test_controlnet.py 41.4 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
17
import tempfile
18
import traceback
19
20
21
22
23
24
25
26
27
28
import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    ControlNetModel,
    DDIMScheduler,
29
    EulerDiscreteScheduler,
30
    LCMScheduler,
31
32
33
    StableDiffusionControlNetPipeline,
    UNet2DConditionModel,
)
34
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel
35
from diffusers.utils.import_utils import is_xformers_available
36
from diffusers.utils.testing_utils import (
37
38
39
40
    backend_empty_cache,
    backend_max_memory_allocated,
    backend_reset_max_memory_allocated,
    backend_reset_peak_memory_stats,
41
    enable_full_determinism,
42
    get_python_version,
43
    is_torch_compile,
Dhruv Nair's avatar
Dhruv Nair committed
44
45
    load_image,
    load_numpy,
46
    require_torch_2,
47
    require_torch_accelerator,
48
    run_test_in_subprocess,
Dhruv Nair's avatar
Dhruv Nair committed
49
50
    slow,
    torch_device,
51
)
Dhruv Nair's avatar
Dhruv Nair committed
52
from diffusers.utils.torch_utils import randn_tensor
53

54
from ..pipeline_params import (
55
    IMAGE_TO_IMAGE_IMAGE_PARAMS,
56
    TEXT_TO_IMAGE_BATCH_PARAMS,
57
    TEXT_TO_IMAGE_IMAGE_PARAMS,
58
59
    TEXT_TO_IMAGE_PARAMS,
)
60
from ..test_pipelines_common import (
Aryan's avatar
Aryan committed
61
    IPAdapterTesterMixin,
62
63
64
65
    PipelineKarrasSchedulerTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
)
66
67


68
enable_full_determinism()
69
70


71
72
73
74
75
76
77
78
79
# Will be run via run_test_in_subprocess
def _test_stable_diffusion_compile(in_queue, out_queue, timeout):
    error = None
    try:
        _ = in_queue.get(timeout=timeout)

        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
80
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
81
        )
82
        pipe.to(torch_device)
83
84
85
86
87
88
89
90
91
92
93
94
        pipe.set_progress_bar_config(disable=None)

        pipe.unet.to(memory_format=torch.channels_last)
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

        pipe.controlnet.to(memory_format=torch.channels_last)
        pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "bird"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
Dhruv Nair's avatar
Dhruv Nair committed
95
        ).resize((512, 512))
96

Dhruv Nair's avatar
Dhruv Nair committed
97
        output = pipe(prompt, image, num_inference_steps=10, generator=generator, output_type="np")
98
99
        image = output.images[0]

Dhruv Nair's avatar
Dhruv Nair committed
100
        assert image.shape == (512, 512, 3)
101
102
103
104

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out_full.npy"
        )
Dhruv Nair's avatar
Dhruv Nair committed
105
        expected_image = np.resize(expected_image, (512, 512, 3))
106
107
108
109
110
111
112
113
114
115
116

        assert np.abs(expected_image - image).max() < 1.0

    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


117
class ControlNetPipelineFastTests(
Aryan's avatar
Aryan committed
118
119
120
121
122
    IPAdapterTesterMixin,
    PipelineLatentTesterMixin,
    PipelineKarrasSchedulerTesterMixin,
    PipelineTesterMixin,
    unittest.TestCase,
123
):
124
125
126
    pipeline_class = StableDiffusionControlNetPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
127
128
    image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
Aryan's avatar
Aryan committed
129
    test_layerwise_casting = True
Aryan's avatar
Aryan committed
130
    test_group_offloading = True
131

132
    def get_dummy_components(self, time_cond_proj_dim=None):
133
134
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
135
            block_out_channels=(4, 8),
136
137
138
139
140
141
142
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
143
            norm_num_groups=1,
144
            time_cond_proj_dim=time_cond_proj_dim,
145
146
147
        )
        torch.manual_seed(0)
        controlnet = ControlNetModel(
148
            block_out_channels=(4, 8),
149
150
151
152
153
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
154
            norm_num_groups=1,
155
156
157
158
159
160
161
162
163
164
165
        )
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
166
            block_out_channels=[4, 8],
167
168
169
170
171
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
172
            norm_num_groups=2,
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
198
            "image_encoder": None,
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2
        image = randn_tensor(
            (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
            generator=generator,
            device=torch.device(device),
        )

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
220
            "output_type": "np",
221
222
223
224
225
226
227
228
            "image": image,
        }

        return inputs

    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)

229
    def test_ip_adapter(self):
230
231
232
        expected_pipe_slice = None
        if torch_device == "cpu":
            expected_pipe_slice = np.array([0.5234, 0.3333, 0.1745, 0.7605, 0.6224, 0.4637, 0.6989, 0.7526, 0.4665])
233
        return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice)
234

235
236
237
238
239
240
241
242
243
244
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    def test_controlnet_lcm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionControlNetPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array(
            [0.52700454, 0.3930534, 0.25509018, 0.7132304, 0.53696585, 0.46568912, 0.7095368, 0.7059624, 0.4744786]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    def test_controlnet_lcm_custom_timesteps(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionControlNetPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        del inputs["num_inference_steps"]
        inputs["timesteps"] = [999, 499]
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array(
            [0.52700454, 0.3930534, 0.25509018, 0.7132304, 0.53696585, 0.46568912, 0.7095368, 0.7059624, 0.4744786]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

291
292
293
294
295
296
297
    def test_encode_prompt_works_in_isolation(self):
        extra_required_param_value_dict = {
            "device": torch.device(torch_device).type,
            "do_classifier_free_guidance": self.get_dummy_inputs(device=torch_device).get("guidance_scale", 1.0) > 1.0,
        }
        return super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict)

298

299
class StableDiffusionMultiControlNetPipelineFastTests(
Aryan's avatar
Aryan committed
300
    IPAdapterTesterMixin, PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
301
):
302
303
304
    pipeline_class = StableDiffusionControlNetPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
305
    image_params = frozenset([])  # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
306

Marc Sun's avatar
Marc Sun committed
307
308
    supports_dduf = False

309
310
311
    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
312
            block_out_channels=(4, 8),
313
314
315
316
317
318
319
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
320
            norm_num_groups=1,
321
322
        )
        torch.manual_seed(0)
323
324
325

        def init_weights(m):
            if isinstance(m, torch.nn.Conv2d):
326
                torch.nn.init.normal_(m.weight)
327
328
                m.bias.data.fill_(1.0)

329
        controlnet1 = ControlNetModel(
330
            block_out_channels=(4, 8),
331
332
333
334
335
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
336
            norm_num_groups=1,
337
        )
338
339
        controlnet1.controlnet_down_blocks.apply(init_weights)

340
341
        torch.manual_seed(0)
        controlnet2 = ControlNetModel(
342
            block_out_channels=(4, 8),
343
344
345
346
347
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
348
            norm_num_groups=1,
349
        )
350
351
        controlnet2.controlnet_down_blocks.apply(init_weights)

352
353
354
355
356
357
358
359
360
361
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
362
            block_out_channels=[4, 8],
363
364
365
366
367
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
368
            norm_num_groups=2,
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        controlnet = MultiControlNetModel([controlnet1, controlnet2])

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
396
            "image_encoder": None,
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2

        images = [
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
        ]

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
426
            "output_type": "np",
427
428
429
430
431
            "image": images,
        }

        return inputs

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
    def test_control_guidance_switch(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        scale = 10.0
        steps = 4

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_1 = pipe(**inputs)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0]

        # make sure that all outputs are different
        assert np.sum(np.abs(output_1 - output_2)) > 1e-3
        assert np.sum(np.abs(output_1 - output_3)) > 1e-3
        assert np.sum(np.abs(output_1 - output_4)) > 1e-3

465
466
    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
467
468
469
470
471
472
473
474
475
476
477

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

478
    def test_ip_adapter(self):
479
480
481
        expected_pipe_slice = None
        if torch_device == "cpu":
            expected_pipe_slice = np.array([0.2422, 0.3425, 0.4048, 0.5351, 0.3503, 0.2419, 0.4645, 0.4570, 0.3804])
482
        return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice)
483

484
485
486
487
488
489
490
491
492
493
494
495
    def test_save_pretrained_raise_not_implemented_exception(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        with tempfile.TemporaryDirectory() as tmpdir:
            try:
                # save_pretrained is not implemented for Multi-ControlNet
                pipe.save_pretrained(tmpdir)
            except NotImplementedError:
                pass

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
    def test_inference_multiple_prompt_input(self):
        device = "cpu"

        components = self.get_dummy_components()
        sd_pipe = StableDiffusionControlNetPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"], inputs["prompt"]]
        inputs["image"] = [inputs["image"], inputs["image"]]
        output = sd_pipe(**inputs)
        image = output.images

        assert image.shape == (2, 64, 64, 3)

        image_1, image_2 = image
        # make sure that the outputs are different
        assert np.sum(np.abs(image_1 - image_2)) > 1e-3

        # multiple prompts, single image conditioning
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"], inputs["prompt"]]
        output_1 = sd_pipe(**inputs)

        assert np.abs(image - output_1.images).max() < 1e-3

523
524
525
526
527
528
529
530
531
        # multiple prompts, multiple image conditioning
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"], inputs["prompt"], inputs["prompt"], inputs["prompt"]]
        inputs["image"] = [inputs["image"], inputs["image"], inputs["image"], inputs["image"]]
        output_2 = sd_pipe(**inputs)
        image = output_2.images

        assert image.shape == (4, 64, 64, 3)

532
533
534
535
536
537
538
    def test_encode_prompt_works_in_isolation(self):
        extra_required_param_value_dict = {
            "device": torch.device(torch_device).type,
            "do_classifier_free_guidance": self.get_dummy_inputs(device=torch_device).get("guidance_scale", 1.0) > 1.0,
        }
        return super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict)

539
540

class StableDiffusionMultiControlNetOneModelPipelineFastTests(
Aryan's avatar
Aryan committed
541
    IPAdapterTesterMixin, PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
542
543
544
545
546
547
):
    pipeline_class = StableDiffusionControlNetPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    image_params = frozenset([])  # TO_DO: add image_params once refactored VaeImageProcessor.preprocess

Marc Sun's avatar
Marc Sun committed
548
549
    supports_dduf = False

550
551
552
    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
553
            block_out_channels=(4, 8),
554
555
556
557
558
559
560
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
561
            norm_num_groups=1,
562
563
564
565
566
        )
        torch.manual_seed(0)

        def init_weights(m):
            if isinstance(m, torch.nn.Conv2d):
567
                torch.nn.init.normal_(m.weight)
568
569
570
                m.bias.data.fill_(1.0)

        controlnet = ControlNetModel(
571
            block_out_channels=(4, 8),
572
573
574
575
576
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
577
            norm_num_groups=1,
578
579
580
581
582
583
584
585
586
587
588
589
590
        )
        controlnet.controlnet_down_blocks.apply(init_weights)

        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
591
            block_out_channels=[4, 8],
592
593
594
595
596
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
597
            norm_num_groups=2,
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        controlnet = MultiControlNetModel([controlnet])

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
625
            "image_encoder": None,
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2

        images = [
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
        ]

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
650
            "output_type": "np",
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
            "image": images,
        }

        return inputs

    def test_control_guidance_switch(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        scale = 10.0
        steps = 4

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_1 = pipe(**inputs)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_3 = pipe(
            **inputs,
            control_guidance_start=[0.1],
            control_guidance_end=[0.2],
        )[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5])[0]

        # make sure that all outputs are different
        assert np.sum(np.abs(output_1 - output_2)) > 1e-3
        assert np.sum(np.abs(output_1 - output_3)) > 1e-3
        assert np.sum(np.abs(output_1 - output_4)) > 1e-3

    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
695
696
697
698
699
700
701
702
703
704
705

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

706
    def test_ip_adapter(self):
707
708
709
        expected_pipe_slice = None
        if torch_device == "cpu":
            expected_pipe_slice = np.array([0.5264, 0.3203, 0.1602, 0.8235, 0.6332, 0.4593, 0.7226, 0.7777, 0.4780])
710
        return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice)
711

712
713
714
715
716
717
718
719
720
721
722
723
    def test_save_pretrained_raise_not_implemented_exception(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        with tempfile.TemporaryDirectory() as tmpdir:
            try:
                # save_pretrained is not implemented for Multi-ControlNet
                pipe.save_pretrained(tmpdir)
            except NotImplementedError:
                pass

724
725
726
727
728
729
730
    def test_encode_prompt_works_in_isolation(self):
        extra_required_param_value_dict = {
            "device": torch.device(torch_device).type,
            "do_classifier_free_guidance": self.get_dummy_inputs(device=torch_device).get("guidance_scale", 1.0) > 1.0,
        }
        return super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict)

731

732
@slow
733
@require_torch_accelerator
734
class ControlNetPipelineSlowTests(unittest.TestCase):
735
736
737
    def setUp(self):
        super().setUp()
        gc.collect()
738
        backend_empty_cache(torch_device)
739

740
741
742
    def tearDown(self):
        super().tearDown()
        gc.collect()
743
        backend_empty_cache(torch_device)
744
745
746
747
748

    def test_canny(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
749
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
750
        )
751
        pipe.enable_model_cpu_offload(device=torch_device)
752
753
754
755
756
757
758
759
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "bird"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )

760
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
761
762
763
764
765
766
767
768
769

        image = output.images[0]

        assert image.shape == (768, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out.npy"
        )

770
        assert np.abs(expected_image - image).max() < 9e-2
771
772
773
774
775

    def test_depth(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-depth")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
776
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
777
        )
778
        pipe.enable_model_cpu_offload(device=torch_device)
779
780
781
782
783
784
785
786
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "Stormtrooper's lecture"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png"
        )

787
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
788
789
790
791
792
793
794
795
796

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth_out.npy"
        )

797
        assert np.abs(expected_image - image).max() < 8e-1
798
799
800
801
802

    def test_hed(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-hed")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
803
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
804
        )
805
        pipe.enable_model_cpu_offload(device=torch_device)
806
807
808
809
810
811
812
813
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "oil painting of handsome old man, masterpiece"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed.png"
        )

814
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
815
816
817
818
819
820
821
822
823

        image = output.images[0]

        assert image.shape == (704, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed_out.npy"
        )

824
        assert np.abs(expected_image - image).max() < 8e-2
825
826
827
828
829

    def test_mlsd(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-mlsd")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
830
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
831
        )
832
        pipe.enable_model_cpu_offload(device=torch_device)
833
834
835
836
837
838
839
840
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "room"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd.png"
        )

841
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
842
843
844
845
846
847
848
849
850

        image = output.images[0]

        assert image.shape == (704, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd_out.npy"
        )

851
        assert np.abs(expected_image - image).max() < 5e-2
852
853
854
855
856

    def test_normal(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-normal")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
857
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
858
        )
859
        pipe.enable_model_cpu_offload(device=torch_device)
860
861
862
863
864
865
866
867
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "cute toy"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal.png"
        )

868
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
869
870
871
872
873
874
875
876
877

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal_out.npy"
        )

878
        assert np.abs(expected_image - image).max() < 5e-2
879
880
881
882
883

    def test_openpose(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
884
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
885
        )
886
        pipe.enable_model_cpu_offload(device=torch_device)
887
888
889
890
891
892
893
894
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "Chef in the kitchen"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png"
        )

895
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
896
897
898
899
900
901
902
903
904

        image = output.images[0]

        assert image.shape == (768, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/chef_pose_out.npy"
        )

905
        assert np.abs(expected_image - image).max() < 8e-2
906
907
908
909
910

    def test_scribble(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
911
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
912
        )
913
        pipe.enable_model_cpu_offload(device=torch_device)
914
915
916
917
918
919
920
921
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(5)
        prompt = "bag"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble.png"
        )

922
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
923
924
925
926
927
928
929
930
931

        image = output.images[0]

        assert image.shape == (640, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble_out.npy"
        )

932
        assert np.abs(expected_image - image).max() < 8e-2
933
934
935
936
937

    def test_seg(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
938
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
939
        )
940
        pipe.enable_model_cpu_offload(device=torch_device)
941
942
943
944
945
946
947
948
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(5)
        prompt = "house"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png"
        )

949
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
950
951
952
953
954
955
956
957
958

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg_out.npy"
        )

959
        assert np.abs(expected_image - image).max() < 8e-2
960
961

    def test_sequential_cpu_offloading(self):
962
963
964
        backend_empty_cache(torch_device)
        backend_reset_max_memory_allocated(torch_device)
        backend_reset_peak_memory_stats(torch_device)
965
966
967
968

        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
969
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
970
971
972
        )
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
973
        pipe.enable_sequential_cpu_offload(device=torch_device)
974
975
976
977
978
979
980
981
982
983
984
985
986

        prompt = "house"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png"
        )

        _ = pipe(
            prompt,
            image,
            num_inference_steps=2,
            output_type="np",
        )

987
        mem_bytes = backend_max_memory_allocated(torch_device)
988
989
        # make sure that less than 7 GB is allocated
        assert mem_bytes < 4 * 10**9
990

991
992
993
994
    def test_canny_guess_mode(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
995
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
996
        )
997
        pipe.enable_model_cpu_offload(device=torch_device)
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = ""
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )

        output = pipe(
            prompt,
            image,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
            guidance_scale=3.0,
            guess_mode=True,
        )

        image = output.images[0]
        assert image.shape == (768, 512, 3)

        image_slice = image[-3:, -3:, -1]
        expected_slice = np.array([0.2724, 0.2846, 0.2724, 0.3843, 0.3682, 0.2736, 0.4675, 0.3862, 0.2887])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

1023
1024
1025
1026
    def test_canny_guess_mode_euler(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
1027
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
1028
1029
        )
        pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
1030
        pipe.enable_model_cpu_offload(device=torch_device)
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = ""
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )

        output = pipe(
            prompt,
            image,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
            guidance_scale=3.0,
            guess_mode=True,
        )

        image = output.images[0]
        assert image.shape == (768, 512, 3)

        image_slice = image[-3:, -3:, -1]
        expected_slice = np.array([0.1655, 0.1721, 0.1623, 0.1685, 0.1711, 0.1646, 0.1651, 0.1631, 0.1494])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

1056
    @is_torch_compile
1057
    @require_torch_2
1058
1059
1060
1061
    @unittest.skipIf(
        get_python_version == (3, 12),
        reason="Torch Dynamo isn't yet supported for Python 3.12.",
    )
1062
    def test_stable_diffusion_compile(self):
1063
        run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=None)
1064

1065
1066
1067
1068
    def test_v11_shuffle_global_pool_conditions(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11e_sd15_shuffle")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
1069
            "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
1070
        )
1071
        pipe.enable_model_cpu_offload(device=torch_device)
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "New York"
        image = load_image(
            "https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"
        )

        output = pipe(
            prompt,
            image,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
            guidance_scale=7.0,
        )

        image = output.images[0]
        assert image.shape == (512, 640, 3)

        image_slice = image[-3:, -3:, -1]
        expected_slice = np.array([0.1338, 0.1597, 0.1202, 0.1687, 0.1377, 0.1017, 0.2070, 0.1574, 0.1348])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

1096
1097

@slow
1098
@require_torch_accelerator
1099
class StableDiffusionMultiControlNetPipelineSlowTests(unittest.TestCase):
1100
1101
1102
    def setUp(self):
        super().setUp()
        gc.collect()
1103
        backend_empty_cache(torch_device)
1104

1105
1106
1107
    def tearDown(self):
        super().tearDown()
        gc.collect()
1108
        backend_empty_cache(torch_device)
1109
1110
1111
1112
1113
1114

    def test_pose_and_canny(self):
        controlnet_canny = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
        controlnet_pose = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
1115
1116
1117
            "stable-diffusion-v1-5/stable-diffusion-v1-5",
            safety_checker=None,
            controlnet=[controlnet_pose, controlnet_canny],
1118
        )
1119
        pipe.enable_model_cpu_offload(device=torch_device)
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "bird and Chef"
        image_canny = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )
        image_pose = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png"
        )

1131
        output = pipe(prompt, [image_pose, image_canny], generator=generator, output_type="np", num_inference_steps=3)
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141

        image = output.images[0]

        assert image.shape == (768, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose_canny_out.npy"
        )

        assert np.abs(expected_image - image).max() < 5e-2