pipeline_ddpm.py 4.27 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


16
from typing import List, Optional, Tuple, Union
Pedro Cuenca's avatar
Pedro Cuenca committed
17

Patrick von Platen's avatar
Patrick von Platen committed
18
19
import torch

20
from ...utils import randn_tensor
21
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
Patrick von Platen's avatar
Patrick von Platen committed
22
23


Patrick von Platen's avatar
Patrick von Platen committed
24
class DDPMPipeline(DiffusionPipeline):
25
26
27
28
29
30
31
32
33
34
35
    r"""
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Parameters:
        unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
            [`DDPMScheduler`], or [`DDIMScheduler`].
    """

36
    def __init__(self, unet, scheduler):
Patrick von Platen's avatar
Patrick von Platen committed
37
        super().__init__()
38
        self.register_modules(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
39

Patrick von Platen's avatar
Patrick von Platen committed
40
    @torch.no_grad()
41
    def __call__(
Sid Sahai's avatar
Sid Sahai committed
42
43
        self,
        batch_size: int = 1,
44
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
45
        num_inference_steps: int = 1000,
Sid Sahai's avatar
Sid Sahai committed
46
47
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
48
    ) -> Union[ImagePipelineOutput, Tuple]:
49
50
        r"""
        Args:
51
            batch_size (`int`, *optional*, defaults to 1):
52
                The number of images to generate.
53
            generator (`torch.Generator`, *optional*):
54
55
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
56
57
58
            num_inference_steps (`int`, *optional*, defaults to 1000):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
59
            output_type (`str`, *optional*, defaults to `"pil"`):
60
                The output format of the generate image. Choose between
61
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
62
            return_dict (`bool`, *optional*, defaults to `True`):
63
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
64
65

        Returns:
66
67
            [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is
            True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
68
        """
Patrick von Platen's avatar
Patrick von Platen committed
69
        # Sample gaussian noise to begin loop
70
71
72
73
74
        if isinstance(self.unet.sample_size, int):
            image_shape = (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size)
        else:
            image_shape = (batch_size, self.unet.in_channels, *self.unet.sample_size)

75
76
        if self.device.type == "mps":
            # randn does not work reproducibly on mps
77
            image = randn_tensor(image_shape, generator=generator)
78
79
            image = image.to(self.device)
        else:
80
            image = randn_tensor(image_shape, generator=generator, device=self.device)
Patrick von Platen's avatar
Patrick von Platen committed
81

82
        # set step values
83
        self.scheduler.set_timesteps(num_inference_steps)
84

hysts's avatar
hysts committed
85
        for t in self.progress_bar(self.scheduler.timesteps):
Patrick von Platen's avatar
Patrick von Platen committed
86
            # 1. predict noise model_output
87
            model_output = self.unet(image, t).sample
Patrick von Platen's avatar
Patrick von Platen committed
88

89
            # 2. compute previous image: x_t -> x_t-1
90
            image = self.scheduler.step(model_output, t, image, generator=generator).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
91

92
93
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
94
95
        if output_type == "pil":
            image = self.numpy_to_pil(image)
96

97
98
99
100
        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)