group_offloading.py 41.6 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 The HuggingFace Team. All rights reserved.
Aryan's avatar
Aryan committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import hashlib
16
import os
17
from contextlib import contextmanager, nullcontext
18
19
from dataclasses import dataclass
from enum import Enum
20
from typing import Dict, List, Optional, Set, Tuple, Union
Aryan's avatar
Aryan committed
21

22
import safetensors.torch
Aryan's avatar
Aryan committed
23
24
25
import torch

from ..utils import get_logger, is_accelerate_available
26
from ._common import _GO_LC_SUPPORTED_PYTORCH_LAYERS
Aryan's avatar
Aryan committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from .hooks import HookRegistry, ModelHook


if is_accelerate_available():
    from accelerate.hooks import AlignDevicesHook, CpuOffload
    from accelerate.utils import send_to_device


logger = get_logger(__name__)  # pylint: disable=invalid-name


# fmt: off
_GROUP_OFFLOADING = "group_offloading"
_LAYER_EXECUTION_TRACKER = "layer_execution_tracker"
_LAZY_PREFETCH_GROUP_OFFLOADING = "lazy_prefetch_group_offloading"
42
_GROUP_ID_LAZY_LEAF = "lazy_leafs"
Aryan's avatar
Aryan committed
43
44
45
# fmt: on


46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
class GroupOffloadingType(str, Enum):
    BLOCK_LEVEL = "block_level"
    LEAF_LEVEL = "leaf_level"


@dataclass
class GroupOffloadingConfig:
    onload_device: torch.device
    offload_device: torch.device
    offload_type: GroupOffloadingType
    non_blocking: bool
    record_stream: bool
    low_cpu_mem_usage: bool
    num_blocks_per_group: Optional[int] = None
    offload_to_disk_path: Optional[str] = None
    stream: Optional[Union[torch.cuda.Stream, torch.Stream]] = None


Aryan's avatar
Aryan committed
64
65
66
67
68
69
70
71
72
73
74
class ModuleGroup:
    def __init__(
        self,
        modules: List[torch.nn.Module],
        offload_device: torch.device,
        onload_device: torch.device,
        offload_leader: torch.nn.Module,
        onload_leader: Optional[torch.nn.Module] = None,
        parameters: Optional[List[torch.nn.Parameter]] = None,
        buffers: Optional[List[torch.Tensor]] = None,
        non_blocking: bool = False,
75
        stream: Union[torch.cuda.Stream, torch.Stream, None] = None,
76
        record_stream: Optional[bool] = False,
77
        low_cpu_mem_usage: bool = False,
Aryan's avatar
Aryan committed
78
        onload_self: bool = True,
79
        offload_to_disk_path: Optional[str] = None,
80
        group_id: Optional[int] = None,
Aryan's avatar
Aryan committed
81
82
83
84
85
86
    ) -> None:
        self.modules = modules
        self.offload_device = offload_device
        self.onload_device = onload_device
        self.offload_leader = offload_leader
        self.onload_leader = onload_leader
87
88
        self.parameters = parameters or []
        self.buffers = buffers or []
Aryan's avatar
Aryan committed
89
90
        self.non_blocking = non_blocking or stream is not None
        self.stream = stream
91
        self.record_stream = record_stream
Aryan's avatar
Aryan committed
92
        self.onload_self = onload_self
93
        self.low_cpu_mem_usage = low_cpu_mem_usage
94
95
96
97

        self.offload_to_disk_path = offload_to_disk_path
        self._is_offloaded_to_disk = False

98
        if self.offload_to_disk_path is not None:
99
100
101
102
            # Instead of `group_id or str(id(self))` we do this because `group_id` can be "" as well.
            self.group_id = group_id if group_id is not None else str(id(self))
            short_hash = _compute_group_hash(self.group_id)
            self.safetensors_file_path = os.path.join(self.offload_to_disk_path, f"group_{short_hash}.safetensors")
103
104
105
106
107
108
109
110
111
112
113
114
115
116

            all_tensors = []
            for module in self.modules:
                all_tensors.extend(list(module.parameters()))
                all_tensors.extend(list(module.buffers()))
            all_tensors.extend(self.parameters)
            all_tensors.extend(self.buffers)
            all_tensors = list(dict.fromkeys(all_tensors))  # Remove duplicates

            self.tensor_to_key = {tensor: f"tensor_{i}" for i, tensor in enumerate(all_tensors)}
            self.key_to_tensor = {v: k for k, v in self.tensor_to_key.items()}
            self.cpu_param_dict = {}
        else:
            self.cpu_param_dict = self._init_cpu_param_dict()
117

118
119
120
121
122
123
        self._torch_accelerator_module = (
            getattr(torch, torch.accelerator.current_accelerator().type)
            if hasattr(torch, "accelerator")
            else torch.cuda
        )

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    def _init_cpu_param_dict(self):
        cpu_param_dict = {}
        if self.stream is None:
            return cpu_param_dict

        for module in self.modules:
            for param in module.parameters():
                cpu_param_dict[param] = param.data.cpu() if self.low_cpu_mem_usage else param.data.cpu().pin_memory()
            for buffer in module.buffers():
                cpu_param_dict[buffer] = (
                    buffer.data.cpu() if self.low_cpu_mem_usage else buffer.data.cpu().pin_memory()
                )

        for param in self.parameters:
            cpu_param_dict[param] = param.data.cpu() if self.low_cpu_mem_usage else param.data.cpu().pin_memory()

        for buffer in self.buffers:
            cpu_param_dict[buffer] = buffer.data.cpu() if self.low_cpu_mem_usage else buffer.data.cpu().pin_memory()

        return cpu_param_dict

    @contextmanager
    def _pinned_memory_tensors(self):
        try:
148
149
150
151
            pinned_dict = {
                param: tensor.pin_memory() if not tensor.is_pinned() else tensor
                for param, tensor in self.cpu_param_dict.items()
            }
152
153
154
            yield pinned_dict
        finally:
            pinned_dict = None
Aryan's avatar
Aryan committed
155

156
    def _transfer_tensor_to_device(self, tensor, source_tensor):
157
        tensor.data = source_tensor.to(self.onload_device, non_blocking=self.non_blocking)
158
159
        if self.record_stream:
            tensor.data.record_stream(self._torch_accelerator_module.current_stream())
160

161
    def _process_tensors_from_modules(self, pinned_memory=None):
162
163
164
        for group_module in self.modules:
            for param in group_module.parameters():
                source = pinned_memory[param] if pinned_memory else param.data
165
                self._transfer_tensor_to_device(param, source)
166
167
            for buffer in group_module.buffers():
                source = pinned_memory[buffer] if pinned_memory else buffer.data
168
                self._transfer_tensor_to_device(buffer, source)
169
170
171

        for param in self.parameters:
            source = pinned_memory[param] if pinned_memory else param.data
172
            self._transfer_tensor_to_device(param, source)
173
174
175

        for buffer in self.buffers:
            source = pinned_memory[buffer] if pinned_memory else buffer.data
176
            self._transfer_tensor_to_device(buffer, source)
177

178
    def _onload_from_disk(self):
179
        if self.stream is not None:
180
181
            # Wait for previous Host->Device transfer to complete
            self.stream.synchronize()
182

183
184
        context = nullcontext() if self.stream is None else self._torch_accelerator_module.stream(self.stream)
        current_stream = self._torch_accelerator_module.current_stream() if self.record_stream else None
185

186
187
188
189
        with context:
            # Load to CPU (if using streams) or directly to target device, pin, and async copy to device
            device = str(self.onload_device) if self.stream is None else "cpu"
            loaded_tensors = safetensors.torch.load_file(self.safetensors_file_path, device=device)
190

191
            if self.stream is not None:
192
193
194
195
196
197
198
199
200
201
202
203
                for key, tensor_obj in self.key_to_tensor.items():
                    pinned_tensor = loaded_tensors[key].pin_memory()
                    tensor_obj.data = pinned_tensor.to(self.onload_device, non_blocking=self.non_blocking)
                    if self.record_stream:
                        tensor_obj.data.record_stream(current_stream)
            else:
                onload_device = (
                    self.onload_device.type if isinstance(self.onload_device, torch.device) else self.onload_device
                )
                loaded_tensors = safetensors.torch.load_file(self.safetensors_file_path, device=onload_device)
                for key, tensor_obj in self.key_to_tensor.items():
                    tensor_obj.data = loaded_tensors[key]
204

205
    def _onload_from_memory(self):
Aryan's avatar
Aryan committed
206
207
208
209
        if self.stream is not None:
            # Wait for previous Host->Device transfer to complete
            self.stream.synchronize()

210
        context = nullcontext() if self.stream is None else self._torch_accelerator_module.stream(self.stream)
Aryan's avatar
Aryan committed
211
        with context:
212
213
214
            if self.stream is not None:
                with self._pinned_memory_tensors() as pinned_memory:
                    self._process_tensors_from_modules(pinned_memory)
215
            else:
216
                self._process_tensors_from_modules(None)
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

    def _offload_to_disk(self):
        # TODO: we can potentially optimize this code path by checking if the _all_ the desired
        # safetensor files exist on the disk and if so, skip this step entirely, reducing IO
        # overhead. Currently, we just check if the given `safetensors_file_path` exists and if not
        # we perform a write.
        # Check if the file has been saved in this session or if it already exists on disk.
        if not self._is_offloaded_to_disk and not os.path.exists(self.safetensors_file_path):
            os.makedirs(os.path.dirname(self.safetensors_file_path), exist_ok=True)
            tensors_to_save = {key: tensor.data.to(self.offload_device) for tensor, key in self.tensor_to_key.items()}
            safetensors.torch.save_file(tensors_to_save, self.safetensors_file_path)

        # The group is now considered offloaded to disk for the rest of the session.
        self._is_offloaded_to_disk = True

        # We do this to free up the RAM which is still holding the up tensor data.
        for tensor_obj in self.tensor_to_key.keys():
            tensor_obj.data = torch.empty_like(tensor_obj.data, device=self.offload_device)

    def _offload_to_memory(self):
Aryan's avatar
Aryan committed
237
        if self.stream is not None:
238
            if not self.record_stream:
239
240
                self._torch_accelerator_module.current_stream().synchronize()

Aryan's avatar
Aryan committed
241
242
243
            for group_module in self.modules:
                for param in group_module.parameters():
                    param.data = self.cpu_param_dict[param]
244
245
246
247
            for param in self.parameters:
                param.data = self.cpu_param_dict[param]
            for buffer in self.buffers:
                buffer.data = self.cpu_param_dict[buffer]
Aryan's avatar
Aryan committed
248
249
        else:
            for group_module in self.modules:
250
                group_module.to(self.offload_device, non_blocking=False)
251
            for param in self.parameters:
252
                param.data = param.data.to(self.offload_device, non_blocking=False)
253
            for buffer in self.buffers:
254
255
256
257
258
259
260
261
262
                buffer.data = buffer.data.to(self.offload_device, non_blocking=False)

    @torch.compiler.disable()
    def onload_(self):
        r"""Onloads the group of parameters to the onload_device."""
        if self.offload_to_disk_path is not None:
            self._onload_from_disk()
        else:
            self._onload_from_memory()
Aryan's avatar
Aryan committed
263

264
265
    @torch.compiler.disable()
    def offload_(self):
266
        r"""Offloads the group of parameters to the offload_device."""
267
268
269
270
271
        if self.offload_to_disk_path:
            self._offload_to_disk()
        else:
            self._offload_to_memory()

Aryan's avatar
Aryan committed
272
273
274
275
276
277
278
279
280
281
282

class GroupOffloadingHook(ModelHook):
    r"""
    A hook that offloads groups of torch.nn.Module to the CPU for storage and onloads to accelerator device for
    computation. Each group has one "onload leader" module that is responsible for onloading, and an "offload leader"
    module that is responsible for offloading. If prefetching is enabled, the onload leader of the previous module
    group is responsible for onloading the current module group.
    """

    _is_stateful = False

283
    def __init__(self, group: ModuleGroup, *, config: GroupOffloadingConfig) -> None:
Aryan's avatar
Aryan committed
284
        self.group = group
285
        self.next_group: Optional[ModuleGroup] = None
286
        self.config = config
Aryan's avatar
Aryan committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

    def initialize_hook(self, module: torch.nn.Module) -> torch.nn.Module:
        if self.group.offload_leader == module:
            self.group.offload_()
        return module

    def pre_forward(self, module: torch.nn.Module, *args, **kwargs):
        # If there wasn't an onload_leader assigned, we assume that the submodule that first called its forward
        # method is the onload_leader of the group.
        if self.group.onload_leader is None:
            self.group.onload_leader = module

        # If the current module is the onload_leader of the group, we onload the group if it is supposed
        # to onload itself. In the case of using prefetching with streams, we onload the next group if
        # it is not supposed to onload itself.
        if self.group.onload_leader == module:
            if self.group.onload_self:
                self.group.onload_()
305
306
307

            should_onload_next_group = self.next_group is not None and not self.next_group.onload_self
            if should_onload_next_group:
Aryan's avatar
Aryan committed
308
309
                self.next_group.onload_()

310
311
312
313
314
315
316
317
318
319
320
321
            should_synchronize = (
                not self.group.onload_self and self.group.stream is not None and not should_onload_next_group
            )
            if should_synchronize:
                # If this group didn't onload itself, it means it was asynchronously onloaded by the
                # previous group. We need to synchronize the side stream to ensure parameters
                # are completely loaded to proceed with forward pass. Without this, uninitialized
                # weights will be used in the computation, leading to incorrect results
                # Also, we should only do this synchronization if we don't already do it from the sync call in
                # self.next_group.onload_, hence the `not should_onload_next_group` check.
                self.group.stream.synchronize()

Aryan's avatar
Aryan committed
322
323
324
325
326
327
328
329
330
331
332
333
        args = send_to_device(args, self.group.onload_device, non_blocking=self.group.non_blocking)
        kwargs = send_to_device(kwargs, self.group.onload_device, non_blocking=self.group.non_blocking)
        return args, kwargs

    def post_forward(self, module: torch.nn.Module, output):
        if self.group.offload_leader == module:
            self.group.offload_()
        return output


class LazyPrefetchGroupOffloadingHook(ModelHook):
    r"""
334
    A hook, used in conjunction with GroupOffloadingHook, that applies lazy prefetching to groups of torch.nn.Module.
Aryan's avatar
Aryan committed
335
336
337
338
339
340
341
342
343
344
345
346
    This hook is used to determine the order in which the layers are executed during the forward pass. Once the layer
    invocation order is known, assignments of the next_group attribute for prefetching can be made, which allows
    prefetching groups in the correct order.
    """

    _is_stateful = False

    def __init__(self):
        self.execution_order: List[Tuple[str, torch.nn.Module]] = []
        self._layer_execution_tracker_module_names = set()

    def initialize_hook(self, module):
347
348
        def make_execution_order_update_callback(current_name, current_submodule):
            def callback():
349
350
                if not torch.compiler.is_compiling():
                    logger.debug(f"Adding {current_name} to the execution order")
351
352
353
354
                self.execution_order.append((current_name, current_submodule))

            return callback

Aryan's avatar
Aryan committed
355
356
357
358
359
360
361
362
363
364
365
        # To every submodule that contains a group offloading hook (at this point, no prefetching is enabled for any
        # of the groups), we add a layer execution tracker hook that will be used to determine the order in which the
        # layers are executed during the forward pass.
        for name, submodule in module.named_modules():
            if name == "" or not hasattr(submodule, "_diffusers_hook"):
                continue

            registry = HookRegistry.check_if_exists_or_initialize(submodule)
            group_offloading_hook = registry.get_hook(_GROUP_OFFLOADING)

            if group_offloading_hook is not None:
366
367
                # For the first forward pass, we have to load in a blocking manner
                group_offloading_hook.group.non_blocking = False
Aryan's avatar
Aryan committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
                layer_tracker_hook = LayerExecutionTrackerHook(make_execution_order_update_callback(name, submodule))
                registry.register_hook(layer_tracker_hook, _LAYER_EXECUTION_TRACKER)
                self._layer_execution_tracker_module_names.add(name)

        return module

    def post_forward(self, module, output):
        # At this point, for the current modules' submodules, we know the execution order of the layers. We can now
        # remove the layer execution tracker hooks and apply prefetching by setting the next_group attribute for each
        # group offloading hook.
        num_executed = len(self.execution_order)
        execution_order_module_names = {name for name, _ in self.execution_order}

        # It may be possible that some layers were not executed during the forward pass. This can happen if the layer
        # is not used in the forward pass, or if the layer is not executed due to some other reason. In such cases, we
        # may not be able to apply prefetching in the correct order, which can lead to device-mismatch related errors
        # if the missing layers end up being executed in the future.
        if execution_order_module_names != self._layer_execution_tracker_module_names:
            unexecuted_layers = list(self._layer_execution_tracker_module_names - execution_order_module_names)
387
388
389
390
391
392
393
            if not torch.compiler.is_compiling():
                logger.warning(
                    "It seems like some layers were not executed during the forward pass. This may lead to problems when "
                    "applying lazy prefetching with automatic tracing and lead to device-mismatch related errors. Please "
                    "make sure that all layers are executed during the forward pass. The following layers were not executed:\n"
                    f"{unexecuted_layers=}"
                )
Aryan's avatar
Aryan committed
394
395
396
397

        # Remove the layer execution tracker hooks from the submodules
        base_module_registry = module._diffusers_hook
        registries = [submodule._diffusers_hook for _, submodule in self.execution_order]
398
        group_offloading_hooks = [registry.get_hook(_GROUP_OFFLOADING) for registry in registries]
Aryan's avatar
Aryan committed
399
400
401
402
403
404
405

        for i in range(num_executed):
            registries[i].remove_hook(_LAYER_EXECUTION_TRACKER, recurse=False)

        # Remove the current lazy prefetch group offloading hook so that it doesn't interfere with the next forward pass
        base_module_registry.remove_hook(_LAZY_PREFETCH_GROUP_OFFLOADING, recurse=False)

406
407
408
409
410
411
412
        # LazyPrefetchGroupOffloadingHook is only used with streams, so we know that non_blocking should be True.
        # We disable non_blocking for the first forward pass, but need to enable it for the subsequent passes to
        # see the benefits of prefetching.
        for hook in group_offloading_hooks:
            hook.group.non_blocking = True

        # Set required attributes for prefetching
Aryan's avatar
Aryan committed
413
414
415
416
417
418
419
420
        if num_executed > 0:
            base_module_group_offloading_hook = base_module_registry.get_hook(_GROUP_OFFLOADING)
            base_module_group_offloading_hook.next_group = group_offloading_hooks[0].group
            base_module_group_offloading_hook.next_group.onload_self = False

        for i in range(num_executed - 1):
            name1, _ = self.execution_order[i]
            name2, _ = self.execution_order[i + 1]
421
422
            if not torch.compiler.is_compiling():
                logger.debug(f"Applying lazy prefetch group offloading from {name1} to {name2}")
Aryan's avatar
Aryan committed
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
            group_offloading_hooks[i].next_group = group_offloading_hooks[i + 1].group
            group_offloading_hooks[i].next_group.onload_self = False

        return output


class LayerExecutionTrackerHook(ModelHook):
    r"""
    A hook that tracks the order in which the layers are executed during the forward pass by calling back to the
    LazyPrefetchGroupOffloadingHook to update the execution order.
    """

    _is_stateful = False

    def __init__(self, execution_order_update_callback):
        self.execution_order_update_callback = execution_order_update_callback

    def pre_forward(self, module, *args, **kwargs):
        self.execution_order_update_callback()
        return args, kwargs


def apply_group_offloading(
    module: torch.nn.Module,
447
448
    onload_device: Union[str, torch.device],
    offload_device: Union[str, torch.device] = torch.device("cpu"),
449
    offload_type: Union[str, GroupOffloadingType] = "block_level",
Aryan's avatar
Aryan committed
450
451
452
    num_blocks_per_group: Optional[int] = None,
    non_blocking: bool = False,
    use_stream: bool = False,
453
    record_stream: bool = False,
454
    low_cpu_mem_usage: bool = False,
455
    offload_to_disk_path: Optional[str] = None,
Aryan's avatar
Aryan committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
) -> None:
    r"""
    Applies group offloading to the internal layers of a torch.nn.Module. To understand what group offloading is, and
    where it is beneficial, we need to first provide some context on how other supported offloading methods work.

    Typically, offloading is done at two levels:
    - Module-level: In Diffusers, this can be enabled using the `ModelMixin::enable_model_cpu_offload()` method. It
      works by offloading each component of a pipeline to the CPU for storage, and onloading to the accelerator device
      when needed for computation. This method is more memory-efficient than keeping all components on the accelerator,
      but the memory requirements are still quite high. For this method to work, one needs memory equivalent to size of
      the model in runtime dtype + size of largest intermediate activation tensors to be able to complete the forward
      pass.
    - Leaf-level: In Diffusers, this can be enabled using the `ModelMixin::enable_sequential_cpu_offload()` method. It
      works by offloading the lowest leaf-level parameters of the computation graph to the CPU for storage, and
      onloading only the leafs to the accelerator device for computation. This uses the lowest amount of accelerator
      memory, but can be slower due to the excessive number of device synchronizations.

    Group offloading is a middle ground between the two methods. It works by offloading groups of internal layers,
    (either `torch.nn.ModuleList` or `torch.nn.Sequential`). This method uses lower memory than module-level
    offloading. It is also faster than leaf-level/sequential offloading, as the number of device synchronizations is
    reduced.

    Another supported feature (for CUDA devices with support for asynchronous data transfer streams) is the ability to
    overlap data transfer and computation to reduce the overall execution time compared to sequential offloading. This
    is enabled using layer prefetching with streams, i.e., the layer that is to be executed next starts onloading to
    the accelerator device while the current layer is being executed - this increases the memory requirements slightly.
    Note that this implementation also supports leaf-level offloading but can be made much faster when using streams.

    Args:
        module (`torch.nn.Module`):
            The module to which group offloading is applied.
        onload_device (`torch.device`):
            The device to which the group of modules are onloaded.
        offload_device (`torch.device`, defaults to `torch.device("cpu")`):
            The device to which the group of modules are offloaded. This should typically be the CPU. Default is CPU.
491
        offload_type (`str` or `GroupOffloadingType`, defaults to "block_level"):
Aryan's avatar
Aryan committed
492
493
            The type of offloading to be applied. Can be one of "block_level" or "leaf_level". Default is
            "block_level".
494
495
496
        offload_to_disk_path (`str`, *optional*, defaults to `None`):
            The path to the directory where parameters will be offloaded. Setting this option can be useful in limited
            RAM environment settings where a reasonable speed-memory trade-off is desired.
Aryan's avatar
Aryan committed
497
498
499
500
501
502
503
504
        num_blocks_per_group (`int`, *optional*):
            The number of blocks per group when using offload_type="block_level". This is required when using
            offload_type="block_level".
        non_blocking (`bool`, defaults to `False`):
            If True, offloading and onloading is done with non-blocking data transfer.
        use_stream (`bool`, defaults to `False`):
            If True, offloading and onloading is done asynchronously using a CUDA stream. This can be useful for
            overlapping computation and data transfer.
505
506
507
508
        record_stream (`bool`, defaults to `False`): When enabled with `use_stream`, it marks the current tensor
            as having been used by this stream. It is faster at the expense of slightly more memory usage. Refer to the
            [PyTorch official docs](https://pytorch.org/docs/stable/generated/torch.Tensor.record_stream.html) more
            details.
509
510
511
512
        low_cpu_mem_usage (`bool`, defaults to `False`):
            If True, the CPU memory usage is minimized by pinning tensors on-the-fly instead of pre-pinning them. This
            option only matters when using streamed CPU offloading (i.e. `use_stream=True`). This can be useful when
            the CPU memory is a bottleneck but may counteract the benefits of using streams.
Aryan's avatar
Aryan committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

    Example:
        ```python
        >>> from diffusers import CogVideoXTransformer3DModel
        >>> from diffusers.hooks import apply_group_offloading

        >>> transformer = CogVideoXTransformer3DModel.from_pretrained(
        ...     "THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16
        ... )

        >>> apply_group_offloading(
        ...     transformer,
        ...     onload_device=torch.device("cuda"),
        ...     offload_device=torch.device("cpu"),
        ...     offload_type="block_level",
        ...     num_blocks_per_group=2,
        ...     use_stream=True,
        ... )
        ```
    """

534
535
    onload_device = torch.device(onload_device) if isinstance(onload_device, str) else onload_device
    offload_device = torch.device(offload_device) if isinstance(offload_device, str) else offload_device
536
537
    offload_type = GroupOffloadingType(offload_type)

Aryan's avatar
Aryan committed
538
539
540
541
    stream = None
    if use_stream:
        if torch.cuda.is_available():
            stream = torch.cuda.Stream()
542
543
        elif hasattr(torch, "xpu") and torch.xpu.is_available():
            stream = torch.Stream()
Aryan's avatar
Aryan committed
544
        else:
545
            raise ValueError("Using streams for data transfer requires a CUDA device, or an Intel XPU device.")
Aryan's avatar
Aryan committed
546

547
548
    if not use_stream and record_stream:
        raise ValueError("`record_stream` cannot be True when `use_stream=False`.")
549
550
    if offload_type == GroupOffloadingType.BLOCK_LEVEL and num_blocks_per_group is None:
        raise ValueError("`num_blocks_per_group` must be provided when using `offload_type='block_level'.")
551

Aryan's avatar
Aryan committed
552
553
    _raise_error_if_accelerate_model_or_sequential_hook_present(module)

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
    config = GroupOffloadingConfig(
        onload_device=onload_device,
        offload_device=offload_device,
        offload_type=offload_type,
        num_blocks_per_group=num_blocks_per_group,
        non_blocking=non_blocking,
        stream=stream,
        record_stream=record_stream,
        low_cpu_mem_usage=low_cpu_mem_usage,
        offload_to_disk_path=offload_to_disk_path,
    )
    _apply_group_offloading(module, config)


def _apply_group_offloading(module: torch.nn.Module, config: GroupOffloadingConfig) -> None:
    if config.offload_type == GroupOffloadingType.BLOCK_LEVEL:
        _apply_group_offloading_block_level(module, config)
    elif config.offload_type == GroupOffloadingType.LEAF_LEVEL:
        _apply_group_offloading_leaf_level(module, config)
Aryan's avatar
Aryan committed
573
    else:
574
        assert False
Aryan's avatar
Aryan committed
575
576


577
def _apply_group_offloading_block_level(module: torch.nn.Module, config: GroupOffloadingConfig) -> None:
Aryan's avatar
Aryan committed
578
579
580
581
    r"""
    This function applies offloading to groups of torch.nn.ModuleList or torch.nn.Sequential blocks. In comparison to
    the "leaf_level" offloading, which is more fine-grained, this offloading is done at the top-level blocks.
    """
582
583

    if config.stream is not None and config.num_blocks_per_group != 1:
584
        logger.warning(
585
            f"Using streams is only supported for num_blocks_per_group=1. Got {config.num_blocks_per_group=}. Setting it to 1."
586
        )
587
        config.num_blocks_per_group = 1
Aryan's avatar
Aryan committed
588
589
590
591
592
593
594
595
596
597
598

    # Create module groups for ModuleList and Sequential blocks
    modules_with_group_offloading = set()
    unmatched_modules = []
    matched_module_groups = []
    for name, submodule in module.named_children():
        if not isinstance(submodule, (torch.nn.ModuleList, torch.nn.Sequential)):
            unmatched_modules.append((name, submodule))
            modules_with_group_offloading.add(name)
            continue

599
600
        for i in range(0, len(submodule), config.num_blocks_per_group):
            current_modules = submodule[i : i + config.num_blocks_per_group]
601
            group_id = f"{name}_{i}_{i + len(current_modules) - 1}"
Aryan's avatar
Aryan committed
602
603
            group = ModuleGroup(
                modules=current_modules,
604
605
606
                offload_device=config.offload_device,
                onload_device=config.onload_device,
                offload_to_disk_path=config.offload_to_disk_path,
Aryan's avatar
Aryan committed
607
608
                offload_leader=current_modules[-1],
                onload_leader=current_modules[0],
609
610
611
612
                non_blocking=config.non_blocking,
                stream=config.stream,
                record_stream=config.record_stream,
                low_cpu_mem_usage=config.low_cpu_mem_usage,
613
                onload_self=True,
614
                group_id=group_id,
Aryan's avatar
Aryan committed
615
616
617
618
619
620
621
622
            )
            matched_module_groups.append(group)
            for j in range(i, i + len(current_modules)):
                modules_with_group_offloading.add(f"{name}.{j}")

    # Apply group offloading hooks to the module groups
    for i, group in enumerate(matched_module_groups):
        for group_module in group.modules:
623
            _apply_group_offloading_hook(group_module, group, config=config)
Aryan's avatar
Aryan committed
624
625
626
627
628
629
630
631
632
633
634
635
636
637

    # Parameters and Buffers of the top-level module need to be offloaded/onloaded separately
    # when the forward pass of this module is called. This is because the top-level module is not
    # part of any group (as doing so would lead to no VRAM savings).
    parameters = _gather_parameters_with_no_group_offloading_parent(module, modules_with_group_offloading)
    buffers = _gather_buffers_with_no_group_offloading_parent(module, modules_with_group_offloading)
    parameters = [param for _, param in parameters]
    buffers = [buffer for _, buffer in buffers]

    # Create a group for the unmatched submodules of the top-level module so that they are on the correct
    # device when the forward pass is called.
    unmatched_modules = [unmatched_module for _, unmatched_module in unmatched_modules]
    unmatched_group = ModuleGroup(
        modules=unmatched_modules,
638
639
640
        offload_device=config.offload_device,
        onload_device=config.onload_device,
        offload_to_disk_path=config.offload_to_disk_path,
Aryan's avatar
Aryan committed
641
642
643
644
645
646
        offload_leader=module,
        onload_leader=module,
        parameters=parameters,
        buffers=buffers,
        non_blocking=False,
        stream=None,
647
        record_stream=False,
Aryan's avatar
Aryan committed
648
        onload_self=True,
649
        group_id=f"{module.__class__.__name__}_unmatched_group",
Aryan's avatar
Aryan committed
650
    )
651
    if config.stream is None:
652
        _apply_group_offloading_hook(module, unmatched_group, config=config)
653
    else:
654
        _apply_lazy_group_offloading_hook(module, unmatched_group, config=config)
Aryan's avatar
Aryan committed
655
656


657
def _apply_group_offloading_leaf_level(module: torch.nn.Module, config: GroupOffloadingConfig) -> None:
Aryan's avatar
Aryan committed
658
659
660
661
662
663
664
665
666
    r"""
    This function applies offloading to groups of leaf modules in a torch.nn.Module. This method has minimal memory
    requirements. However, it can be slower compared to other offloading methods due to the excessive number of device
    synchronizations. When using devices that support streams to overlap data transfer and computation, this method can
    reduce memory usage without any performance degradation.
    """
    # Create module groups for leaf modules and apply group offloading hooks
    modules_with_group_offloading = set()
    for name, submodule in module.named_modules():
667
        if not isinstance(submodule, _GO_LC_SUPPORTED_PYTORCH_LAYERS):
Aryan's avatar
Aryan committed
668
669
670
            continue
        group = ModuleGroup(
            modules=[submodule],
671
672
673
            offload_device=config.offload_device,
            onload_device=config.onload_device,
            offload_to_disk_path=config.offload_to_disk_path,
Aryan's avatar
Aryan committed
674
675
            offload_leader=submodule,
            onload_leader=submodule,
676
677
678
679
            non_blocking=config.non_blocking,
            stream=config.stream,
            record_stream=config.record_stream,
            low_cpu_mem_usage=config.low_cpu_mem_usage,
Aryan's avatar
Aryan committed
680
            onload_self=True,
681
            group_id=name,
Aryan's avatar
Aryan committed
682
        )
683
        _apply_group_offloading_hook(submodule, group, config=config)
Aryan's avatar
Aryan committed
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
        modules_with_group_offloading.add(name)

    # Parameters and Buffers at all non-leaf levels need to be offloaded/onloaded separately when the forward pass
    # of the module is called
    module_dict = dict(module.named_modules())
    parameters = _gather_parameters_with_no_group_offloading_parent(module, modules_with_group_offloading)
    buffers = _gather_buffers_with_no_group_offloading_parent(module, modules_with_group_offloading)

    # Find closest module parent for each parameter and buffer, and attach group hooks
    parent_to_parameters = {}
    for name, param in parameters:
        parent_name = _find_parent_module_in_module_dict(name, module_dict)
        if parent_name in parent_to_parameters:
            parent_to_parameters[parent_name].append(param)
        else:
            parent_to_parameters[parent_name] = [param]

    parent_to_buffers = {}
    for name, buffer in buffers:
        parent_name = _find_parent_module_in_module_dict(name, module_dict)
        if parent_name in parent_to_buffers:
            parent_to_buffers[parent_name].append(buffer)
        else:
            parent_to_buffers[parent_name] = [buffer]

    parent_names = set(parent_to_parameters.keys()) | set(parent_to_buffers.keys())
    for name in parent_names:
        parameters = parent_to_parameters.get(name, [])
        buffers = parent_to_buffers.get(name, [])
        parent_module = module_dict[name]
        group = ModuleGroup(
            modules=[],
716
717
            offload_device=config.offload_device,
            onload_device=config.onload_device,
Aryan's avatar
Aryan committed
718
719
            offload_leader=parent_module,
            onload_leader=parent_module,
720
            offload_to_disk_path=config.offload_to_disk_path,
Aryan's avatar
Aryan committed
721
722
            parameters=parameters,
            buffers=buffers,
723
724
725
726
            non_blocking=config.non_blocking,
            stream=config.stream,
            record_stream=config.record_stream,
            low_cpu_mem_usage=config.low_cpu_mem_usage,
Aryan's avatar
Aryan committed
727
            onload_self=True,
728
            group_id=name,
Aryan's avatar
Aryan committed
729
        )
730
        _apply_group_offloading_hook(parent_module, group, config=config)
Aryan's avatar
Aryan committed
731

732
    if config.stream is not None:
Aryan's avatar
Aryan committed
733
734
735
736
737
        # When using streams, we need to know the layer execution order for applying prefetching (to overlap data transfer
        # and computation). Since we don't know the order beforehand, we apply a lazy prefetching hook that will find the
        # execution order and apply prefetching in the correct order.
        unmatched_group = ModuleGroup(
            modules=[],
738
739
740
            offload_device=config.offload_device,
            onload_device=config.onload_device,
            offload_to_disk_path=config.offload_to_disk_path,
Aryan's avatar
Aryan committed
741
742
743
744
745
746
            offload_leader=module,
            onload_leader=module,
            parameters=None,
            buffers=None,
            non_blocking=False,
            stream=None,
747
            record_stream=False,
748
            low_cpu_mem_usage=config.low_cpu_mem_usage,
Aryan's avatar
Aryan committed
749
            onload_self=True,
750
            group_id=_GROUP_ID_LAZY_LEAF,
Aryan's avatar
Aryan committed
751
        )
752
        _apply_lazy_group_offloading_hook(module, unmatched_group, config=config)
Aryan's avatar
Aryan committed
753
754
755
756
757


def _apply_group_offloading_hook(
    module: torch.nn.Module,
    group: ModuleGroup,
758
759
    *,
    config: GroupOffloadingConfig,
Aryan's avatar
Aryan committed
760
761
762
763
764
765
) -> None:
    registry = HookRegistry.check_if_exists_or_initialize(module)

    # We may have already registered a group offloading hook if the module had a torch.nn.Parameter whose parent
    # is the current module. In such cases, we don't want to overwrite the existing group offloading hook.
    if registry.get_hook(_GROUP_OFFLOADING) is None:
766
        hook = GroupOffloadingHook(group, config=config)
Aryan's avatar
Aryan committed
767
768
769
770
771
772
        registry.register_hook(hook, _GROUP_OFFLOADING)


def _apply_lazy_group_offloading_hook(
    module: torch.nn.Module,
    group: ModuleGroup,
773
774
    *,
    config: GroupOffloadingConfig,
Aryan's avatar
Aryan committed
775
776
777
778
779
780
) -> None:
    registry = HookRegistry.check_if_exists_or_initialize(module)

    # We may have already registered a group offloading hook if the module had a torch.nn.Parameter whose parent
    # is the current module. In such cases, we don't want to overwrite the existing group offloading hook.
    if registry.get_hook(_GROUP_OFFLOADING) is None:
781
        hook = GroupOffloadingHook(group, config=config)
Aryan's avatar
Aryan committed
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
        registry.register_hook(hook, _GROUP_OFFLOADING)

    lazy_prefetch_hook = LazyPrefetchGroupOffloadingHook()
    registry.register_hook(lazy_prefetch_hook, _LAZY_PREFETCH_GROUP_OFFLOADING)


def _gather_parameters_with_no_group_offloading_parent(
    module: torch.nn.Module, modules_with_group_offloading: Set[str]
) -> List[torch.nn.Parameter]:
    parameters = []
    for name, parameter in module.named_parameters():
        has_parent_with_group_offloading = False
        atoms = name.split(".")
        while len(atoms) > 0:
            parent_name = ".".join(atoms)
            if parent_name in modules_with_group_offloading:
                has_parent_with_group_offloading = True
                break
            atoms.pop()
        if not has_parent_with_group_offloading:
            parameters.append((name, parameter))
    return parameters


def _gather_buffers_with_no_group_offloading_parent(
    module: torch.nn.Module, modules_with_group_offloading: Set[str]
) -> List[torch.Tensor]:
    buffers = []
    for name, buffer in module.named_buffers():
        has_parent_with_group_offloading = False
        atoms = name.split(".")
        while len(atoms) > 0:
            parent_name = ".".join(atoms)
            if parent_name in modules_with_group_offloading:
                has_parent_with_group_offloading = True
                break
            atoms.pop()
        if not has_parent_with_group_offloading:
            buffers.append((name, buffer))
    return buffers


def _find_parent_module_in_module_dict(name: str, module_dict: Dict[str, torch.nn.Module]) -> str:
    atoms = name.split(".")
    while len(atoms) > 0:
        parent_name = ".".join(atoms)
        if parent_name in module_dict:
            return parent_name
        atoms.pop()
    return ""


def _raise_error_if_accelerate_model_or_sequential_hook_present(module: torch.nn.Module) -> None:
    if not is_accelerate_available():
        return
    for name, submodule in module.named_modules():
        if not hasattr(submodule, "_hf_hook"):
            continue
        if isinstance(submodule._hf_hook, (AlignDevicesHook, CpuOffload)):
            raise ValueError(
                f"Cannot apply group offloading to a module that is already applying an alternative "
                f"offloading strategy from Accelerate. If you want to apply group offloading, please "
                f"disable the existing offloading strategy first. Offending module: {name} ({type(submodule)})"
            )


848
def _get_top_level_group_offload_hook(module: torch.nn.Module) -> Optional[GroupOffloadingHook]:
Aryan's avatar
Aryan committed
849
    for submodule in module.modules():
850
851
852
853
854
855
856
857
858
859
        if hasattr(submodule, "_diffusers_hook"):
            group_offloading_hook = submodule._diffusers_hook.get_hook(_GROUP_OFFLOADING)
            if group_offloading_hook is not None:
                return group_offloading_hook
    return None


def _is_group_offload_enabled(module: torch.nn.Module) -> bool:
    top_level_group_offload_hook = _get_top_level_group_offload_hook(module)
    return top_level_group_offload_hook is not None
Aryan's avatar
Aryan committed
860
861
862


def _get_group_onload_device(module: torch.nn.Module) -> torch.device:
863
864
865
    top_level_group_offload_hook = _get_top_level_group_offload_hook(module)
    if top_level_group_offload_hook is not None:
        return top_level_group_offload_hook.config.onload_device
Aryan's avatar
Aryan committed
866
    raise ValueError("Group offloading is not enabled for the provided module.")
867
868


869
870
871
872
873
874
def _compute_group_hash(group_id):
    hashed_id = hashlib.sha256(group_id.encode("utf-8")).hexdigest()
    # first 16 characters for a reasonably short but unique name
    return hashed_id[:16]


875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
def _maybe_remove_and_reapply_group_offloading(module: torch.nn.Module) -> None:
    r"""
    Removes the group offloading hook from the module and re-applies it. This is useful when the module has been
    modified in-place and the group offloading hook references-to-tensors needs to be updated. The in-place
    modification can happen in a number of ways, for example, fusing QKV or unloading/loading LoRAs on-the-fly.

    In this implementation, we make an assumption that group offloading has only been applied at the top-level module,
    and therefore all submodules have the same onload and offload devices. If this assumption is not true, say in the
    case where user has applied group offloading at multiple levels, this function will not work as expected.

    There is some performance penalty associated with doing this when non-default streams are used, because we need to
    retrace the execution order of the layers with `LazyPrefetchGroupOffloadingHook`.
    """
    top_level_group_offload_hook = _get_top_level_group_offload_hook(module)

    if top_level_group_offload_hook is None:
        return

    registry = HookRegistry.check_if_exists_or_initialize(module)
    registry.remove_hook(_GROUP_OFFLOADING, recurse=True)
    registry.remove_hook(_LAYER_EXECUTION_TRACKER, recurse=True)
    registry.remove_hook(_LAZY_PREFETCH_GROUP_OFFLOADING, recurse=True)

    _apply_group_offloading(module, top_level_group_offload_hook.config)