Unverified Commit 630d27fe authored by Dhruv Nair's avatar Dhruv Nair Committed by GitHub
Browse files

[Modular] More Updates for Custom Code Loading (#11969)



* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

---------
Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
parent f442955c
......@@ -25,7 +25,6 @@ else:
_import_structure["modular_pipeline"] = [
"ModularPipelineBlocks",
"ModularPipeline",
"PipelineBlock",
"AutoPipelineBlocks",
"SequentialPipelineBlocks",
"LoopSequentialPipelineBlocks",
......@@ -59,7 +58,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
LoopSequentialPipelineBlocks,
ModularPipeline,
ModularPipelineBlocks,
PipelineBlock,
PipelineState,
SequentialPipelineBlocks,
)
......
......@@ -22,7 +22,7 @@ from ...models import AutoencoderKL
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import logging
from ...utils.torch_utils import randn_tensor
from ..modular_pipeline import PipelineBlock, PipelineState
from ..modular_pipeline import ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
from .modular_pipeline import FluxModularPipeline
......@@ -231,7 +231,7 @@ def _get_initial_timesteps_and_optionals(
return timesteps, num_inference_steps, sigmas, guidance
class FluxInputStep(PipelineBlock):
class FluxInputStep(ModularPipelineBlocks):
model_name = "flux"
@property
......@@ -249,11 +249,6 @@ class FluxInputStep(PipelineBlock):
def inputs(self) -> List[InputParam]:
return [
InputParam("num_images_per_prompt", default=1),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam(
"prompt_embeds",
required=True,
......@@ -322,7 +317,7 @@ class FluxInputStep(PipelineBlock):
return components, state
class FluxSetTimestepsStep(PipelineBlock):
class FluxSetTimestepsStep(ModularPipelineBlocks):
model_name = "flux"
@property
......@@ -340,14 +335,10 @@ class FluxSetTimestepsStep(PipelineBlock):
InputParam("timesteps"),
InputParam("sigmas"),
InputParam("guidance_scale", default=3.5),
InputParam("latents", type_hint=torch.Tensor),
InputParam("num_images_per_prompt", default=1),
InputParam("height", type_hint=int),
InputParam("width", type_hint=int),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam(
"batch_size",
required=True,
......@@ -398,7 +389,7 @@ class FluxSetTimestepsStep(PipelineBlock):
return components, state
class FluxImg2ImgSetTimestepsStep(PipelineBlock):
class FluxImg2ImgSetTimestepsStep(ModularPipelineBlocks):
model_name = "flux"
@property
......@@ -420,11 +411,6 @@ class FluxImg2ImgSetTimestepsStep(PipelineBlock):
InputParam("num_images_per_prompt", default=1),
InputParam("height", type_hint=int),
InputParam("width", type_hint=int),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam(
"batch_size",
required=True,
......@@ -497,7 +483,7 @@ class FluxImg2ImgSetTimestepsStep(PipelineBlock):
return components, state
class FluxPrepareLatentsStep(PipelineBlock):
class FluxPrepareLatentsStep(ModularPipelineBlocks):
model_name = "flux"
@property
......@@ -515,11 +501,6 @@ class FluxPrepareLatentsStep(PipelineBlock):
InputParam("width", type_hint=int),
InputParam("latents", type_hint=Optional[torch.Tensor]),
InputParam("num_images_per_prompt", type_hint=int, default=1),
]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [
InputParam("generator"),
InputParam(
"batch_size",
......@@ -621,7 +602,7 @@ class FluxPrepareLatentsStep(PipelineBlock):
return components, state
class FluxImg2ImgPrepareLatentsStep(PipelineBlock):
class FluxImg2ImgPrepareLatentsStep(ModularPipelineBlocks):
model_name = "flux"
@property
......@@ -639,11 +620,6 @@ class FluxImg2ImgPrepareLatentsStep(PipelineBlock):
InputParam("width", type_hint=int),
InputParam("latents", type_hint=Optional[torch.Tensor]),
InputParam("num_images_per_prompt", type_hint=int, default=1),
]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [
InputParam("generator"),
InputParam(
"image_latents",
......
......@@ -22,7 +22,7 @@ from ...configuration_utils import FrozenDict
from ...models import AutoencoderKL
from ...utils import logging
from ...video_processor import VaeImageProcessor
from ..modular_pipeline import PipelineBlock, PipelineState
from ..modular_pipeline import ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
......@@ -45,7 +45,7 @@ def _unpack_latents(latents, height, width, vae_scale_factor):
return latents
class FluxDecodeStep(PipelineBlock):
class FluxDecodeStep(ModularPipelineBlocks):
model_name = "flux"
@property
......@@ -70,17 +70,12 @@ class FluxDecodeStep(PipelineBlock):
InputParam("output_type", default="pil"),
InputParam("height", default=1024),
InputParam("width", default=1024),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam(
"latents",
required=True,
type_hint=torch.Tensor,
description="The denoised latents from the denoising step",
)
),
]
@property
......
......@@ -22,7 +22,7 @@ from ...utils import logging
from ..modular_pipeline import (
BlockState,
LoopSequentialPipelineBlocks,
PipelineBlock,
ModularPipelineBlocks,
PipelineState,
)
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
......@@ -32,7 +32,7 @@ from .modular_pipeline import FluxModularPipeline
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class FluxLoopDenoiser(PipelineBlock):
class FluxLoopDenoiser(ModularPipelineBlocks):
model_name = "flux"
@property
......@@ -49,11 +49,8 @@ class FluxLoopDenoiser(PipelineBlock):
@property
def inputs(self) -> List[Tuple[str, Any]]:
return [InputParam("joint_attention_kwargs")]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam("joint_attention_kwargs"),
InputParam(
"latents",
required=True,
......@@ -113,7 +110,7 @@ class FluxLoopDenoiser(PipelineBlock):
return components, block_state
class FluxLoopAfterDenoiser(PipelineBlock):
class FluxLoopAfterDenoiser(ModularPipelineBlocks):
model_name = "flux"
@property
......@@ -175,7 +172,7 @@ class FluxDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
]
@property
def loop_intermediate_inputs(self) -> List[InputParam]:
def loop_inputs(self) -> List[InputParam]:
return [
InputParam(
"timesteps",
......
......@@ -24,7 +24,7 @@ from ...image_processor import VaeImageProcessor
from ...loaders import FluxLoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL
from ...utils import USE_PEFT_BACKEND, is_ftfy_available, logging, scale_lora_layers, unscale_lora_layers
from ..modular_pipeline import PipelineBlock, PipelineState
from ..modular_pipeline import ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam
from .modular_pipeline import FluxModularPipeline
......@@ -67,7 +67,7 @@ def retrieve_latents(
raise AttributeError("Could not access latents of provided encoder_output")
class FluxVaeEncoderStep(PipelineBlock):
class FluxVaeEncoderStep(ModularPipelineBlocks):
model_name = "flux"
@property
......@@ -88,11 +88,10 @@ class FluxVaeEncoderStep(PipelineBlock):
@property
def inputs(self) -> List[InputParam]:
return [InputParam("image", required=True), InputParam("height"), InputParam("width")]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [
InputParam("image", required=True),
InputParam("height"),
InputParam("width"),
InputParam("generator"),
InputParam("dtype", type_hint=torch.dtype, description="Data type of model tensor inputs"),
InputParam(
......@@ -157,7 +156,7 @@ class FluxVaeEncoderStep(PipelineBlock):
return components, state
class FluxTextEncoderStep(PipelineBlock):
class FluxTextEncoderStep(ModularPipelineBlocks):
model_name = "flux"
@property
......
......@@ -618,7 +618,6 @@ def format_configs(configs, indent_level=4, max_line_length=115, add_empty_lines
def make_doc_string(
inputs,
intermediate_inputs,
outputs,
description="",
class_name=None,
......@@ -664,7 +663,7 @@ def make_doc_string(
output += configs_str + "\n\n"
# Add inputs section
output += format_input_params(inputs + intermediate_inputs, indent_level=2)
output += format_input_params(inputs, indent_level=2)
# Add outputs section
output += "\n\n"
......
......@@ -27,7 +27,7 @@ from ...schedulers import EulerDiscreteScheduler
from ...utils import logging
from ...utils.torch_utils import randn_tensor, unwrap_module
from ..modular_pipeline import (
PipelineBlock,
ModularPipelineBlocks,
PipelineState,
)
from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam
......@@ -195,7 +195,7 @@ def prepare_latents_img2img(
return latents
class StableDiffusionXLInputStep(PipelineBlock):
class StableDiffusionXLInputStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -213,11 +213,6 @@ class StableDiffusionXLInputStep(PipelineBlock):
def inputs(self) -> List[InputParam]:
return [
InputParam("num_images_per_prompt", default=1),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam(
"prompt_embeds",
required=True,
......@@ -394,7 +389,7 @@ class StableDiffusionXLInputStep(PipelineBlock):
return components, state
class StableDiffusionXLImg2ImgSetTimestepsStep(PipelineBlock):
class StableDiffusionXLImg2ImgSetTimestepsStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -421,11 +416,6 @@ class StableDiffusionXLImg2ImgSetTimestepsStep(PipelineBlock):
InputParam("denoising_start"),
# YiYi TODO: do we need num_images_per_prompt here?
InputParam("num_images_per_prompt", default=1),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam(
"batch_size",
required=True,
......@@ -543,7 +533,7 @@ class StableDiffusionXLImg2ImgSetTimestepsStep(PipelineBlock):
return components, state
class StableDiffusionXLSetTimestepsStep(PipelineBlock):
class StableDiffusionXLSetTimestepsStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -611,7 +601,7 @@ class StableDiffusionXLSetTimestepsStep(PipelineBlock):
return components, state
class StableDiffusionXLInpaintPrepareLatentsStep(PipelineBlock):
class StableDiffusionXLInpaintPrepareLatentsStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -640,11 +630,6 @@ class StableDiffusionXLInpaintPrepareLatentsStep(PipelineBlock):
"`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. Note that in the case of "
"`denoising_start` being declared as an integer, the value of `strength` will be ignored.",
),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam("generator"),
InputParam(
"batch_size",
......@@ -890,7 +875,7 @@ class StableDiffusionXLInpaintPrepareLatentsStep(PipelineBlock):
return components, state
class StableDiffusionXLImg2ImgPrepareLatentsStep(PipelineBlock):
class StableDiffusionXLImg2ImgPrepareLatentsStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -910,11 +895,6 @@ class StableDiffusionXLImg2ImgPrepareLatentsStep(PipelineBlock):
InputParam("latents"),
InputParam("num_images_per_prompt", default=1),
InputParam("denoising_start"),
]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [
InputParam("generator"),
InputParam(
"latent_timestep",
......@@ -971,7 +951,7 @@ class StableDiffusionXLImg2ImgPrepareLatentsStep(PipelineBlock):
return components, state
class StableDiffusionXLPrepareLatentsStep(PipelineBlock):
class StableDiffusionXLPrepareLatentsStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -992,11 +972,6 @@ class StableDiffusionXLPrepareLatentsStep(PipelineBlock):
InputParam("width"),
InputParam("latents"),
InputParam("num_images_per_prompt", default=1),
]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [
InputParam("generator"),
InputParam(
"batch_size",
......@@ -1082,7 +1057,7 @@ class StableDiffusionXLPrepareLatentsStep(PipelineBlock):
return components, state
class StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep(PipelineBlock):
class StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -1119,11 +1094,6 @@ class StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep(PipelineBlock):
InputParam("num_images_per_prompt", default=1),
InputParam("aesthetic_score", default=6.0),
InputParam("negative_aesthetic_score", default=2.0),
]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [
InputParam(
"latents",
required=True,
......@@ -1306,7 +1276,7 @@ class StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep(PipelineBlock):
return components, state
class StableDiffusionXLPrepareAdditionalConditioningStep(PipelineBlock):
class StableDiffusionXLPrepareAdditionalConditioningStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -1335,11 +1305,6 @@ class StableDiffusionXLPrepareAdditionalConditioningStep(PipelineBlock):
InputParam("crops_coords_top_left", default=(0, 0)),
InputParam("negative_crops_coords_top_left", default=(0, 0)),
InputParam("num_images_per_prompt", default=1),
]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [
InputParam(
"latents",
required=True,
......@@ -1489,7 +1454,7 @@ class StableDiffusionXLPrepareAdditionalConditioningStep(PipelineBlock):
return components, state
class StableDiffusionXLControlNetInputStep(PipelineBlock):
class StableDiffusionXLControlNetInputStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -1517,11 +1482,6 @@ class StableDiffusionXLControlNetInputStep(PipelineBlock):
InputParam("controlnet_conditioning_scale", default=1.0),
InputParam("guess_mode", default=False),
InputParam("num_images_per_prompt", default=1),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam(
"latents",
required=True,
......@@ -1708,7 +1668,7 @@ class StableDiffusionXLControlNetInputStep(PipelineBlock):
return components, state
class StableDiffusionXLControlNetUnionInputStep(PipelineBlock):
class StableDiffusionXLControlNetUnionInputStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -1737,11 +1697,6 @@ class StableDiffusionXLControlNetUnionInputStep(PipelineBlock):
InputParam("controlnet_conditioning_scale", default=1.0),
InputParam("guess_mode", default=False),
InputParam("num_images_per_prompt", default=1),
]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [
InputParam(
"latents",
required=True,
......
......@@ -24,7 +24,7 @@ from ...models import AutoencoderKL
from ...models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor
from ...utils import logging
from ..modular_pipeline import (
PipelineBlock,
ModularPipelineBlocks,
PipelineState,
)
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
......@@ -33,7 +33,7 @@ from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class StableDiffusionXLDecodeStep(PipelineBlock):
class StableDiffusionXLDecodeStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -56,17 +56,12 @@ class StableDiffusionXLDecodeStep(PipelineBlock):
def inputs(self) -> List[Tuple[str, Any]]:
return [
InputParam("output_type", default="pil"),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam(
"latents",
required=True,
type_hint=torch.Tensor,
description="The denoised latents from the denoising step",
)
),
]
@property
......@@ -157,7 +152,7 @@ class StableDiffusionXLDecodeStep(PipelineBlock):
return components, state
class StableDiffusionXLInpaintOverlayMaskStep(PipelineBlock):
class StableDiffusionXLInpaintOverlayMaskStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -184,11 +179,6 @@ class StableDiffusionXLInpaintOverlayMaskStep(PipelineBlock):
InputParam("image"),
InputParam("mask_image"),
InputParam("padding_mask_crop"),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam(
"images",
type_hint=Union[List[PIL.Image.Image], List[torch.Tensor], List[np.array]],
......
......@@ -25,7 +25,7 @@ from ...utils import logging
from ..modular_pipeline import (
BlockState,
LoopSequentialPipelineBlocks,
PipelineBlock,
ModularPipelineBlocks,
PipelineState,
)
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
......@@ -37,7 +37,7 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# YiYi experimenting composible denoise loop
# loop step (1): prepare latent input for denoiser
class StableDiffusionXLLoopBeforeDenoiser(PipelineBlock):
class StableDiffusionXLLoopBeforeDenoiser(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -55,7 +55,7 @@ class StableDiffusionXLLoopBeforeDenoiser(PipelineBlock):
)
@property
def intermediate_inputs(self) -> List[str]:
def inputs(self) -> List[str]:
return [
InputParam(
"latents",
......@@ -73,7 +73,7 @@ class StableDiffusionXLLoopBeforeDenoiser(PipelineBlock):
# loop step (1): prepare latent input for denoiser (with inpainting)
class StableDiffusionXLInpaintLoopBeforeDenoiser(PipelineBlock):
class StableDiffusionXLInpaintLoopBeforeDenoiser(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -91,7 +91,7 @@ class StableDiffusionXLInpaintLoopBeforeDenoiser(PipelineBlock):
)
@property
def intermediate_inputs(self) -> List[str]:
def inputs(self) -> List[str]:
return [
InputParam(
"latents",
......@@ -144,7 +144,7 @@ class StableDiffusionXLInpaintLoopBeforeDenoiser(PipelineBlock):
# loop step (2): denoise the latents with guidance
class StableDiffusionXLLoopDenoiser(PipelineBlock):
class StableDiffusionXLLoopDenoiser(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -171,11 +171,6 @@ class StableDiffusionXLLoopDenoiser(PipelineBlock):
def inputs(self) -> List[Tuple[str, Any]]:
return [
InputParam("cross_attention_kwargs"),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam(
"num_inference_steps",
required=True,
......@@ -249,7 +244,7 @@ class StableDiffusionXLLoopDenoiser(PipelineBlock):
# loop step (2): denoise the latents with guidance (with controlnet)
class StableDiffusionXLControlNetLoopDenoiser(PipelineBlock):
class StableDiffusionXLControlNetLoopDenoiser(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -277,11 +272,6 @@ class StableDiffusionXLControlNetLoopDenoiser(PipelineBlock):
def inputs(self) -> List[Tuple[str, Any]]:
return [
InputParam("cross_attention_kwargs"),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam(
"controlnet_cond",
required=True,
......@@ -449,7 +439,7 @@ class StableDiffusionXLControlNetLoopDenoiser(PipelineBlock):
# loop step (3): scheduler step to update latents
class StableDiffusionXLLoopAfterDenoiser(PipelineBlock):
class StableDiffusionXLLoopAfterDenoiser(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -470,11 +460,6 @@ class StableDiffusionXLLoopAfterDenoiser(PipelineBlock):
def inputs(self) -> List[Tuple[str, Any]]:
return [
InputParam("eta", default=0.0),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam("generator"),
]
......@@ -520,7 +505,7 @@ class StableDiffusionXLLoopAfterDenoiser(PipelineBlock):
# loop step (3): scheduler step to update latents (with inpainting)
class StableDiffusionXLInpaintLoopAfterDenoiser(PipelineBlock):
class StableDiffusionXLInpaintLoopAfterDenoiser(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -542,11 +527,6 @@ class StableDiffusionXLInpaintLoopAfterDenoiser(PipelineBlock):
def inputs(self) -> List[Tuple[str, Any]]:
return [
InputParam("eta", default=0.0),
]
@property
def intermediate_inputs(self) -> List[str]:
return [
InputParam("generator"),
InputParam(
"timesteps",
......@@ -660,7 +640,7 @@ class StableDiffusionXLDenoiseLoopWrapper(LoopSequentialPipelineBlocks):
]
@property
def loop_intermediate_inputs(self) -> List[InputParam]:
def loop_inputs(self) -> List[InputParam]:
return [
InputParam(
"timesteps",
......
......@@ -35,7 +35,7 @@ from ...utils import (
scale_lora_layers,
unscale_lora_layers,
)
from ..modular_pipeline import PipelineBlock, PipelineState
from ..modular_pipeline import ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam
from .modular_pipeline import StableDiffusionXLModularPipeline
......@@ -57,7 +57,7 @@ def retrieve_latents(
raise AttributeError("Could not access latents of provided encoder_output")
class StableDiffusionXLIPAdapterStep(PipelineBlock):
class StableDiffusionXLIPAdapterStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -215,7 +215,7 @@ class StableDiffusionXLIPAdapterStep(PipelineBlock):
return components, state
class StableDiffusionXLTextEncoderStep(PipelineBlock):
class StableDiffusionXLTextEncoderStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -576,7 +576,7 @@ class StableDiffusionXLTextEncoderStep(PipelineBlock):
return components, state
class StableDiffusionXLVaeEncoderStep(PipelineBlock):
class StableDiffusionXLVaeEncoderStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -601,11 +601,6 @@ class StableDiffusionXLVaeEncoderStep(PipelineBlock):
InputParam("image", required=True),
InputParam("height"),
InputParam("width"),
]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [
InputParam("generator"),
InputParam("dtype", type_hint=torch.dtype, description="Data type of model tensor inputs"),
InputParam(
......@@ -668,12 +663,11 @@ class StableDiffusionXLVaeEncoderStep(PipelineBlock):
block_state.device = components._execution_device
block_state.dtype = block_state.dtype if block_state.dtype is not None else components.vae.dtype
block_state.image = components.image_processor.preprocess(
image = components.image_processor.preprocess(
block_state.image, height=block_state.height, width=block_state.width, **block_state.preprocess_kwargs
)
block_state.image = block_state.image.to(device=block_state.device, dtype=block_state.dtype)
block_state.batch_size = block_state.image.shape[0]
image = image.to(device=block_state.device, dtype=block_state.dtype)
block_state.batch_size = image.shape[0]
# if generator is a list, make sure the length of it matches the length of images (both should be batch_size)
if isinstance(block_state.generator, list) and len(block_state.generator) != block_state.batch_size:
......@@ -682,16 +676,14 @@ class StableDiffusionXLVaeEncoderStep(PipelineBlock):
f" size of {block_state.batch_size}. Make sure the batch size matches the length of the generators."
)
block_state.image_latents = self._encode_vae_image(
components, image=block_state.image, generator=block_state.generator
)
block_state.image_latents = self._encode_vae_image(components, image=image, generator=block_state.generator)
self.set_block_state(state, block_state)
return components, state
class StableDiffusionXLInpaintVaeEncoderStep(PipelineBlock):
class StableDiffusionXLInpaintVaeEncoderStep(ModularPipelineBlocks):
model_name = "stable-diffusion-xl"
@property
......@@ -726,11 +718,6 @@ class StableDiffusionXLInpaintVaeEncoderStep(PipelineBlock):
InputParam("image", required=True),
InputParam("mask_image", required=True),
InputParam("padding_mask_crop"),
]
@property
def intermediate_inputs(self) -> List[InputParam]:
return [
InputParam("dtype", type_hint=torch.dtype, description="The dtype of the model inputs"),
InputParam("generator"),
]
......@@ -860,34 +847,32 @@ class StableDiffusionXLInpaintVaeEncoderStep(PipelineBlock):
block_state.crops_coords = None
block_state.resize_mode = "default"
block_state.image = components.image_processor.preprocess(
image = components.image_processor.preprocess(
block_state.image,
height=block_state.height,
width=block_state.width,
crops_coords=block_state.crops_coords,
resize_mode=block_state.resize_mode,
)
block_state.image = block_state.image.to(dtype=torch.float32)
image = image.to(dtype=torch.float32)
block_state.mask = components.mask_processor.preprocess(
mask = components.mask_processor.preprocess(
block_state.mask_image,
height=block_state.height,
width=block_state.width,
resize_mode=block_state.resize_mode,
crops_coords=block_state.crops_coords,
)
block_state.masked_image = block_state.image * (block_state.mask < 0.5)
block_state.masked_image = image * (mask < 0.5)
block_state.batch_size = block_state.image.shape[0]
block_state.image = block_state.image.to(device=block_state.device, dtype=block_state.dtype)
block_state.image_latents = self._encode_vae_image(
components, image=block_state.image, generator=block_state.generator
)
block_state.batch_size = image.shape[0]
image = image.to(device=block_state.device, dtype=block_state.dtype)
block_state.image_latents = self._encode_vae_image(components, image=image, generator=block_state.generator)
# 7. Prepare mask latent variables
block_state.mask, block_state.masked_image_latents = self.prepare_mask_latents(
components,
block_state.mask,
mask,
block_state.masked_image,
block_state.batch_size,
block_state.height,
......
......@@ -247,10 +247,6 @@ SDXL_INPUTS_SCHEMA = {
"control_mode": InputParam(
"control_mode", type_hint=List[int], required=True, description="Control mode for union controlnet"
),
}
SDXL_INTERMEDIATE_INPUTS_SCHEMA = {
"prompt_embeds": InputParam(
"prompt_embeds",
type_hint=torch.Tensor,
......@@ -271,13 +267,6 @@ SDXL_INTERMEDIATE_INPUTS_SCHEMA = {
"preprocess_kwargs": InputParam(
"preprocess_kwargs", type_hint=Optional[dict], description="Kwargs for ImageProcessor"
),
"latents": InputParam(
"latents", type_hint=torch.Tensor, required=True, description="Initial latents for denoising process"
),
"timesteps": InputParam("timesteps", type_hint=torch.Tensor, required=True, description="Timesteps for inference"),
"num_inference_steps": InputParam(
"num_inference_steps", type_hint=int, required=True, description="Number of denoising steps"
),
"latent_timestep": InputParam(
"latent_timestep", type_hint=torch.Tensor, required=True, description="Initial noise level timestep"
),
......
......@@ -20,7 +20,7 @@ import torch
from ...schedulers import UniPCMultistepScheduler
from ...utils import logging
from ...utils.torch_utils import randn_tensor
from ..modular_pipeline import PipelineBlock, PipelineState
from ..modular_pipeline import ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
from .modular_pipeline import WanModularPipeline
......@@ -94,7 +94,7 @@ def retrieve_timesteps(
return timesteps, num_inference_steps
class WanInputStep(PipelineBlock):
class WanInputStep(ModularPipelineBlocks):
model_name = "wan"
@property
......@@ -194,7 +194,7 @@ class WanInputStep(PipelineBlock):
return components, state
class WanSetTimestepsStep(PipelineBlock):
class WanSetTimestepsStep(ModularPipelineBlocks):
model_name = "wan"
@property
......@@ -243,7 +243,7 @@ class WanSetTimestepsStep(PipelineBlock):
return components, state
class WanPrepareLatentsStep(PipelineBlock):
class WanPrepareLatentsStep(ModularPipelineBlocks):
model_name = "wan"
@property
......
......@@ -22,14 +22,14 @@ from ...configuration_utils import FrozenDict
from ...models import AutoencoderKLWan
from ...utils import logging
from ...video_processor import VideoProcessor
from ..modular_pipeline import PipelineBlock, PipelineState
from ..modular_pipeline import ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class WanDecodeStep(PipelineBlock):
class WanDecodeStep(ModularPipelineBlocks):
model_name = "wan"
@property
......
......@@ -24,7 +24,7 @@ from ...utils import logging
from ..modular_pipeline import (
BlockState,
LoopSequentialPipelineBlocks,
PipelineBlock,
ModularPipelineBlocks,
PipelineState,
)
from ..modular_pipeline_utils import ComponentSpec, InputParam, OutputParam
......@@ -34,7 +34,7 @@ from .modular_pipeline import WanModularPipeline
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class WanLoopDenoiser(PipelineBlock):
class WanLoopDenoiser(ModularPipelineBlocks):
model_name = "wan"
@property
......@@ -132,7 +132,7 @@ class WanLoopDenoiser(PipelineBlock):
return components, block_state
class WanLoopAfterDenoiser(PipelineBlock):
class WanLoopAfterDenoiser(ModularPipelineBlocks):
model_name = "wan"
@property
......
......@@ -22,7 +22,7 @@ from transformers import AutoTokenizer, UMT5EncoderModel
from ...configuration_utils import FrozenDict
from ...guiders import ClassifierFreeGuidance
from ...utils import is_ftfy_available, logging
from ..modular_pipeline import PipelineBlock, PipelineState
from ..modular_pipeline import ModularPipelineBlocks, PipelineState
from ..modular_pipeline_utils import ComponentSpec, ConfigSpec, InputParam, OutputParam
from .modular_pipeline import WanModularPipeline
......@@ -51,7 +51,7 @@ def prompt_clean(text):
return text
class WanTextEncoderStep(PipelineBlock):
class WanTextEncoderStep(ModularPipelineBlocks):
model_name = "wan"
@property
......
......@@ -117,13 +117,9 @@ class SDXLModularIPAdapterTests:
_ = blocks.sub_blocks.pop("ip_adapter")
parameters = blocks.input_names
intermediate_parameters = blocks.intermediate_input_names
assert "ip_adapter_image" not in parameters, (
"`ip_adapter_image` argument must be removed from the `__call__` method"
)
assert "ip_adapter_image_embeds" not in intermediate_parameters, (
"`ip_adapter_image_embeds` argument must be supported by the `__call__` method"
)
def _get_dummy_image_embeds(self, cross_attention_dim: int = 32):
return torch.randn((1, 1, cross_attention_dim), device=torch_device)
......
......@@ -139,7 +139,6 @@ class ModularPipelineTesterMixin:
def test_pipeline_call_signature(self):
pipe = self.get_pipeline()
input_parameters = pipe.blocks.input_names
intermediate_parameters = pipe.blocks.intermediate_input_names
optional_parameters = pipe.default_call_parameters
def _check_for_parameters(parameters, expected_parameters, param_type):
......@@ -149,7 +148,6 @@ class ModularPipelineTesterMixin:
)
_check_for_parameters(self.params, input_parameters, "input")
_check_for_parameters(self.intermediate_params, intermediate_parameters, "intermediate")
_check_for_parameters(self.optional_params, optional_parameters, "optional")
def test_inference_batch_consistent(self, batch_sizes=[2], batch_generator=True):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment