scheduling_ddim.py 13.8 KB
Newer Older
1
# Copyright 2022 Stanford University Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16
17

# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion

Patrick von Platen's avatar
Patrick von Platen committed
18
import math
19
import warnings
20
from dataclasses import dataclass
21
from typing import Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
22

Patrick von Platen's avatar
Patrick von Platen committed
23
import numpy as np
24
import torch
Patrick von Platen's avatar
Patrick von Platen committed
25

26
from ..configuration_utils import ConfigMixin, register_to_config
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from ..utils import BaseOutput
from .scheduling_utils import SchedulerMixin


@dataclass
class DDIMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
47
48


49
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor:
50
    """
Patrick von Platen's avatar
Patrick von Platen committed
51
52
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
53

54
55
56
57
58
59
60
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
61
                     prevent singularities.
62
63
64

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
65
    """
66

67
    def alpha_bar(time_step):
68
69
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

70
71
72
73
74
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
75
    return torch.tensor(betas)
Patrick von Platen's avatar
Patrick von Platen committed
76
77


Patrick von Platen's avatar
Patrick von Platen committed
78
class DDIMScheduler(SchedulerMixin, ConfigMixin):
79
80
81
82
    """
    Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising
    diffusion probabilistic models (DDPMs) with non-Markovian guidance.

83
84
85
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
86
    [`~ConfigMixin.from_config`] functions.
87

88
89
90
91
92
93
94
95
96
    For more details, see the original paper: https://arxiv.org/abs/2010.02502

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
Nathan Lambert's avatar
Nathan Lambert committed
97
98
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
99
100
101
        clip_sample (`bool`, default `True`):
            option to clip predicted sample between -1 and 1 for numerical stability.
        set_alpha_to_one (`bool`, default `True`):
102
103
104
105
106
107
108
            each diffusion step uses the value of alphas product at that step and at the previous one. For the final
            step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
            otherwise it uses the value of alpha at step 0.
        steps_offset (`int`, default `0`):
            an offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
            stable diffusion.
109
110
111

    """

112
    @register_to_config
Patrick von Platen's avatar
Patrick von Platen committed
113
114
    def __init__(
        self,
115
116
117
118
119
120
121
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
        clip_sample: bool = True,
        set_alpha_to_one: bool = True,
122
        steps_offset: int = 0,
123
        **kwargs,
Patrick von Platen's avatar
Patrick von Platen committed
124
    ):
125
126
127
128
129
130
131
        if "tensor_format" in kwargs:
            warnings.warn(
                "`tensor_format` is deprecated as an argument and will be removed in version `0.5.0`."
                "If you're running your code in PyTorch, you can safely remove this argument.",
                DeprecationWarning,
            )

132
        if trained_betas is not None:
133
            self.betas = torch.from_numpy(trained_betas)
134
        if beta_schedule == "linear":
135
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
136
137
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
138
139
140
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
Patrick von Platen's avatar
Patrick von Platen committed
141
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
142
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
143
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Patrick von Platen's avatar
Patrick von Platen committed
144
145
146
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

147
        self.alphas = 1.0 - self.betas
148
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
149
150
151

        # At every step in ddim, we are looking into the previous alphas_cumprod
        # For the final step, there is no previous alphas_cumprod because we are already at 0
152
        # `set_alpha_to_one` decides whether we set this parameter simply to one or
153
        # whether we use the final alpha of the "non-previous" one.
154
        self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
Patrick von Platen's avatar
Patrick von Platen committed
155

156
        # setable values
157
        self.num_inference_steps = None
158
        self.timesteps = np.arange(0, num_train_timesteps)[::-1]
Patrick von Platen's avatar
Patrick von Platen committed
159

160
161
    def _get_variance(self, timestep, prev_timestep):
        alpha_prod_t = self.alphas_cumprod[timestep]
162
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
Patrick von Platen's avatar
Patrick von Platen committed
163
164
165
166
167
168
169
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

170
    def set_timesteps(self, num_inference_steps: int, **kwargs):
171
172
173
174
175
176
177
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
178
179
180
181
182
183
184
185
186
187
188
189

        offset = self.config.steps_offset

        if "offset" in kwargs:
            warnings.warn(
                "`offset` is deprecated as an input argument to `set_timesteps` and will be removed in v0.4.0."
                " Please pass `steps_offset` to `__init__` instead.",
                DeprecationWarning,
            )

            offset = kwargs["offset"]

190
        self.num_inference_steps = num_inference_steps
191
192
193
        step_ratio = self.config.num_train_timesteps // self.num_inference_steps
        # creates integer timesteps by multiplying by ratio
        # casting to int to avoid issues when num_inference_step is power of 3
194
        self.timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1]
195
        self.timesteps += offset
196
197
198

    def step(
        self,
199
        model_output: torch.FloatTensor,
200
        timestep: int,
201
        sample: torch.FloatTensor,
Patrick von Platen's avatar
Patrick von Platen committed
202
203
        eta: float = 0.0,
        use_clipped_model_output: bool = False,
204
        generator=None,
205
        return_dict: bool = True,
206
    ) -> Union[DDIMSchedulerOutput, Tuple]:
207
208
209
210
211
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
212
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
213
            timestep (`int`): current discrete timestep in the diffusion chain.
214
            sample (`torch.FloatTensor`):
215
216
217
218
                current instance of sample being created by diffusion process.
            eta (`float`): weight of noise for added noise in diffusion step.
            use_clipped_model_output (`bool`): TODO
            generator: random number generator.
219
            return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class
220
221

        Returns:
222
223
            [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
224
            returning a tuple, the first element is the sample tensor.
225
226

        """
227
228
229
230
231
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

Patrick von Platen's avatar
Patrick von Platen committed
232
233
234
235
236
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
237
        # - pred_original_sample -> f_theta(x_t, t) or x_0
Patrick von Platen's avatar
Patrick von Platen committed
238
239
        # - std_dev_t -> sigma_t
        # - eta -> η
240
        # - pred_sample_direction -> "direction pointing to x_t"
241
        # - pred_prev_sample -> "x_t-1"
Patrick von Platen's avatar
Patrick von Platen committed
242

243
        # 1. get previous step value (=t-1)
Nathan Lambert's avatar
Nathan Lambert committed
244
        prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
Patrick von Platen's avatar
Patrick von Platen committed
245
246

        # 2. compute alphas, betas
247
        alpha_prod_t = self.alphas_cumprod[timestep]
248
        alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
249

Patrick von Platen's avatar
Patrick von Platen committed
250
251
        beta_prod_t = 1 - alpha_prod_t

252
        # 3. compute predicted original sample from predicted noise also called
Patrick von Platen's avatar
Patrick von Platen committed
253
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
254
        pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
255
256

        # 4. Clip "predicted x_0"
257
        if self.config.clip_sample:
258
            pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
259
260
261

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
262
        variance = self._get_variance(timestep, prev_timestep)
Patrick von Platen's avatar
Patrick von Platen committed
263
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
264

Patrick von Platen's avatar
Patrick von Platen committed
265
266
267
        if use_clipped_model_output:
            # the model_output is always re-derived from the clipped x_0 in Glide
            model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
anton-l's avatar
anton-l committed
268

Patrick von Platen's avatar
Patrick von Platen committed
269
        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
270
        pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
Patrick von Platen's avatar
Patrick von Platen committed
271
272

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
273
274
275
        prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

        if eta > 0:
Patrick von Platen's avatar
Patrick von Platen committed
276
277
            device = model_output.device if torch.is_tensor(model_output) else "cpu"
            noise = torch.randn(model_output.shape, generator=generator).to(device)
278
279
280
            variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * noise

            prev_sample = prev_sample + variance
Patrick von Platen's avatar
Patrick von Platen committed
281

282
283
284
        if not return_dict:
            return (prev_sample,)

285
        return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
286

287
288
    def add_noise(
        self,
289
290
291
292
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
293
294
295
296
297
298
        if self.alphas_cumprod.device != original_samples.device:
            self.alphas_cumprod = self.alphas_cumprod.to(original_samples.device)

        if timesteps.device != original_samples.device:
            timesteps = timesteps.to(original_samples.device)

299
        sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
300
301
302
303
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

304
        sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
305
306
307
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
308
309
310
311

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
        return noisy_samples

Patrick von Platen's avatar
Patrick von Platen committed
312
    def __len__(self):
Nathan Lambert's avatar
Nathan Lambert committed
313
        return self.config.num_train_timesteps