        return [
            InputParam(
                "timesteps",
                required=True,
                type_hint=torch.Tensor,
                description="The timesteps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
            InputParam(
                "num_inference_steps",
                required=True,
                type_hint=int,
                description="The number of inference steps to use for the denoising process. Can be generated in set_timesteps step.",
            ),
        ]

    @torch.no_grad()
    def __call__(self, components: FluxModularPipeline, state: PipelineState) -> PipelineState:
        block_state = self.get_block_state(state)

        block_state.num_warmup_steps = max(
            len(block_state.timesteps) - block_state.num_inference_steps * components.scheduler.order, 0
        )
        with self.progress_bar(total=block_state.num_inference_steps) as progress_bar:
            for i, t in enumerate(block_state.timesteps):
                components, block_state = self.loop_step(components, block_state, i=i, t=t)
                if i == len(block_state.timesteps) - 1 or (
                    (i + 1) > block_state.num_warmup_steps and (i + 1) % components.scheduler.order == 0
                ):
                    progress_bar.update()

        self.set_block_state(state, block_state)

        return components, state


class FluxDenoiseStep(FluxDenoiseLoopWrapper):
    block_classes = [FluxLoopDenoiser, FluxLoopAfterDenoiser]
    block_names = ["denoiser", "after_denoiser"]

    @property
    def description(self) -> str:
        return (
            "Denoise step that iteratively denoise the latents. \n"
            "Its loop logic is defined in `FluxDenoiseLoopWrapper.__call__` method \n"
co63oc's avatar
co63oc committed
219
            "At each iteration, it runs blocks defined in `sub_blocks` sequentially:\n"
220
221
            " - `FluxLoopDenoiser`\n"
            " - `FluxLoopAfterDenoiser`\n"
222
            "This block supports both text2image and img2img tasks."
223
        )