test_modeling_utils.py 11.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
16

17
18
19
import random
import tempfile
import unittest
Patrick von Platen's avatar
improve  
Patrick von Platen committed
20
21
import os
from distutils.util import strtobool
22
23
24

import torch

Patrick von Platen's avatar
improve  
Patrick von Platen committed
25
from diffusers import GaussianDDPMScheduler, UNetModel
26
from diffusers.pipeline_utils import DiffusionPipeline
27
from diffusers.configuration_utils import ConfigMixin
28
from models.vision.ddpm.modeling_ddpm import DDPM
Patrick von Platen's avatar
Patrick von Platen committed
29
from models.vision.ddim.modeling_ddim import DDIM
30
31
32


global_rng = random.Random()
Patrick von Platen's avatar
improve  
Patrick von Platen committed
33
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
Patrick von Platen's avatar
Patrick von Platen committed
34
torch.backends.cuda.matmul.allow_tf32 = False
Patrick von Platen's avatar
Patrick von Platen committed
35
36


Patrick von Platen's avatar
improve  
Patrick von Platen committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def parse_flag_from_env(key, default=False):
    try:
        value = os.environ[key]
    except KeyError:
        # KEY isn't set, default to `default`.
        _value = default
    else:
        # KEY is set, convert it to True or False.
        try:
            _value = strtobool(value)
        except ValueError:
            # More values are supported, but let's keep the message simple.
            raise ValueError(f"If set, {key} must be yes or no.")
    return _value


_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)


def slow(test_case):
    """
    Decorator marking a test as slow.

    Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them.

    """
    return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81


def floats_tensor(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return torch.tensor(data=values, dtype=torch.float).view(shape).contiguous()


82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
            ConfigMixin.from_config("dummy_path")

    def test_save_load(self):

        class SampleObject(ConfigMixin):
            config_name = "config.json"

            def __init__(
                self,
                a=2,
                b=5,
                c=(2, 5),
                d="for diffusion",
                e=[1, 3],
            ):
                self.register(a=a, b=b, c=c, d=d, e=e)

        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            new_obj = SampleObject.from_config(tmpdirname)
            new_config = new_obj.config

        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
        assert config == new_config


121
class ModelTesterMixin(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
122
123
    @property
    def dummy_input(self):
Patrick von Platen's avatar
up  
Patrick von Platen committed
124
        batch_size = 4
Patrick von Platen's avatar
Patrick von Platen committed
125
126
127
128
129
130
131
132
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes)
        time_step = torch.tensor([10])

        return (noise, time_step)

133
    def test_from_pretrained_save_pretrained(self):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
134
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
135
136
137
138
139

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            new_model = UNetModel.from_pretrained(tmpdirname)

Patrick von Platen's avatar
Patrick von Platen committed
140
        dummy_input = self.dummy_input
141

Patrick von Platen's avatar
Patrick von Platen committed
142
143
        image = model(*dummy_input)
        new_image = new_model(*dummy_input)
144
145

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
146
147
148
149
150
151
152

    def test_from_pretrained_hub(self):
        model = UNetModel.from_pretrained("fusing/ddpm_dummy")

        image = model(*self.dummy_input)

        assert image is not None, "Make sure output is not None"
153
154
155
156


class SamplerTesterMixin(unittest.TestCase):

Patrick von Platen's avatar
improve  
Patrick von Platen committed
157
158
    @slow
    def test_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
159
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
160
161
162
163
164
165
166
167
168
169
170

        # 1. Load models
        scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church")
        model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)

        # 2. Sample gaussian noise
        image = scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)

        # 3. Denoise
        for t in reversed(range(len(scheduler))):
            # i) define coefficients for time step t
patil-suraj's avatar
patil-suraj committed
171
172
            clipped_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
            clipped_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
173
            image_coeff = (1 - scheduler.get_alpha_prod(t - 1)) * torch.sqrt(scheduler.get_alpha(t)) / (1 - scheduler.get_alpha_prod(t))
patil-suraj's avatar
patil-suraj committed
174
            clipped_coeff = torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))
Patrick von Platen's avatar
improve  
Patrick von Platen committed
175
176
177
178
179
180
181

            # ii) predict noise residual
            with torch.no_grad():
                noise_residual = model(image, t)

            # iii) compute predicted image from residual
            # See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
patil-suraj's avatar
patil-suraj committed
182
            pred_mean = clipped_image_coeff * image - clipped_noise_coeff * noise_residual
Patrick von Platen's avatar
improve  
Patrick von Platen committed
183
            pred_mean = torch.clamp(pred_mean, -1, 1)
patil-suraj's avatar
patil-suraj committed
184
            prev_image = clipped_coeff * pred_mean + image_coeff * image
Patrick von Platen's avatar
improve  
Patrick von Platen committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

            # iv) sample variance
            prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)

            # v) sample  x_{t-1} ~ N(prev_image, prev_variance)
            sampled_prev_image = prev_image + prev_variance
            image = sampled_prev_image

        # Note: The better test is to simply check with the following lines of code that the image is sensible
        # import PIL
        # import numpy as np
        # image_processed = image.cpu().permute(0, 2, 3, 1)
        # image_processed = (image_processed + 1.0) * 127.5
        # image_processed = image_processed.numpy().astype(np.uint8)
        # image_pil = PIL.Image.fromarray(image_processed[0])
        # image_pil.save("test.png")

        assert image.shape == (1, 3, 256, 256)
        image_slice = image[0, -1, -3:, -3:].cpu()
Patrick von Platen's avatar
Patrick von Platen committed
204
205
        expected_slice = torch.tensor([-0.1636, -0.1765, -0.1968, -0.1338, -0.1432, -0.1622, -0.1793, -0.2001, -0.2280])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
Patrick von Platen's avatar
improve  
Patrick von Platen committed
206
207
208

    def test_sample_fast(self):
        # 1. Load models
Patrick von Platen's avatar
Patrick von Platen committed
209
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
210
211
212
213
214
215
216
217
218
219

        scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church", timesteps=10)
        model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)

        # 2. Sample gaussian noise
        image = scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)

        # 3. Denoise
        for t in reversed(range(len(scheduler))):
            # i) define coefficients for time step t
patil-suraj's avatar
patil-suraj committed
220
221
            clipped_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
            clipped_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
222
            image_coeff = (1 - scheduler.get_alpha_prod(t - 1)) * torch.sqrt(scheduler.get_alpha(t)) / (1 - scheduler.get_alpha_prod(t))
patil-suraj's avatar
patil-suraj committed
223
            clipped_coeff = torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))
Patrick von Platen's avatar
improve  
Patrick von Platen committed
224
225
226
227
228
229
230

            # ii) predict noise residual
            with torch.no_grad():
                noise_residual = model(image, t)

            # iii) compute predicted image from residual
            # See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
patil-suraj's avatar
patil-suraj committed
231
            pred_mean = clipped_image_coeff * image - clipped_noise_coeff * noise_residual
Patrick von Platen's avatar
improve  
Patrick von Platen committed
232
            pred_mean = torch.clamp(pred_mean, -1, 1)
patil-suraj's avatar
patil-suraj committed
233
            prev_image = clipped_coeff * pred_mean + image_coeff * image
Patrick von Platen's avatar
improve  
Patrick von Platen committed
234
235
236
237
238
239
240
241
242
243

            # iv) sample variance
            prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)

            # v) sample  x_{t-1} ~ N(prev_image, prev_variance)
            sampled_prev_image = prev_image + prev_variance
            image = sampled_prev_image

        assert image.shape == (1, 3, 256, 256)
        image_slice = image[0, -1, -3:, -3:].cpu()
Patrick von Platen's avatar
Patrick von Platen committed
244
        expected_slice = torch.tensor([-0.0304, -0.1895, -0.2436, -0.9837, -0.5422, 0.1931, -0.8175, 0.0862, -0.7783])
Patrick von Platen's avatar
Patrick von Platen committed
245
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
246
247
248


class PipelineTesterMixin(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
249

250
251
252
253
254
255
256
257
258
259
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
        schedular = GaussianDDPMScheduler(timesteps=10)

        ddpm = DDPM(model, schedular)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPM.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
260
261

        generator = torch.manual_seed(0)
262

patil-suraj's avatar
patil-suraj committed
263
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
264
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
265
        new_image = new_ddpm(generator=generator)
266
267
268
269
270
271
272
273
274
275
276
277
278

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "fusing/ddpm-cifar10"

        ddpm = DDPM.from_pretrained(model_path)
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)

        ddpm.noise_scheduler.num_timesteps = 10
        ddpm_from_hub.noise_scheduler.num_timesteps = 10

Patrick von Platen's avatar
Patrick von Platen committed
279
        generator = torch.manual_seed(0)
280

patil-suraj's avatar
patil-suraj committed
281
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
282
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
283
        new_image = ddpm_from_hub(generator=generator)
284
285

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

    @slow
    def test_ddpm_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

        ddpm = DDPM.from_pretrained(model_id)
        image = ddpm(generator=generator)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor([0.2250, 0.3375, 0.2360, 0.0930, 0.3440, 0.3156, 0.1937, 0.3585, 0.1761])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2

    @slow
    def test_ddim_cifar10(self):
        generator = torch.manual_seed(0)
        model_id = "fusing/ddpm-cifar10"

        ddim = DDIM.from_pretrained(model_id)
        image = ddim(generator=generator, eta=0.0)

        image_slice = image[0, -1, -3:, -3:].cpu()

        assert image.shape == (1, 3, 32, 32)
        expected_slice = torch.tensor([-0.7688, -0.7690, -0.7597, -0.7660, -0.7713, -0.7531, -0.7009, -0.7098, -0.7350])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2