"src/diffusers/utils/hub_utils.py" did not exist on "8c1f51978c705b49a23526a8311b64716411afe2"
group_offloading.py 41.8 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 The HuggingFace Team. All rights reserved.
Aryan's avatar
Aryan committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import hashlib
16
import os
17
from contextlib import contextmanager, nullcontext
18
19
from dataclasses import dataclass
from enum import Enum
20
from typing import Dict, List, Optional, Set, Tuple, Union
Aryan's avatar
Aryan committed
21

22
import safetensors.torch
Aryan's avatar
Aryan committed
23
24
25
import torch

from ..utils import get_logger, is_accelerate_available
26
from ._common import _GO_LC_SUPPORTED_PYTORCH_LAYERS
Aryan's avatar
Aryan committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from .hooks import HookRegistry, ModelHook


if is_accelerate_available():
    from accelerate.hooks import AlignDevicesHook, CpuOffload
    from accelerate.utils import send_to_device


logger = get_logger(__name__)  # pylint: disable=invalid-name


# fmt: off
_GROUP_OFFLOADING = "group_offloading"
_LAYER_EXECUTION_TRACKER = "layer_execution_tracker"
_LAZY_PREFETCH_GROUP_OFFLOADING = "lazy_prefetch_group_offloading"
42
_GROUP_ID_LAZY_LEAF = "lazy_leafs"
Aryan's avatar
Aryan committed
43
44
45
# fmt: on


46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
class GroupOffloadingType(str, Enum):
    BLOCK_LEVEL = "block_level"
    LEAF_LEVEL = "leaf_level"


@dataclass
class GroupOffloadingConfig:
    onload_device: torch.device
    offload_device: torch.device
    offload_type: GroupOffloadingType
    non_blocking: bool
    record_stream: bool
    low_cpu_mem_usage: bool
    num_blocks_per_group: Optional[int] = None
    offload_to_disk_path: Optional[str] = None
    stream: Optional[Union[torch.cuda.Stream, torch.Stream]] = None


Aryan's avatar
Aryan committed
64
65
66
67
68
69
70
71
72
73
74
class ModuleGroup:
    def __init__(
        self,
        modules: List[torch.nn.Module],
        offload_device: torch.device,
        onload_device: torch.device,
        offload_leader: torch.nn.Module,
        onload_leader: Optional[torch.nn.Module] = None,
        parameters: Optional[List[torch.nn.Parameter]] = None,
        buffers: Optional[List[torch.Tensor]] = None,
        non_blocking: bool = False,
75
        stream: Union[torch.cuda.Stream, torch.Stream, None] = None,
76
        record_stream: Optional[bool] = False,
77
        low_cpu_mem_usage: bool = False,
Aryan's avatar
Aryan committed
78
        onload_self: bool = True,
79
        offload_to_disk_path: Optional[str] = None,
80
        group_id: Optional[int] = None,
Aryan's avatar
Aryan committed
81
82
83
84
85
86
    ) -> None:
        self.modules = modules
        self.offload_device = offload_device
        self.onload_device = onload_device
        self.offload_leader = offload_leader
        self.onload_leader = onload_leader
87
88
        self.parameters = parameters or []
        self.buffers = buffers or []
Aryan's avatar
Aryan committed
89
90
        self.non_blocking = non_blocking or stream is not None
        self.stream = stream
91
        self.record_stream = record_stream
Aryan's avatar
Aryan committed
92
        self.onload_self = onload_self
93
        self.low_cpu_mem_usage = low_cpu_mem_usage
94
95
96
97

        self.offload_to_disk_path = offload_to_disk_path
        self._is_offloaded_to_disk = False

98
        if self.offload_to_disk_path is not None:
99
100
101
102
            # Instead of `group_id or str(id(self))` we do this because `group_id` can be "" as well.
            self.group_id = group_id if group_id is not None else str(id(self))
            short_hash = _compute_group_hash(self.group_id)
            self.safetensors_file_path = os.path.join(self.offload_to_disk_path, f"group_{short_hash}.safetensors")
103
104
105
106
107
108
109
110
111
112
113
114
115
116

            all_tensors = []
            for module in self.modules:
                all_tensors.extend(list(module.parameters()))
                all_tensors.extend(list(module.buffers()))
            all_tensors.extend(self.parameters)
            all_tensors.extend(self.buffers)
            all_tensors = list(dict.fromkeys(all_tensors))  # Remove duplicates

            self.tensor_to_key = {tensor: f"tensor_{i}" for i, tensor in enumerate(all_tensors)}
            self.key_to_tensor = {v: k for k, v in self.tensor_to_key.items()}
            self.cpu_param_dict = {}
        else:
            self.cpu_param_dict = self._init_cpu_param_dict()
117

118
119
120
121
122
123
        self._torch_accelerator_module = (
            getattr(torch, torch.accelerator.current_accelerator().type)
            if hasattr(torch, "accelerator")
            else torch.cuda
        )

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    def _init_cpu_param_dict(self):
        cpu_param_dict = {}
        if self.stream is None:
            return cpu_param_dict

        for module in self.modules:
            for param in module.parameters():
                cpu_param_dict[param] = param.data.cpu() if self.low_cpu_mem_usage else param.data.cpu().pin_memory()
            for buffer in module.buffers():
                cpu_param_dict[buffer] = (
                    buffer.data.cpu() if self.low_cpu_mem_usage else buffer.data.cpu().pin_memory()
                )

        for param in self.parameters:
            cpu_param_dict[param] = param.data.cpu() if self.low_cpu_mem_usage else param.data.cpu().pin_memory()

        for buffer in self.buffers:
            cpu_param_dict[buffer] = buffer.data.cpu() if self.low_cpu_mem_usage else buffer.data.cpu().pin_memory()

        return cpu_param_dict

    @contextmanager
    def _pinned_memory_tensors(self):
        try:
148
149
150
151
            pinned_dict = {
                param: tensor.pin_memory() if not tensor.is_pinned() else tensor
                for param, tensor in self.cpu_param_dict.items()
            }
152
153
154
            yield pinned_dict
        finally:
            pinned_dict = None
Aryan's avatar
Aryan committed
155

156
    def _transfer_tensor_to_device(self, tensor, source_tensor, default_stream):
157
        tensor.data = source_tensor.to(self.onload_device, non_blocking=self.non_blocking)
158
        if self.record_stream:
159
            tensor.data.record_stream(default_stream)
160

161
    def _process_tensors_from_modules(self, pinned_memory=None, default_stream=None):
162
163
164
        for group_module in self.modules:
            for param in group_module.parameters():
                source = pinned_memory[param] if pinned_memory else param.data
165
                self._transfer_tensor_to_device(param, source, default_stream)
166
167
            for buffer in group_module.buffers():
                source = pinned_memory[buffer] if pinned_memory else buffer.data
168
                self._transfer_tensor_to_device(buffer, source, default_stream)
169
170
171

        for param in self.parameters:
            source = pinned_memory[param] if pinned_memory else param.data
172
            self._transfer_tensor_to_device(param, source, default_stream)
173
174
175

        for buffer in self.buffers:
            source = pinned_memory[buffer] if pinned_memory else buffer.data
176
            self._transfer_tensor_to_device(buffer, source, default_stream)
177

178
    def _onload_from_disk(self):
179
        if self.stream is not None:
180
181
            # Wait for previous Host->Device transfer to complete
            self.stream.synchronize()
182

183
184
        context = nullcontext() if self.stream is None else self._torch_accelerator_module.stream(self.stream)
        current_stream = self._torch_accelerator_module.current_stream() if self.record_stream else None
185

186
187
188
189
        with context:
            # Load to CPU (if using streams) or directly to target device, pin, and async copy to device
            device = str(self.onload_device) if self.stream is None else "cpu"
            loaded_tensors = safetensors.torch.load_file(self.safetensors_file_path, device=device)
190

191
            if self.stream is not None:
192
193
194
195
196
197
198
199
200
201
202
203
                for key, tensor_obj in self.key_to_tensor.items():
                    pinned_tensor = loaded_tensors[key].pin_memory()
                    tensor_obj.data = pinned_tensor.to(self.onload_device, non_blocking=self.non_blocking)
                    if self.record_stream:
                        tensor_obj.data.record_stream(current_stream)
            else:
                onload_device = (
                    self.onload_device.type if isinstance(self.onload_device, torch.device) else self.onload_device
                )
                loaded_tensors = safetensors.torch.load_file(self.safetensors_file_path, device=onload_device)
                for key, tensor_obj in self.key_to_tensor.items():
                    tensor_obj.data = loaded_tensors[key]
204

205
    def _onload_from_memory(self):
Aryan's avatar
Aryan committed
206
207
208
209
        if self.stream is not None:
            # Wait for previous Host->Device transfer to complete
            self.stream.synchronize()

210
        context = nullcontext() if self.stream is None else self._torch_accelerator_module.stream(self.stream)
211
212
        default_stream = self._torch_accelerator_module.current_stream() if self.stream is not None else None

Aryan's avatar
Aryan committed
213
        with context:
214
215
            if self.stream is not None:
                with self._pinned_memory_tensors() as pinned_memory:
216
                    self._process_tensors_from_modules(pinned_memory, default_stream=default_stream)
217
            else:
218
                self._process_tensors_from_modules(None)
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

    def _offload_to_disk(self):
        # TODO: we can potentially optimize this code path by checking if the _all_ the desired
        # safetensor files exist on the disk and if so, skip this step entirely, reducing IO
        # overhead. Currently, we just check if the given `safetensors_file_path` exists and if not
        # we perform a write.
        # Check if the file has been saved in this session or if it already exists on disk.
        if not self._is_offloaded_to_disk and not os.path.exists(self.safetensors_file_path):
            os.makedirs(os.path.dirname(self.safetensors_file_path), exist_ok=True)
            tensors_to_save = {key: tensor.data.to(self.offload_device) for tensor, key in self.tensor_to_key.items()}
            safetensors.torch.save_file(tensors_to_save, self.safetensors_file_path)

        # The group is now considered offloaded to disk for the rest of the session.
        self._is_offloaded_to_disk = True

        # We do this to free up the RAM which is still holding the up tensor data.
        for tensor_obj in self.tensor_to_key.keys():
            tensor_obj.data = torch.empty_like(tensor_obj.data, device=self.offload_device)

    def _offload_to_memory(self):
Aryan's avatar
Aryan committed
239
        if self.stream is not None:
240
            if not self.record_stream:
241
242
                self._torch_accelerator_module.current_stream().synchronize()

Aryan's avatar
Aryan committed
243
244
245
            for group_module in self.modules:
                for param in group_module.parameters():
                    param.data = self.cpu_param_dict[param]
246
247
248
249
            for param in self.parameters:
                param.data = self.cpu_param_dict[param]
            for buffer in self.buffers:
                buffer.data = self.cpu_param_dict[buffer]
Aryan's avatar
Aryan committed
250
251
        else:
            for group_module in self.modules:
252
                group_module.to(self.offload_device, non_blocking=False)
253
            for param in self.parameters:
254
                param.data = param.data.to(self.offload_device, non_blocking=False)
255
            for buffer in self.buffers:
256
257
258
259
260
261
262
263
264
                buffer.data = buffer.data.to(self.offload_device, non_blocking=False)

    @torch.compiler.disable()
    def onload_(self):
        r"""Onloads the group of parameters to the onload_device."""
        if self.offload_to_disk_path is not None:
            self._onload_from_disk()
        else:
            self._onload_from_memory()
Aryan's avatar
Aryan committed
265

266
267
    @torch.compiler.disable()
    def offload_(self):
268
        r"""Offloads the group of parameters to the offload_device."""
269
270
271
272
273
        if self.offload_to_disk_path:
            self._offload_to_disk()
        else:
            self._offload_to_memory()

Aryan's avatar
Aryan committed
274
275
276
277
278
279
280
281
282
283
284

class GroupOffloadingHook(ModelHook):
    r"""
    A hook that offloads groups of torch.nn.Module to the CPU for storage and onloads to accelerator device for
    computation. Each group has one "onload leader" module that is responsible for onloading, and an "offload leader"
    module that is responsible for offloading. If prefetching is enabled, the onload leader of the previous module
    group is responsible for onloading the current module group.
    """

    _is_stateful = False

285
    def __init__(self, group: ModuleGroup, *, config: GroupOffloadingConfig) -> None:
Aryan's avatar
Aryan committed
286
        self.group = group
287
        self.next_group: Optional[ModuleGroup] = None
288
        self.config = config
Aryan's avatar
Aryan committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

    def initialize_hook(self, module: torch.nn.Module) -> torch.nn.Module:
        if self.group.offload_leader == module:
            self.group.offload_()
        return module

    def pre_forward(self, module: torch.nn.Module, *args, **kwargs):
        # If there wasn't an onload_leader assigned, we assume that the submodule that first called its forward
        # method is the onload_leader of the group.
        if self.group.onload_leader is None:
            self.group.onload_leader = module

        # If the current module is the onload_leader of the group, we onload the group if it is supposed
        # to onload itself. In the case of using prefetching with streams, we onload the next group if
        # it is not supposed to onload itself.
        if self.group.onload_leader == module:
            if self.group.onload_self:
                self.group.onload_()
307
308
309

            should_onload_next_group = self.next_group is not None and not self.next_group.onload_self
            if should_onload_next_group:
Aryan's avatar
Aryan committed
310
311
                self.next_group.onload_()

312
313
314
315
316
317
318
319
320
321
322
323
            should_synchronize = (
                not self.group.onload_self and self.group.stream is not None and not should_onload_next_group
            )
            if should_synchronize:
                # If this group didn't onload itself, it means it was asynchronously onloaded by the
                # previous group. We need to synchronize the side stream to ensure parameters
                # are completely loaded to proceed with forward pass. Without this, uninitialized
                # weights will be used in the computation, leading to incorrect results
                # Also, we should only do this synchronization if we don't already do it from the sync call in
                # self.next_group.onload_, hence the `not should_onload_next_group` check.
                self.group.stream.synchronize()

Aryan's avatar
Aryan committed
324
325
326
327
328
329
330
331
332
333
334
335
        args = send_to_device(args, self.group.onload_device, non_blocking=self.group.non_blocking)
        kwargs = send_to_device(kwargs, self.group.onload_device, non_blocking=self.group.non_blocking)
        return args, kwargs

    def post_forward(self, module: torch.nn.Module, output):
        if self.group.offload_leader == module:
            self.group.offload_()
        return output


class LazyPrefetchGroupOffloadingHook(ModelHook):
    r"""
336
    A hook, used in conjunction with GroupOffloadingHook, that applies lazy prefetching to groups of torch.nn.Module.
Aryan's avatar
Aryan committed
337
338
339
340
341
342
343
344
345
346
347
348
    This hook is used to determine the order in which the layers are executed during the forward pass. Once the layer
    invocation order is known, assignments of the next_group attribute for prefetching can be made, which allows
    prefetching groups in the correct order.
    """

    _is_stateful = False

    def __init__(self):
        self.execution_order: List[Tuple[str, torch.nn.Module]] = []
        self._layer_execution_tracker_module_names = set()

    def initialize_hook(self, module):
349
350
        def make_execution_order_update_callback(current_name, current_submodule):
            def callback():
351
352
                if not torch.compiler.is_compiling():
                    logger.debug(f"Adding {current_name} to the execution order")
353
354
355
356
                self.execution_order.append((current_name, current_submodule))

            return callback

Aryan's avatar
Aryan committed
357
358
359
360
361
362
363
364
365
366
367
        # To every submodule that contains a group offloading hook (at this point, no prefetching is enabled for any
        # of the groups), we add a layer execution tracker hook that will be used to determine the order in which the
        # layers are executed during the forward pass.
        for name, submodule in module.named_modules():
            if name == "" or not hasattr(submodule, "_diffusers_hook"):
                continue

            registry = HookRegistry.check_if_exists_or_initialize(submodule)
            group_offloading_hook = registry.get_hook(_GROUP_OFFLOADING)

            if group_offloading_hook is not None:
368
369
                # For the first forward pass, we have to load in a blocking manner
                group_offloading_hook.group.non_blocking = False
Aryan's avatar
Aryan committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
                layer_tracker_hook = LayerExecutionTrackerHook(make_execution_order_update_callback(name, submodule))
                registry.register_hook(layer_tracker_hook, _LAYER_EXECUTION_TRACKER)
                self._layer_execution_tracker_module_names.add(name)

        return module

    def post_forward(self, module, output):
        # At this point, for the current modules' submodules, we know the execution order of the layers. We can now
        # remove the layer execution tracker hooks and apply prefetching by setting the next_group attribute for each
        # group offloading hook.
        num_executed = len(self.execution_order)
        execution_order_module_names = {name for name, _ in self.execution_order}

        # It may be possible that some layers were not executed during the forward pass. This can happen if the layer
        # is not used in the forward pass, or if the layer is not executed due to some other reason. In such cases, we
        # may not be able to apply prefetching in the correct order, which can lead to device-mismatch related errors
        # if the missing layers end up being executed in the future.
        if execution_order_module_names != self._layer_execution_tracker_module_names:
            unexecuted_layers = list(self._layer_execution_tracker_module_names - execution_order_module_names)
389
390
391
392
393
394
395
            if not torch.compiler.is_compiling():
                logger.warning(
                    "It seems like some layers were not executed during the forward pass. This may lead to problems when "
                    "applying lazy prefetching with automatic tracing and lead to device-mismatch related errors. Please "
                    "make sure that all layers are executed during the forward pass. The following layers were not executed:\n"
                    f"{unexecuted_layers=}"
                )
Aryan's avatar
Aryan committed
396
397
398
399

        # Remove the layer execution tracker hooks from the submodules
        base_module_registry = module._diffusers_hook
        registries = [submodule._diffusers_hook for _, submodule in self.execution_order]
400
        group_offloading_hooks = [registry.get_hook(_GROUP_OFFLOADING) for registry in registries]
Aryan's avatar
Aryan committed
401
402
403
404
405
406
407

        for i in range(num_executed):
            registries[i].remove_hook(_LAYER_EXECUTION_TRACKER, recurse=False)

        # Remove the current lazy prefetch group offloading hook so that it doesn't interfere with the next forward pass
        base_module_registry.remove_hook(_LAZY_PREFETCH_GROUP_OFFLOADING, recurse=False)

408
409
410
411
412
413
414
        # LazyPrefetchGroupOffloadingHook is only used with streams, so we know that non_blocking should be True.
        # We disable non_blocking for the first forward pass, but need to enable it for the subsequent passes to
        # see the benefits of prefetching.
        for hook in group_offloading_hooks:
            hook.group.non_blocking = True

        # Set required attributes for prefetching
Aryan's avatar
Aryan committed
415
416
417
418
419
420
421
422
        if num_executed > 0:
            base_module_group_offloading_hook = base_module_registry.get_hook(_GROUP_OFFLOADING)
            base_module_group_offloading_hook.next_group = group_offloading_hooks[0].group
            base_module_group_offloading_hook.next_group.onload_self = False

        for i in range(num_executed - 1):
            name1, _ = self.execution_order[i]
            name2, _ = self.execution_order[i + 1]
423
424
            if not torch.compiler.is_compiling():
                logger.debug(f"Applying lazy prefetch group offloading from {name1} to {name2}")
Aryan's avatar
Aryan committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
            group_offloading_hooks[i].next_group = group_offloading_hooks[i + 1].group
            group_offloading_hooks[i].next_group.onload_self = False

        return output


class LayerExecutionTrackerHook(ModelHook):
    r"""
    A hook that tracks the order in which the layers are executed during the forward pass by calling back to the
    LazyPrefetchGroupOffloadingHook to update the execution order.
    """

    _is_stateful = False

    def __init__(self, execution_order_update_callback):
        self.execution_order_update_callback = execution_order_update_callback

    def pre_forward(self, module, *args, **kwargs):
        self.execution_order_update_callback()
        return args, kwargs


def apply_group_offloading(
    module: torch.nn.Module,
449
450
    onload_device: Union[str, torch.device],
    offload_device: Union[str, torch.device] = torch.device("cpu"),
451
    offload_type: Union[str, GroupOffloadingType] = "block_level",
Aryan's avatar
Aryan committed
452
453
454
    num_blocks_per_group: Optional[int] = None,
    non_blocking: bool = False,
    use_stream: bool = False,
455
    record_stream: bool = False,
456
    low_cpu_mem_usage: bool = False,
457
    offload_to_disk_path: Optional[str] = None,
Aryan's avatar
Aryan committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
) -> None:
    r"""
    Applies group offloading to the internal layers of a torch.nn.Module. To understand what group offloading is, and
    where it is beneficial, we need to first provide some context on how other supported offloading methods work.

    Typically, offloading is done at two levels:
    - Module-level: In Diffusers, this can be enabled using the `ModelMixin::enable_model_cpu_offload()` method. It
      works by offloading each component of a pipeline to the CPU for storage, and onloading to the accelerator device
      when needed for computation. This method is more memory-efficient than keeping all components on the accelerator,
      but the memory requirements are still quite high. For this method to work, one needs memory equivalent to size of
      the model in runtime dtype + size of largest intermediate activation tensors to be able to complete the forward
      pass.
    - Leaf-level: In Diffusers, this can be enabled using the `ModelMixin::enable_sequential_cpu_offload()` method. It
      works by offloading the lowest leaf-level parameters of the computation graph to the CPU for storage, and
      onloading only the leafs to the accelerator device for computation. This uses the lowest amount of accelerator
      memory, but can be slower due to the excessive number of device synchronizations.

    Group offloading is a middle ground between the two methods. It works by offloading groups of internal layers,
    (either `torch.nn.ModuleList` or `torch.nn.Sequential`). This method uses lower memory than module-level
    offloading. It is also faster than leaf-level/sequential offloading, as the number of device synchronizations is
    reduced.

    Another supported feature (for CUDA devices with support for asynchronous data transfer streams) is the ability to
    overlap data transfer and computation to reduce the overall execution time compared to sequential offloading. This
    is enabled using layer prefetching with streams, i.e., the layer that is to be executed next starts onloading to
    the accelerator device while the current layer is being executed - this increases the memory requirements slightly.
    Note that this implementation also supports leaf-level offloading but can be made much faster when using streams.

    Args:
        module (`torch.nn.Module`):
            The module to which group offloading is applied.
        onload_device (`torch.device`):
            The device to which the group of modules are onloaded.
        offload_device (`torch.device`, defaults to `torch.device("cpu")`):
            The device to which the group of modules are offloaded. This should typically be the CPU. Default is CPU.
493
        offload_type (`str` or `GroupOffloadingType`, defaults to "block_level"):
Aryan's avatar
Aryan committed
494
495
            The type of offloading to be applied. Can be one of "block_level" or "leaf_level". Default is
            "block_level".
496
497
498
        offload_to_disk_path (`str`, *optional*, defaults to `None`):
            The path to the directory where parameters will be offloaded. Setting this option can be useful in limited
            RAM environment settings where a reasonable speed-memory trade-off is desired.
Aryan's avatar
Aryan committed
499
500
501
502
503
504
505
506
        num_blocks_per_group (`int`, *optional*):
            The number of blocks per group when using offload_type="block_level". This is required when using
            offload_type="block_level".
        non_blocking (`bool`, defaults to `False`):
            If True, offloading and onloading is done with non-blocking data transfer.
        use_stream (`bool`, defaults to `False`):
            If True, offloading and onloading is done asynchronously using a CUDA stream. This can be useful for
            overlapping computation and data transfer.
507
508
509
510
        record_stream (`bool`, defaults to `False`): When enabled with `use_stream`, it marks the current tensor
            as having been used by this stream. It is faster at the expense of slightly more memory usage. Refer to the
            [PyTorch official docs](https://pytorch.org/docs/stable/generated/torch.Tensor.record_stream.html) more
            details.
511
512
513
514
        low_cpu_mem_usage (`bool`, defaults to `False`):
            If True, the CPU memory usage is minimized by pinning tensors on-the-fly instead of pre-pinning them. This
            option only matters when using streamed CPU offloading (i.e. `use_stream=True`). This can be useful when
            the CPU memory is a bottleneck but may counteract the benefits of using streams.
Aryan's avatar
Aryan committed
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

    Example:
        ```python
        >>> from diffusers import CogVideoXTransformer3DModel
        >>> from diffusers.hooks import apply_group_offloading

        >>> transformer = CogVideoXTransformer3DModel.from_pretrained(
        ...     "THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16
        ... )

        >>> apply_group_offloading(
        ...     transformer,
        ...     onload_device=torch.device("cuda"),
        ...     offload_device=torch.device("cpu"),
        ...     offload_type="block_level",
        ...     num_blocks_per_group=2,
        ...     use_stream=True,
        ... )
        ```
    """

536
537
    onload_device = torch.device(onload_device) if isinstance(onload_device, str) else onload_device
    offload_device = torch.device(offload_device) if isinstance(offload_device, str) else offload_device
538
539
    offload_type = GroupOffloadingType(offload_type)

Aryan's avatar
Aryan committed
540
541
542
543
    stream = None
    if use_stream:
        if torch.cuda.is_available():
            stream = torch.cuda.Stream()
544
545
        elif hasattr(torch, "xpu") and torch.xpu.is_available():
            stream = torch.Stream()
Aryan's avatar
Aryan committed
546
        else:
547
            raise ValueError("Using streams for data transfer requires a CUDA device, or an Intel XPU device.")
Aryan's avatar
Aryan committed
548

549
550
    if not use_stream and record_stream:
        raise ValueError("`record_stream` cannot be True when `use_stream=False`.")
551
552
    if offload_type == GroupOffloadingType.BLOCK_LEVEL and num_blocks_per_group is None:
        raise ValueError("`num_blocks_per_group` must be provided when using `offload_type='block_level'.")
553

Aryan's avatar
Aryan committed
554
555
    _raise_error_if_accelerate_model_or_sequential_hook_present(module)

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
    config = GroupOffloadingConfig(
        onload_device=onload_device,
        offload_device=offload_device,
        offload_type=offload_type,
        num_blocks_per_group=num_blocks_per_group,
        non_blocking=non_blocking,
        stream=stream,
        record_stream=record_stream,
        low_cpu_mem_usage=low_cpu_mem_usage,
        offload_to_disk_path=offload_to_disk_path,
    )
    _apply_group_offloading(module, config)


def _apply_group_offloading(module: torch.nn.Module, config: GroupOffloadingConfig) -> None:
    if config.offload_type == GroupOffloadingType.BLOCK_LEVEL:
        _apply_group_offloading_block_level(module, config)
    elif config.offload_type == GroupOffloadingType.LEAF_LEVEL:
        _apply_group_offloading_leaf_level(module, config)
Aryan's avatar
Aryan committed
575
    else:
576
        assert False
Aryan's avatar
Aryan committed
577
578


579
def _apply_group_offloading_block_level(module: torch.nn.Module, config: GroupOffloadingConfig) -> None:
Aryan's avatar
Aryan committed
580
581
582
583
    r"""
    This function applies offloading to groups of torch.nn.ModuleList or torch.nn.Sequential blocks. In comparison to
    the "leaf_level" offloading, which is more fine-grained, this offloading is done at the top-level blocks.
    """
584
585

    if config.stream is not None and config.num_blocks_per_group != 1:
586
        logger.warning(
587
            f"Using streams is only supported for num_blocks_per_group=1. Got {config.num_blocks_per_group=}. Setting it to 1."
588
        )
589
        config.num_blocks_per_group = 1
Aryan's avatar
Aryan committed
590
591
592
593
594
595
596
597
598
599
600

    # Create module groups for ModuleList and Sequential blocks
    modules_with_group_offloading = set()
    unmatched_modules = []
    matched_module_groups = []
    for name, submodule in module.named_children():
        if not isinstance(submodule, (torch.nn.ModuleList, torch.nn.Sequential)):
            unmatched_modules.append((name, submodule))
            modules_with_group_offloading.add(name)
            continue

601
602
        for i in range(0, len(submodule), config.num_blocks_per_group):
            current_modules = submodule[i : i + config.num_blocks_per_group]
603
            group_id = f"{name}_{i}_{i + len(current_modules) - 1}"
Aryan's avatar
Aryan committed
604
605
            group = ModuleGroup(
                modules=current_modules,
606
607
608
                offload_device=config.offload_device,
                onload_device=config.onload_device,
                offload_to_disk_path=config.offload_to_disk_path,
Aryan's avatar
Aryan committed
609
610
                offload_leader=current_modules[-1],
                onload_leader=current_modules[0],
611
612
613
614
                non_blocking=config.non_blocking,
                stream=config.stream,
                record_stream=config.record_stream,
                low_cpu_mem_usage=config.low_cpu_mem_usage,
615
                onload_self=True,
616
                group_id=group_id,
Aryan's avatar
Aryan committed
617
618
619
620
621
622
623
624
            )
            matched_module_groups.append(group)
            for j in range(i, i + len(current_modules)):
                modules_with_group_offloading.add(f"{name}.{j}")

    # Apply group offloading hooks to the module groups
    for i, group in enumerate(matched_module_groups):
        for group_module in group.modules:
625
            _apply_group_offloading_hook(group_module, group, config=config)
Aryan's avatar
Aryan committed
626
627
628
629
630
631
632
633
634
635
636
637
638
639

    # Parameters and Buffers of the top-level module need to be offloaded/onloaded separately
    # when the forward pass of this module is called. This is because the top-level module is not
    # part of any group (as doing so would lead to no VRAM savings).
    parameters = _gather_parameters_with_no_group_offloading_parent(module, modules_with_group_offloading)
    buffers = _gather_buffers_with_no_group_offloading_parent(module, modules_with_group_offloading)
    parameters = [param for _, param in parameters]
    buffers = [buffer for _, buffer in buffers]

    # Create a group for the unmatched submodules of the top-level module so that they are on the correct
    # device when the forward pass is called.
    unmatched_modules = [unmatched_module for _, unmatched_module in unmatched_modules]
    unmatched_group = ModuleGroup(
        modules=unmatched_modules,
640
641
642
        offload_device=config.offload_device,
        onload_device=config.onload_device,
        offload_to_disk_path=config.offload_to_disk_path,
Aryan's avatar
Aryan committed
643
644
645
646
647
648
        offload_leader=module,
        onload_leader=module,
        parameters=parameters,
        buffers=buffers,
        non_blocking=False,
        stream=None,
649
        record_stream=False,
Aryan's avatar
Aryan committed
650
        onload_self=True,
651
        group_id=f"{module.__class__.__name__}_unmatched_group",
Aryan's avatar
Aryan committed
652
    )
653
    if config.stream is None:
654
        _apply_group_offloading_hook(module, unmatched_group, config=config)
655
    else:
656
        _apply_lazy_group_offloading_hook(module, unmatched_group, config=config)
Aryan's avatar
Aryan committed
657
658


659
def _apply_group_offloading_leaf_level(module: torch.nn.Module, config: GroupOffloadingConfig) -> None:
Aryan's avatar
Aryan committed
660
661
662
663
664
665
666
667
668
    r"""
    This function applies offloading to groups of leaf modules in a torch.nn.Module. This method has minimal memory
    requirements. However, it can be slower compared to other offloading methods due to the excessive number of device
    synchronizations. When using devices that support streams to overlap data transfer and computation, this method can
    reduce memory usage without any performance degradation.
    """
    # Create module groups for leaf modules and apply group offloading hooks
    modules_with_group_offloading = set()
    for name, submodule in module.named_modules():
669
        if not isinstance(submodule, _GO_LC_SUPPORTED_PYTORCH_LAYERS):
Aryan's avatar
Aryan committed
670
671
672
            continue
        group = ModuleGroup(
            modules=[submodule],
673
674
675
            offload_device=config.offload_device,
            onload_device=config.onload_device,
            offload_to_disk_path=config.offload_to_disk_path,
Aryan's avatar
Aryan committed
676
677
            offload_leader=submodule,
            onload_leader=submodule,
678
679
680
681
            non_blocking=config.non_blocking,
            stream=config.stream,
            record_stream=config.record_stream,
            low_cpu_mem_usage=config.low_cpu_mem_usage,
Aryan's avatar
Aryan committed
682
            onload_self=True,
683
            group_id=name,
Aryan's avatar
Aryan committed
684
        )
685
        _apply_group_offloading_hook(submodule, group, config=config)
Aryan's avatar
Aryan committed
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
        modules_with_group_offloading.add(name)

    # Parameters and Buffers at all non-leaf levels need to be offloaded/onloaded separately when the forward pass
    # of the module is called
    module_dict = dict(module.named_modules())
    parameters = _gather_parameters_with_no_group_offloading_parent(module, modules_with_group_offloading)
    buffers = _gather_buffers_with_no_group_offloading_parent(module, modules_with_group_offloading)

    # Find closest module parent for each parameter and buffer, and attach group hooks
    parent_to_parameters = {}
    for name, param in parameters:
        parent_name = _find_parent_module_in_module_dict(name, module_dict)
        if parent_name in parent_to_parameters:
            parent_to_parameters[parent_name].append(param)
        else:
            parent_to_parameters[parent_name] = [param]

    parent_to_buffers = {}
    for name, buffer in buffers:
        parent_name = _find_parent_module_in_module_dict(name, module_dict)
        if parent_name in parent_to_buffers:
            parent_to_buffers[parent_name].append(buffer)
        else:
            parent_to_buffers[parent_name] = [buffer]

    parent_names = set(parent_to_parameters.keys()) | set(parent_to_buffers.keys())
    for name in parent_names:
        parameters = parent_to_parameters.get(name, [])
        buffers = parent_to_buffers.get(name, [])
        parent_module = module_dict[name]
        group = ModuleGroup(
            modules=[],
718
719
            offload_device=config.offload_device,
            onload_device=config.onload_device,
Aryan's avatar
Aryan committed
720
721
            offload_leader=parent_module,
            onload_leader=parent_module,
722
            offload_to_disk_path=config.offload_to_disk_path,
Aryan's avatar
Aryan committed
723
724
            parameters=parameters,
            buffers=buffers,
725
726
727
728
            non_blocking=config.non_blocking,
            stream=config.stream,
            record_stream=config.record_stream,
            low_cpu_mem_usage=config.low_cpu_mem_usage,
Aryan's avatar
Aryan committed
729
            onload_self=True,
730
            group_id=name,
Aryan's avatar
Aryan committed
731
        )
732
        _apply_group_offloading_hook(parent_module, group, config=config)
Aryan's avatar
Aryan committed
733

734
    if config.stream is not None:
Aryan's avatar
Aryan committed
735
736
737
738
739
        # When using streams, we need to know the layer execution order for applying prefetching (to overlap data transfer
        # and computation). Since we don't know the order beforehand, we apply a lazy prefetching hook that will find the
        # execution order and apply prefetching in the correct order.
        unmatched_group = ModuleGroup(
            modules=[],
740
741
742
            offload_device=config.offload_device,
            onload_device=config.onload_device,
            offload_to_disk_path=config.offload_to_disk_path,
Aryan's avatar
Aryan committed
743
744
745
746
747
748
            offload_leader=module,
            onload_leader=module,
            parameters=None,
            buffers=None,
            non_blocking=False,
            stream=None,
749
            record_stream=False,
750
            low_cpu_mem_usage=config.low_cpu_mem_usage,
Aryan's avatar
Aryan committed
751
            onload_self=True,
752
            group_id=_GROUP_ID_LAZY_LEAF,
Aryan's avatar
Aryan committed
753
        )
754
        _apply_lazy_group_offloading_hook(module, unmatched_group, config=config)
Aryan's avatar
Aryan committed
755
756
757
758
759


def _apply_group_offloading_hook(
    module: torch.nn.Module,
    group: ModuleGroup,
760
761
    *,
    config: GroupOffloadingConfig,
Aryan's avatar
Aryan committed
762
763
764
765
766
767
) -> None:
    registry = HookRegistry.check_if_exists_or_initialize(module)

    # We may have already registered a group offloading hook if the module had a torch.nn.Parameter whose parent
    # is the current module. In such cases, we don't want to overwrite the existing group offloading hook.
    if registry.get_hook(_GROUP_OFFLOADING) is None:
768
        hook = GroupOffloadingHook(group, config=config)
Aryan's avatar
Aryan committed
769
770
771
772
773
774
        registry.register_hook(hook, _GROUP_OFFLOADING)


def _apply_lazy_group_offloading_hook(
    module: torch.nn.Module,
    group: ModuleGroup,
775
776
    *,
    config: GroupOffloadingConfig,
Aryan's avatar
Aryan committed
777
778
779
780
781
782
) -> None:
    registry = HookRegistry.check_if_exists_or_initialize(module)

    # We may have already registered a group offloading hook if the module had a torch.nn.Parameter whose parent
    # is the current module. In such cases, we don't want to overwrite the existing group offloading hook.
    if registry.get_hook(_GROUP_OFFLOADING) is None:
783
        hook = GroupOffloadingHook(group, config=config)
Aryan's avatar
Aryan committed
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
        registry.register_hook(hook, _GROUP_OFFLOADING)

    lazy_prefetch_hook = LazyPrefetchGroupOffloadingHook()
    registry.register_hook(lazy_prefetch_hook, _LAZY_PREFETCH_GROUP_OFFLOADING)


def _gather_parameters_with_no_group_offloading_parent(
    module: torch.nn.Module, modules_with_group_offloading: Set[str]
) -> List[torch.nn.Parameter]:
    parameters = []
    for name, parameter in module.named_parameters():
        has_parent_with_group_offloading = False
        atoms = name.split(".")
        while len(atoms) > 0:
            parent_name = ".".join(atoms)
            if parent_name in modules_with_group_offloading:
                has_parent_with_group_offloading = True
                break
            atoms.pop()
        if not has_parent_with_group_offloading:
            parameters.append((name, parameter))
    return parameters


def _gather_buffers_with_no_group_offloading_parent(
    module: torch.nn.Module, modules_with_group_offloading: Set[str]
) -> List[torch.Tensor]:
    buffers = []
    for name, buffer in module.named_buffers():
        has_parent_with_group_offloading = False
        atoms = name.split(".")
        while len(atoms) > 0:
            parent_name = ".".join(atoms)
            if parent_name in modules_with_group_offloading:
                has_parent_with_group_offloading = True
                break
            atoms.pop()
        if not has_parent_with_group_offloading:
            buffers.append((name, buffer))
    return buffers


def _find_parent_module_in_module_dict(name: str, module_dict: Dict[str, torch.nn.Module]) -> str:
    atoms = name.split(".")
    while len(atoms) > 0:
        parent_name = ".".join(atoms)
        if parent_name in module_dict:
            return parent_name
        atoms.pop()
    return ""


def _raise_error_if_accelerate_model_or_sequential_hook_present(module: torch.nn.Module) -> None:
    if not is_accelerate_available():
        return
    for name, submodule in module.named_modules():
        if not hasattr(submodule, "_hf_hook"):
            continue
        if isinstance(submodule._hf_hook, (AlignDevicesHook, CpuOffload)):
            raise ValueError(
                f"Cannot apply group offloading to a module that is already applying an alternative "
                f"offloading strategy from Accelerate. If you want to apply group offloading, please "
                f"disable the existing offloading strategy first. Offending module: {name} ({type(submodule)})"
            )


850
def _get_top_level_group_offload_hook(module: torch.nn.Module) -> Optional[GroupOffloadingHook]:
Aryan's avatar
Aryan committed
851
    for submodule in module.modules():
852
853
854
855
856
857
858
859
860
861
        if hasattr(submodule, "_diffusers_hook"):
            group_offloading_hook = submodule._diffusers_hook.get_hook(_GROUP_OFFLOADING)
            if group_offloading_hook is not None:
                return group_offloading_hook
    return None


def _is_group_offload_enabled(module: torch.nn.Module) -> bool:
    top_level_group_offload_hook = _get_top_level_group_offload_hook(module)
    return top_level_group_offload_hook is not None
Aryan's avatar
Aryan committed
862
863
864


def _get_group_onload_device(module: torch.nn.Module) -> torch.device:
865
866
867
    top_level_group_offload_hook = _get_top_level_group_offload_hook(module)
    if top_level_group_offload_hook is not None:
        return top_level_group_offload_hook.config.onload_device
Aryan's avatar
Aryan committed
868
    raise ValueError("Group offloading is not enabled for the provided module.")
869
870


871
872
873
874
875
876
def _compute_group_hash(group_id):
    hashed_id = hashlib.sha256(group_id.encode("utf-8")).hexdigest()
    # first 16 characters for a reasonably short but unique name
    return hashed_id[:16]


877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
def _maybe_remove_and_reapply_group_offloading(module: torch.nn.Module) -> None:
    r"""
    Removes the group offloading hook from the module and re-applies it. This is useful when the module has been
    modified in-place and the group offloading hook references-to-tensors needs to be updated. The in-place
    modification can happen in a number of ways, for example, fusing QKV or unloading/loading LoRAs on-the-fly.

    In this implementation, we make an assumption that group offloading has only been applied at the top-level module,
    and therefore all submodules have the same onload and offload devices. If this assumption is not true, say in the
    case where user has applied group offloading at multiple levels, this function will not work as expected.

    There is some performance penalty associated with doing this when non-default streams are used, because we need to
    retrace the execution order of the layers with `LazyPrefetchGroupOffloadingHook`.
    """
    top_level_group_offload_hook = _get_top_level_group_offload_hook(module)

    if top_level_group_offload_hook is None:
        return

    registry = HookRegistry.check_if_exists_or_initialize(module)
    registry.remove_hook(_GROUP_OFFLOADING, recurse=True)
    registry.remove_hook(_LAYER_EXECUTION_TRACKER, recurse=True)
    registry.remove_hook(_LAZY_PREFETCH_GROUP_OFFLOADING, recurse=True)

    _apply_group_offloading(module, top_level_group_offload_hook.config)