test_config.py 9.4 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

vincedovy's avatar
vincedovy committed
16
import json
17
18
import tempfile
import unittest
vincedovy's avatar
vincedovy committed
19
from pathlib import Path
20

21
22
from diffusers import (
    DDIMScheduler,
23
    DDPMScheduler,
24
25
26
27
28
29
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    PNDMScheduler,
    logging,
)
30
from diffusers.configuration_utils import ConfigMixin, register_to_config
31
32

from ..testing_utils import CaptureLogger
33
34


35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
class SampleObject(ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 3],
    ):
        pass


50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
class SampleObject2(ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        f=[1, 3],
    ):
        pass


class SampleObject3(ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 3],
        f=[1, 3],
    ):
        pass


81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
class SampleObject4(ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 5],
        f=[5, 4],
    ):
        pass


vincedovy's avatar
vincedovy committed
97
98
99
100
101
102
103
104
class SampleObjectPaths(ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(self, test_file_1=Path("foo/bar"), test_file_2=Path("foo bar\\bar")):
        pass


105
106
107
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
108
            ConfigMixin.load_config("dummy_path")
109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    def test_register_to_config(self):
        obj = SampleObject()
        config = obj.config
        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        # init ignore private arguments
        obj = SampleObject(_name_or_path="lalala")
        config = obj.config
        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        # can override default
        obj = SampleObject(c=6)
        config = obj.config
        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == 6
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        # can use positional arguments.
        obj = SampleObject(1, c=6)
        config = obj.config
        assert config["a"] == 1
        assert config["b"] == 5
        assert config["c"] == 6
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

    def test_save_load(self):
147
148
149
150
151
152
153
154
155
156
157
        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
158
            new_obj = SampleObject.from_config(SampleObject.load_config(tmpdirname))
159
160
            new_config = new_obj.config

Patrick von Platen's avatar
Patrick von Platen committed
161
162
163
164
        # unfreeze configs
        config = dict(config)
        new_config = dict(new_config)

165
166
        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
167
        config.pop("_use_default_values")
168
        assert config == new_config
169
170
171

    def test_load_ddim_from_pndm(self):
        logger = logging.get_logger("diffusers.configuration_utils")
172
173
        # 30 for warning
        logger.setLevel(30)
174
175

        with CaptureLogger(logger) as cap_logger:
176
177
178
            ddim = DDIMScheduler.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
            )
179
180
181
182
183

        assert ddim.__class__ == DDIMScheduler
        # no warning should be thrown
        assert cap_logger.out == ""

184
    def test_load_euler_from_pndm(self):
185
        logger = logging.get_logger("diffusers.configuration_utils")
186
187
        # 30 for warning
        logger.setLevel(30)
188
189

        with CaptureLogger(logger) as cap_logger:
190
            euler = EulerDiscreteScheduler.from_pretrained(
191
192
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
            )
193
194
195
196
197

        assert euler.__class__ == EulerDiscreteScheduler
        # no warning should be thrown
        assert cap_logger.out == ""

198
    def test_load_euler_ancestral_from_pndm(self):
199
        logger = logging.get_logger("diffusers.configuration_utils")
200
201
        # 30 for warning
        logger.setLevel(30)
202
203

        with CaptureLogger(logger) as cap_logger:
204
            euler = EulerAncestralDiscreteScheduler.from_pretrained(
205
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
206
207
208
209
210
211
212
213
            )

        assert euler.__class__ == EulerAncestralDiscreteScheduler
        # no warning should be thrown
        assert cap_logger.out == ""

    def test_load_pndm(self):
        logger = logging.get_logger("diffusers.configuration_utils")
214
215
        # 30 for warning
        logger.setLevel(30)
216
217

        with CaptureLogger(logger) as cap_logger:
218
219
220
            pndm = PNDMScheduler.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
            )
221
222
223
224

        assert pndm.__class__ == PNDMScheduler
        # no warning should be thrown
        assert cap_logger.out == ""
225

226
227
    def test_overwrite_config_on_load(self):
        logger = logging.get_logger("diffusers.configuration_utils")
228
229
        # 30 for warning
        logger.setLevel(30)
230
231

        with CaptureLogger(logger) as cap_logger:
232
            ddpm = DDPMScheduler.from_pretrained(
233
234
                "hf-internal-testing/tiny-stable-diffusion-torch",
                subfolder="scheduler",
235
                prediction_type="sample",
236
237
238
239
                beta_end=8,
            )

        with CaptureLogger(logger) as cap_logger_2:
240
            ddpm_2 = DDPMScheduler.from_pretrained("google/ddpm-celebahq-256", beta_start=88)
241
242

        assert ddpm.__class__ == DDPMScheduler
243
        assert ddpm.config.prediction_type == "sample"
244
245
246
247
248
249
250
        assert ddpm.config.beta_end == 8
        assert ddpm_2.config.beta_start == 88

        # no warning should be thrown
        assert cap_logger.out == ""
        assert cap_logger_2.out == ""

251
252
    def test_load_dpmsolver(self):
        logger = logging.get_logger("diffusers.configuration_utils")
253
254
        # 30 for warning
        logger.setLevel(30)
255
256

        with CaptureLogger(logger) as cap_logger:
257
            dpm = DPMSolverMultistepScheduler.from_pretrained(
258
259
260
261
262
263
                "hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
            )

        assert dpm.__class__ == DPMSolverMultistepScheduler
        # no warning should be thrown
        assert cap_logger.out == ""
264
265
266
267
268
269
270
271
272
273
274
275
276
277

    def test_use_default_values(self):
        # let's first save a config that should be in the form
        #    a=2,
        #    b=5,
        #    c=(2, 5),
        #    d="for diffusion",
        #    e=[1, 3],

        config = SampleObject()

        config_dict = {k: v for k, v in config.config.items() if not k.startswith("_")}

        # make sure that default config has all keys in `_use_default_values`
278
        assert set(config_dict.keys()) == set(config.config._use_default_values)
279
280
281
282
283

        with tempfile.TemporaryDirectory() as tmpdirname:
            config.save_config(tmpdirname)

            # now loading it with SampleObject2 should put f into `_use_default_values`
284
            config = SampleObject2.from_config(SampleObject2.load_config(tmpdirname))
285

286
287
            assert "f" in config.config._use_default_values
            assert config.config.f == [1, 3]
288
289

        # now loading the config, should **NOT** use [1, 3] for `f`, but the default [1, 4] value
290
        # **BECAUSE** it is part of `config.config._use_default_values`
291
        new_config = SampleObject4.from_config(config.config)
292
        assert new_config.config.f == [5, 4]
293
294
295

        config.config._use_default_values.pop()
        new_config_2 = SampleObject4.from_config(config.config)
296
        assert new_config_2.config.f == [1, 3]
297
298

        # Nevertheless "e" should still be correctly loaded to [1, 3] from SampleObject2 instead of defaulting to [1, 5]
299
        assert new_config_2.config.e == [1, 3]
vincedovy's avatar
vincedovy committed
300
301
302
303
304
305
306
307

    def test_check_path_types(self):
        # Verify that we get a string returned from a WindowsPath or PosixPath (depending on system)
        config = SampleObjectPaths()
        json_string = config.to_json_string()
        result = json.loads(json_string)
        assert result["test_file_1"] == config.config.test_file_1.as_posix()
        assert result["test_file_2"] == config.config.test_file_2.as_posix()