group_offloading.py 33.2 KB
Newer Older
Aryan's avatar
Aryan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from contextlib import contextmanager, nullcontext
Aryan's avatar
Aryan committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from typing import Dict, List, Optional, Set, Tuple

import torch

from ..utils import get_logger, is_accelerate_available
from .hooks import HookRegistry, ModelHook


if is_accelerate_available():
    from accelerate.hooks import AlignDevicesHook, CpuOffload
    from accelerate.utils import send_to_device


logger = get_logger(__name__)  # pylint: disable=invalid-name


# fmt: off
_GROUP_OFFLOADING = "group_offloading"
_LAYER_EXECUTION_TRACKER = "layer_execution_tracker"
_LAZY_PREFETCH_GROUP_OFFLOADING = "lazy_prefetch_group_offloading"

_SUPPORTED_PYTORCH_LAYERS = (
    torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Conv3d,
    torch.nn.ConvTranspose1d, torch.nn.ConvTranspose2d, torch.nn.ConvTranspose3d,
    torch.nn.Linear,
    # TODO(aryan): look into torch.nn.LayerNorm, torch.nn.GroupNorm later, seems to be causing some issues with CogVideoX
    # because of double invocation of the same norm layer in CogVideoXLayerNorm
)
# fmt: on


class ModuleGroup:
    def __init__(
        self,
        modules: List[torch.nn.Module],
        offload_device: torch.device,
        onload_device: torch.device,
        offload_leader: torch.nn.Module,
        onload_leader: Optional[torch.nn.Module] = None,
        parameters: Optional[List[torch.nn.Parameter]] = None,
        buffers: Optional[List[torch.Tensor]] = None,
        non_blocking: bool = False,
        stream: Optional[torch.cuda.Stream] = None,
59
        low_cpu_mem_usage=False,
Aryan's avatar
Aryan committed
60
61
62
63
64
65
66
        onload_self: bool = True,
    ) -> None:
        self.modules = modules
        self.offload_device = offload_device
        self.onload_device = onload_device
        self.offload_leader = offload_leader
        self.onload_leader = onload_leader
67
68
        self.parameters = parameters or []
        self.buffers = buffers or []
Aryan's avatar
Aryan committed
69
70
71
        self.non_blocking = non_blocking or stream is not None
        self.stream = stream
        self.onload_self = onload_self
72
        self.low_cpu_mem_usage = low_cpu_mem_usage
Aryan's avatar
Aryan committed
73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        self.cpu_param_dict = self._init_cpu_param_dict()

    def _init_cpu_param_dict(self):
        cpu_param_dict = {}
        if self.stream is None:
            return cpu_param_dict

        for module in self.modules:
            for param in module.parameters():
                cpu_param_dict[param] = param.data.cpu() if self.low_cpu_mem_usage else param.data.cpu().pin_memory()
            for buffer in module.buffers():
                cpu_param_dict[buffer] = (
                    buffer.data.cpu() if self.low_cpu_mem_usage else buffer.data.cpu().pin_memory()
                )

        for param in self.parameters:
            cpu_param_dict[param] = param.data.cpu() if self.low_cpu_mem_usage else param.data.cpu().pin_memory()

        for buffer in self.buffers:
            cpu_param_dict[buffer] = buffer.data.cpu() if self.low_cpu_mem_usage else buffer.data.cpu().pin_memory()

        return cpu_param_dict

    @contextmanager
    def _pinned_memory_tensors(self):
        pinned_dict = {}
        try:
            for param, tensor in self.cpu_param_dict.items():
                if not tensor.is_pinned():
                    pinned_dict[param] = tensor.pin_memory()
                else:
                    pinned_dict[param] = tensor

            yield pinned_dict

        finally:
            pinned_dict = None
Aryan's avatar
Aryan committed
111
112
113
114
115
116
117
118
119

    def onload_(self):
        r"""Onloads the group of modules to the onload_device."""
        context = nullcontext() if self.stream is None else torch.cuda.stream(self.stream)
        if self.stream is not None:
            # Wait for previous Host->Device transfer to complete
            self.stream.synchronize()

        with context:
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
            if self.stream is not None:
                with self._pinned_memory_tensors() as pinned_memory:
                    for group_module in self.modules:
                        for param in group_module.parameters():
                            param.data = pinned_memory[param].to(self.onload_device, non_blocking=self.non_blocking)
                        for buffer in group_module.buffers():
                            buffer.data = pinned_memory[buffer].to(self.onload_device, non_blocking=self.non_blocking)

                    for param in self.parameters:
                        param.data = pinned_memory[param].to(self.onload_device, non_blocking=self.non_blocking)

                    for buffer in self.buffers:
                        buffer.data = pinned_memory[buffer].to(self.onload_device, non_blocking=self.non_blocking)

            else:
                for group_module in self.modules:
                    for param in group_module.parameters():
                        param.data = param.data.to(self.onload_device, non_blocking=self.non_blocking)
                    for buffer in group_module.buffers():
                        buffer.data = buffer.data.to(self.onload_device, non_blocking=self.non_blocking)

Aryan's avatar
Aryan committed
141
142
                for param in self.parameters:
                    param.data = param.data.to(self.onload_device, non_blocking=self.non_blocking)
143

Aryan's avatar
Aryan committed
144
145
146
147
148
149
150
151
152
153
                for buffer in self.buffers:
                    buffer.data = buffer.data.to(self.onload_device, non_blocking=self.non_blocking)

    def offload_(self):
        r"""Offloads the group of modules to the offload_device."""
        if self.stream is not None:
            torch.cuda.current_stream().synchronize()
            for group_module in self.modules:
                for param in group_module.parameters():
                    param.data = self.cpu_param_dict[param]
154
155
156
157
158
            for param in self.parameters:
                param.data = self.cpu_param_dict[param]
            for buffer in self.buffers:
                buffer.data = self.cpu_param_dict[buffer]

Aryan's avatar
Aryan committed
159
160
161
        else:
            for group_module in self.modules:
                group_module.to(self.offload_device, non_blocking=self.non_blocking)
162
163
164
165
            for param in self.parameters:
                param.data = param.data.to(self.offload_device, non_blocking=self.non_blocking)
            for buffer in self.buffers:
                buffer.data = buffer.data.to(self.offload_device, non_blocking=self.non_blocking)
Aryan's avatar
Aryan committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230


class GroupOffloadingHook(ModelHook):
    r"""
    A hook that offloads groups of torch.nn.Module to the CPU for storage and onloads to accelerator device for
    computation. Each group has one "onload leader" module that is responsible for onloading, and an "offload leader"
    module that is responsible for offloading. If prefetching is enabled, the onload leader of the previous module
    group is responsible for onloading the current module group.
    """

    _is_stateful = False

    def __init__(
        self,
        group: ModuleGroup,
        next_group: Optional[ModuleGroup] = None,
    ) -> None:
        self.group = group
        self.next_group = next_group

    def initialize_hook(self, module: torch.nn.Module) -> torch.nn.Module:
        if self.group.offload_leader == module:
            self.group.offload_()
        return module

    def pre_forward(self, module: torch.nn.Module, *args, **kwargs):
        # If there wasn't an onload_leader assigned, we assume that the submodule that first called its forward
        # method is the onload_leader of the group.
        if self.group.onload_leader is None:
            self.group.onload_leader = module

        # If the current module is the onload_leader of the group, we onload the group if it is supposed
        # to onload itself. In the case of using prefetching with streams, we onload the next group if
        # it is not supposed to onload itself.
        if self.group.onload_leader == module:
            if self.group.onload_self:
                self.group.onload_()
            if self.next_group is not None and not self.next_group.onload_self:
                self.next_group.onload_()

        args = send_to_device(args, self.group.onload_device, non_blocking=self.group.non_blocking)
        kwargs = send_to_device(kwargs, self.group.onload_device, non_blocking=self.group.non_blocking)
        return args, kwargs

    def post_forward(self, module: torch.nn.Module, output):
        if self.group.offload_leader == module:
            self.group.offload_()
        return output


class LazyPrefetchGroupOffloadingHook(ModelHook):
    r"""
    A hook, used in conjuction with GroupOffloadingHook, that applies lazy prefetching to groups of torch.nn.Module.
    This hook is used to determine the order in which the layers are executed during the forward pass. Once the layer
    invocation order is known, assignments of the next_group attribute for prefetching can be made, which allows
    prefetching groups in the correct order.
    """

    _is_stateful = False

    def __init__(self):
        self.execution_order: List[Tuple[str, torch.nn.Module]] = []
        self._layer_execution_tracker_module_names = set()

    def initialize_hook(self, module):
231
232
233
234
235
236
237
        def make_execution_order_update_callback(current_name, current_submodule):
            def callback():
                logger.debug(f"Adding {current_name} to the execution order")
                self.execution_order.append((current_name, current_submodule))

            return callback

Aryan's avatar
Aryan committed
238
239
240
241
242
243
244
245
246
247
248
        # To every submodule that contains a group offloading hook (at this point, no prefetching is enabled for any
        # of the groups), we add a layer execution tracker hook that will be used to determine the order in which the
        # layers are executed during the forward pass.
        for name, submodule in module.named_modules():
            if name == "" or not hasattr(submodule, "_diffusers_hook"):
                continue

            registry = HookRegistry.check_if_exists_or_initialize(submodule)
            group_offloading_hook = registry.get_hook(_GROUP_OFFLOADING)

            if group_offloading_hook is not None:
249
250
                # For the first forward pass, we have to load in a blocking manner
                group_offloading_hook.group.non_blocking = False
Aryan's avatar
Aryan committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
                layer_tracker_hook = LayerExecutionTrackerHook(make_execution_order_update_callback(name, submodule))
                registry.register_hook(layer_tracker_hook, _LAYER_EXECUTION_TRACKER)
                self._layer_execution_tracker_module_names.add(name)

        return module

    def post_forward(self, module, output):
        # At this point, for the current modules' submodules, we know the execution order of the layers. We can now
        # remove the layer execution tracker hooks and apply prefetching by setting the next_group attribute for each
        # group offloading hook.
        num_executed = len(self.execution_order)
        execution_order_module_names = {name for name, _ in self.execution_order}

        # It may be possible that some layers were not executed during the forward pass. This can happen if the layer
        # is not used in the forward pass, or if the layer is not executed due to some other reason. In such cases, we
        # may not be able to apply prefetching in the correct order, which can lead to device-mismatch related errors
        # if the missing layers end up being executed in the future.
        if execution_order_module_names != self._layer_execution_tracker_module_names:
            unexecuted_layers = list(self._layer_execution_tracker_module_names - execution_order_module_names)
            logger.warning(
                "It seems like some layers were not executed during the forward pass. This may lead to problems when "
                "applying lazy prefetching with automatic tracing and lead to device-mismatch related errors. Please "
                "make sure that all layers are executed during the forward pass. The following layers were not executed:\n"
                f"{unexecuted_layers=}"
            )

        # Remove the layer execution tracker hooks from the submodules
        base_module_registry = module._diffusers_hook
        registries = [submodule._diffusers_hook for _, submodule in self.execution_order]
280
        group_offloading_hooks = [registry.get_hook(_GROUP_OFFLOADING) for registry in registries]
Aryan's avatar
Aryan committed
281
282
283
284
285
286
287

        for i in range(num_executed):
            registries[i].remove_hook(_LAYER_EXECUTION_TRACKER, recurse=False)

        # Remove the current lazy prefetch group offloading hook so that it doesn't interfere with the next forward pass
        base_module_registry.remove_hook(_LAZY_PREFETCH_GROUP_OFFLOADING, recurse=False)

288
289
290
291
292
293
294
        # LazyPrefetchGroupOffloadingHook is only used with streams, so we know that non_blocking should be True.
        # We disable non_blocking for the first forward pass, but need to enable it for the subsequent passes to
        # see the benefits of prefetching.
        for hook in group_offloading_hooks:
            hook.group.non_blocking = True

        # Set required attributes for prefetching
Aryan's avatar
Aryan committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        if num_executed > 0:
            base_module_group_offloading_hook = base_module_registry.get_hook(_GROUP_OFFLOADING)
            base_module_group_offloading_hook.next_group = group_offloading_hooks[0].group
            base_module_group_offloading_hook.next_group.onload_self = False

        for i in range(num_executed - 1):
            name1, _ = self.execution_order[i]
            name2, _ = self.execution_order[i + 1]
            logger.debug(f"Applying lazy prefetch group offloading from {name1} to {name2}")
            group_offloading_hooks[i].next_group = group_offloading_hooks[i + 1].group
            group_offloading_hooks[i].next_group.onload_self = False

        return output


class LayerExecutionTrackerHook(ModelHook):
    r"""
    A hook that tracks the order in which the layers are executed during the forward pass by calling back to the
    LazyPrefetchGroupOffloadingHook to update the execution order.
    """

    _is_stateful = False

    def __init__(self, execution_order_update_callback):
        self.execution_order_update_callback = execution_order_update_callback

    def pre_forward(self, module, *args, **kwargs):
        self.execution_order_update_callback()
        return args, kwargs


def apply_group_offloading(
    module: torch.nn.Module,
    onload_device: torch.device,
    offload_device: torch.device = torch.device("cpu"),
    offload_type: str = "block_level",
    num_blocks_per_group: Optional[int] = None,
    non_blocking: bool = False,
    use_stream: bool = False,
334
    low_cpu_mem_usage: bool = False,
Aryan's avatar
Aryan committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
) -> None:
    r"""
    Applies group offloading to the internal layers of a torch.nn.Module. To understand what group offloading is, and
    where it is beneficial, we need to first provide some context on how other supported offloading methods work.

    Typically, offloading is done at two levels:
    - Module-level: In Diffusers, this can be enabled using the `ModelMixin::enable_model_cpu_offload()` method. It
      works by offloading each component of a pipeline to the CPU for storage, and onloading to the accelerator device
      when needed for computation. This method is more memory-efficient than keeping all components on the accelerator,
      but the memory requirements are still quite high. For this method to work, one needs memory equivalent to size of
      the model in runtime dtype + size of largest intermediate activation tensors to be able to complete the forward
      pass.
    - Leaf-level: In Diffusers, this can be enabled using the `ModelMixin::enable_sequential_cpu_offload()` method. It
      works by offloading the lowest leaf-level parameters of the computation graph to the CPU for storage, and
      onloading only the leafs to the accelerator device for computation. This uses the lowest amount of accelerator
      memory, but can be slower due to the excessive number of device synchronizations.

    Group offloading is a middle ground between the two methods. It works by offloading groups of internal layers,
    (either `torch.nn.ModuleList` or `torch.nn.Sequential`). This method uses lower memory than module-level
    offloading. It is also faster than leaf-level/sequential offloading, as the number of device synchronizations is
    reduced.

    Another supported feature (for CUDA devices with support for asynchronous data transfer streams) is the ability to
    overlap data transfer and computation to reduce the overall execution time compared to sequential offloading. This
    is enabled using layer prefetching with streams, i.e., the layer that is to be executed next starts onloading to
    the accelerator device while the current layer is being executed - this increases the memory requirements slightly.
    Note that this implementation also supports leaf-level offloading but can be made much faster when using streams.

    Args:
        module (`torch.nn.Module`):
            The module to which group offloading is applied.
        onload_device (`torch.device`):
            The device to which the group of modules are onloaded.
        offload_device (`torch.device`, defaults to `torch.device("cpu")`):
            The device to which the group of modules are offloaded. This should typically be the CPU. Default is CPU.
        offload_type (`str`, defaults to "block_level"):
            The type of offloading to be applied. Can be one of "block_level" or "leaf_level". Default is
            "block_level".
        num_blocks_per_group (`int`, *optional*):
            The number of blocks per group when using offload_type="block_level". This is required when using
            offload_type="block_level".
        non_blocking (`bool`, defaults to `False`):
            If True, offloading and onloading is done with non-blocking data transfer.
        use_stream (`bool`, defaults to `False`):
            If True, offloading and onloading is done asynchronously using a CUDA stream. This can be useful for
            overlapping computation and data transfer.
381
382
383
384
        low_cpu_mem_usage (`bool`, defaults to `False`):
            If True, the CPU memory usage is minimized by pinning tensors on-the-fly instead of pre-pinning them. This
            option only matters when using streamed CPU offloading (i.e. `use_stream=True`). This can be useful when
            the CPU memory is a bottleneck but may counteract the benefits of using streams.
Aryan's avatar
Aryan committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

    Example:
        ```python
        >>> from diffusers import CogVideoXTransformer3DModel
        >>> from diffusers.hooks import apply_group_offloading

        >>> transformer = CogVideoXTransformer3DModel.from_pretrained(
        ...     "THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16
        ... )

        >>> apply_group_offloading(
        ...     transformer,
        ...     onload_device=torch.device("cuda"),
        ...     offload_device=torch.device("cpu"),
        ...     offload_type="block_level",
        ...     num_blocks_per_group=2,
        ...     use_stream=True,
        ... )
        ```
    """

    stream = None
    if use_stream:
        if torch.cuda.is_available():
            stream = torch.cuda.Stream()
        else:
            raise ValueError("Using streams for data transfer requires a CUDA device.")

    _raise_error_if_accelerate_model_or_sequential_hook_present(module)

    if offload_type == "block_level":
        if num_blocks_per_group is None:
            raise ValueError("num_blocks_per_group must be provided when using offload_type='block_level'.")

        _apply_group_offloading_block_level(
420
            module, num_blocks_per_group, offload_device, onload_device, non_blocking, stream, low_cpu_mem_usage
Aryan's avatar
Aryan committed
421
422
        )
    elif offload_type == "leaf_level":
423
424
425
        _apply_group_offloading_leaf_level(
            module, offload_device, onload_device, non_blocking, stream, low_cpu_mem_usage
        )
Aryan's avatar
Aryan committed
426
427
428
429
430
431
432
433
434
435
436
    else:
        raise ValueError(f"Unsupported offload_type: {offload_type}")


def _apply_group_offloading_block_level(
    module: torch.nn.Module,
    num_blocks_per_group: int,
    offload_device: torch.device,
    onload_device: torch.device,
    non_blocking: bool,
    stream: Optional[torch.cuda.Stream] = None,
437
    low_cpu_mem_usage: bool = False,
Aryan's avatar
Aryan committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
) -> None:
    r"""
    This function applies offloading to groups of torch.nn.ModuleList or torch.nn.Sequential blocks. In comparison to
    the "leaf_level" offloading, which is more fine-grained, this offloading is done at the top-level blocks.

    Args:
        module (`torch.nn.Module`):
            The module to which group offloading is applied.
        offload_device (`torch.device`):
            The device to which the group of modules are offloaded. This should typically be the CPU.
        onload_device (`torch.device`):
            The device to which the group of modules are onloaded.
        non_blocking (`bool`):
            If True, offloading and onloading is done asynchronously. This can be useful for overlapping computation
            and data transfer.
        stream (`torch.cuda.Stream`, *optional*):
            If provided, offloading and onloading is done asynchronously using the provided stream. This can be useful
            for overlapping computation and data transfer.
    """

    # Create module groups for ModuleList and Sequential blocks
    modules_with_group_offloading = set()
    unmatched_modules = []
    matched_module_groups = []
    for name, submodule in module.named_children():
        if not isinstance(submodule, (torch.nn.ModuleList, torch.nn.Sequential)):
            unmatched_modules.append((name, submodule))
            modules_with_group_offloading.add(name)
            continue

        for i in range(0, len(submodule), num_blocks_per_group):
            current_modules = submodule[i : i + num_blocks_per_group]
            group = ModuleGroup(
                modules=current_modules,
                offload_device=offload_device,
                onload_device=onload_device,
                offload_leader=current_modules[-1],
                onload_leader=current_modules[0],
                non_blocking=non_blocking,
                stream=stream,
478
                low_cpu_mem_usage=low_cpu_mem_usage,
Aryan's avatar
Aryan committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
                onload_self=stream is None,
            )
            matched_module_groups.append(group)
            for j in range(i, i + len(current_modules)):
                modules_with_group_offloading.add(f"{name}.{j}")

    # Apply group offloading hooks to the module groups
    for i, group in enumerate(matched_module_groups):
        next_group = (
            matched_module_groups[i + 1] if i + 1 < len(matched_module_groups) and stream is not None else None
        )

        for group_module in group.modules:
            _apply_group_offloading_hook(group_module, group, next_group)

    # Parameters and Buffers of the top-level module need to be offloaded/onloaded separately
    # when the forward pass of this module is called. This is because the top-level module is not
    # part of any group (as doing so would lead to no VRAM savings).
    parameters = _gather_parameters_with_no_group_offloading_parent(module, modules_with_group_offloading)
    buffers = _gather_buffers_with_no_group_offloading_parent(module, modules_with_group_offloading)
    parameters = [param for _, param in parameters]
    buffers = [buffer for _, buffer in buffers]

    # Create a group for the unmatched submodules of the top-level module so that they are on the correct
    # device when the forward pass is called.
    unmatched_modules = [unmatched_module for _, unmatched_module in unmatched_modules]
    unmatched_group = ModuleGroup(
        modules=unmatched_modules,
        offload_device=offload_device,
        onload_device=onload_device,
        offload_leader=module,
        onload_leader=module,
        parameters=parameters,
        buffers=buffers,
        non_blocking=False,
        stream=None,
        onload_self=True,
    )
    next_group = matched_module_groups[0] if len(matched_module_groups) > 0 else None
    _apply_group_offloading_hook(module, unmatched_group, next_group)


def _apply_group_offloading_leaf_level(
    module: torch.nn.Module,
    offload_device: torch.device,
    onload_device: torch.device,
    non_blocking: bool,
    stream: Optional[torch.cuda.Stream] = None,
527
    low_cpu_mem_usage: bool = False,
Aryan's avatar
Aryan committed
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
) -> None:
    r"""
    This function applies offloading to groups of leaf modules in a torch.nn.Module. This method has minimal memory
    requirements. However, it can be slower compared to other offloading methods due to the excessive number of device
    synchronizations. When using devices that support streams to overlap data transfer and computation, this method can
    reduce memory usage without any performance degradation.

    Args:
        module (`torch.nn.Module`):
            The module to which group offloading is applied.
        offload_device (`torch.device`):
            The device to which the group of modules are offloaded. This should typically be the CPU.
        onload_device (`torch.device`):
            The device to which the group of modules are onloaded.
        non_blocking (`bool`):
            If True, offloading and onloading is done asynchronously. This can be useful for overlapping computation
            and data transfer.
        stream (`torch.cuda.Stream`, *optional*):
            If provided, offloading and onloading is done asynchronously using the provided stream. This can be useful
            for overlapping computation and data transfer.
    """

    # Create module groups for leaf modules and apply group offloading hooks
    modules_with_group_offloading = set()
    for name, submodule in module.named_modules():
        if not isinstance(submodule, _SUPPORTED_PYTORCH_LAYERS):
            continue
        group = ModuleGroup(
            modules=[submodule],
            offload_device=offload_device,
            onload_device=onload_device,
            offload_leader=submodule,
            onload_leader=submodule,
            non_blocking=non_blocking,
            stream=stream,
563
            low_cpu_mem_usage=low_cpu_mem_usage,
Aryan's avatar
Aryan committed
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
            onload_self=True,
        )
        _apply_group_offloading_hook(submodule, group, None)
        modules_with_group_offloading.add(name)

    # Parameters and Buffers at all non-leaf levels need to be offloaded/onloaded separately when the forward pass
    # of the module is called
    module_dict = dict(module.named_modules())
    parameters = _gather_parameters_with_no_group_offloading_parent(module, modules_with_group_offloading)
    buffers = _gather_buffers_with_no_group_offloading_parent(module, modules_with_group_offloading)

    # Find closest module parent for each parameter and buffer, and attach group hooks
    parent_to_parameters = {}
    for name, param in parameters:
        parent_name = _find_parent_module_in_module_dict(name, module_dict)
        if parent_name in parent_to_parameters:
            parent_to_parameters[parent_name].append(param)
        else:
            parent_to_parameters[parent_name] = [param]

    parent_to_buffers = {}
    for name, buffer in buffers:
        parent_name = _find_parent_module_in_module_dict(name, module_dict)
        if parent_name in parent_to_buffers:
            parent_to_buffers[parent_name].append(buffer)
        else:
            parent_to_buffers[parent_name] = [buffer]

    parent_names = set(parent_to_parameters.keys()) | set(parent_to_buffers.keys())
    for name in parent_names:
        parameters = parent_to_parameters.get(name, [])
        buffers = parent_to_buffers.get(name, [])
        parent_module = module_dict[name]
        assert getattr(parent_module, "_diffusers_hook", None) is None
        group = ModuleGroup(
            modules=[],
            offload_device=offload_device,
            onload_device=onload_device,
            offload_leader=parent_module,
            onload_leader=parent_module,
            parameters=parameters,
            buffers=buffers,
            non_blocking=non_blocking,
            stream=stream,
608
            low_cpu_mem_usage=low_cpu_mem_usage,
Aryan's avatar
Aryan committed
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
            onload_self=True,
        )
        _apply_group_offloading_hook(parent_module, group, None)

    if stream is not None:
        # When using streams, we need to know the layer execution order for applying prefetching (to overlap data transfer
        # and computation). Since we don't know the order beforehand, we apply a lazy prefetching hook that will find the
        # execution order and apply prefetching in the correct order.
        unmatched_group = ModuleGroup(
            modules=[],
            offload_device=offload_device,
            onload_device=onload_device,
            offload_leader=module,
            onload_leader=module,
            parameters=None,
            buffers=None,
            non_blocking=False,
            stream=None,
627
            low_cpu_mem_usage=low_cpu_mem_usage,
Aryan's avatar
Aryan committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
            onload_self=True,
        )
        _apply_lazy_group_offloading_hook(module, unmatched_group, None)


def _apply_group_offloading_hook(
    module: torch.nn.Module,
    group: ModuleGroup,
    next_group: Optional[ModuleGroup] = None,
) -> None:
    registry = HookRegistry.check_if_exists_or_initialize(module)

    # We may have already registered a group offloading hook if the module had a torch.nn.Parameter whose parent
    # is the current module. In such cases, we don't want to overwrite the existing group offloading hook.
    if registry.get_hook(_GROUP_OFFLOADING) is None:
        hook = GroupOffloadingHook(group, next_group)
        registry.register_hook(hook, _GROUP_OFFLOADING)


def _apply_lazy_group_offloading_hook(
    module: torch.nn.Module,
    group: ModuleGroup,
    next_group: Optional[ModuleGroup] = None,
) -> None:
    registry = HookRegistry.check_if_exists_or_initialize(module)

    # We may have already registered a group offloading hook if the module had a torch.nn.Parameter whose parent
    # is the current module. In such cases, we don't want to overwrite the existing group offloading hook.
    if registry.get_hook(_GROUP_OFFLOADING) is None:
        hook = GroupOffloadingHook(group, next_group)
        registry.register_hook(hook, _GROUP_OFFLOADING)

    lazy_prefetch_hook = LazyPrefetchGroupOffloadingHook()
    registry.register_hook(lazy_prefetch_hook, _LAZY_PREFETCH_GROUP_OFFLOADING)


def _gather_parameters_with_no_group_offloading_parent(
    module: torch.nn.Module, modules_with_group_offloading: Set[str]
) -> List[torch.nn.Parameter]:
    parameters = []
    for name, parameter in module.named_parameters():
        has_parent_with_group_offloading = False
        atoms = name.split(".")
        while len(atoms) > 0:
            parent_name = ".".join(atoms)
            if parent_name in modules_with_group_offloading:
                has_parent_with_group_offloading = True
                break
            atoms.pop()
        if not has_parent_with_group_offloading:
            parameters.append((name, parameter))
    return parameters


def _gather_buffers_with_no_group_offloading_parent(
    module: torch.nn.Module, modules_with_group_offloading: Set[str]
) -> List[torch.Tensor]:
    buffers = []
    for name, buffer in module.named_buffers():
        has_parent_with_group_offloading = False
        atoms = name.split(".")
        while len(atoms) > 0:
            parent_name = ".".join(atoms)
            if parent_name in modules_with_group_offloading:
                has_parent_with_group_offloading = True
                break
            atoms.pop()
        if not has_parent_with_group_offloading:
            buffers.append((name, buffer))
    return buffers


def _find_parent_module_in_module_dict(name: str, module_dict: Dict[str, torch.nn.Module]) -> str:
    atoms = name.split(".")
    while len(atoms) > 0:
        parent_name = ".".join(atoms)
        if parent_name in module_dict:
            return parent_name
        atoms.pop()
    return ""


def _raise_error_if_accelerate_model_or_sequential_hook_present(module: torch.nn.Module) -> None:
    if not is_accelerate_available():
        return
    for name, submodule in module.named_modules():
        if not hasattr(submodule, "_hf_hook"):
            continue
        if isinstance(submodule._hf_hook, (AlignDevicesHook, CpuOffload)):
            raise ValueError(
                f"Cannot apply group offloading to a module that is already applying an alternative "
                f"offloading strategy from Accelerate. If you want to apply group offloading, please "
                f"disable the existing offloading strategy first. Offending module: {name} ({type(submodule)})"
            )


def _is_group_offload_enabled(module: torch.nn.Module) -> bool:
    for submodule in module.modules():
        if hasattr(submodule, "_diffusers_hook") and submodule._diffusers_hook.get_hook(_GROUP_OFFLOADING) is not None:
            return True
    return False


def _get_group_onload_device(module: torch.nn.Module) -> torch.device:
    for submodule in module.modules():
        if hasattr(submodule, "_diffusers_hook") and submodule._diffusers_hook.get_hook(_GROUP_OFFLOADING) is not None:
            return submodule._diffusers_hook.get_hook(_GROUP_OFFLOADING).group.onload_device
    raise ValueError("Group offloading is not enabled for the provided module.")