scheduling_lms_discrete.py 12.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import warnings
15
from dataclasses import dataclass
16
from typing import List, Optional, Tuple, Union
17
18
19
20
21
22
23

import numpy as np
import torch

from scipy import integrate

from ..configuration_utils import ConfigMixin, register_to_config
24
from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, BaseOutput
25
26
27
28
from .scheduling_utils import SchedulerMixin


@dataclass
29
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->LMSDiscrete
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
class LMSDiscreteSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46
47


class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
48
49
50
51
52
    """
    Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by
    Katherine Crowson:
    https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181

53
54
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
55
56
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
57

58
59
60
61
62
63
64
    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear` or `scaled_linear`.
Nathan Lambert's avatar
Nathan Lambert committed
65
66
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
67
68
69
70
        prediction_type (`str`, default `epsilon`, optional):
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
            process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
            https://imagen.research.google/video/paper.pdf)
71
72
    """

73
    _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
74
    order = 1
75

76
77
78
    @register_to_config
    def __init__(
        self,
79
80
81
82
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
83
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
84
        prediction_type: str = "epsilon",
85
    ):
86
        if trained_betas is not None:
87
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
88
        elif beta_schedule == "linear":
89
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
90
91
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
92
93
94
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
95
96
97
98
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
99
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
100

101
102
103
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas)
104

105
106
107
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = self.sigmas.max()

108
109
        # setable values
        self.num_inference_steps = None
110
111
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
112
        self.derivatives = []
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        self.is_scale_input_called = False

    def scale_model_input(
        self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
    ) -> torch.FloatTensor:
        """
        Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
        step_index = (self.timesteps == timestep).nonzero().item()
        sigma = self.sigmas[step_index]
        sample = sample / ((sigma**2 + 1) ** 0.5)
        self.is_scale_input_called = True
        return sample
135
136
137

    def get_lms_coefficient(self, order, t, current_order):
        """
138
139
140
141
142
143
        Compute a linear multistep coefficient.

        Args:
            order (TODO):
            t (TODO):
            current_order (TODO):
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        """

        def lms_derivative(tau):
            prod = 1.0
            for k in range(order):
                if current_order == k:
                    continue
                prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k])
            return prod

        integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0]

        return integrated_coeff

158
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
159
160
161
162
163
164
        """
        Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
165
166
            device (`str` or `torch.device`, optional):
                the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
167
        """
168
169
        self.num_inference_steps = num_inference_steps

170
        timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
171
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
172
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
173
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
174

175
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
176
177
178
179
180
        if str(device).startswith("mps"):
            # mps does not support float64
            self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
        else:
            self.timesteps = torch.from_numpy(timesteps).to(device=device)
181
182
183
184
185

        self.derivatives = []

    def step(
        self,
186
        model_output: torch.FloatTensor,
187
        timestep: Union[float, torch.FloatTensor],
188
        sample: torch.FloatTensor,
189
        order: int = 4,
190
        return_dict: bool = True,
191
    ) -> Union[LMSDiscreteSchedulerOutput, Tuple]:
192
193
194
195
196
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
197
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
198
            timestep (`float`): current timestep in the diffusion chain.
199
            sample (`torch.FloatTensor`):
200
201
                current instance of sample being created by diffusion process.
            order: coefficient for multi-step inference.
202
            return_dict (`bool`): option for returning tuple rather than LMSDiscreteSchedulerOutput class
203
204

        Returns:
205
206
207
            [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.
208
209

        """
210
211
212
213
214
215
216
217
        if not self.is_scale_input_called:
            warnings.warn(
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
Anton Lozhkov's avatar
Anton Lozhkov committed
218
        step_index = (self.timesteps == timestep).nonzero().item()
219
        sigma = self.sigmas[step_index]
220
221

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
222
223
224
225
226
227
228
229
230
        if self.config.prediction_type == "epsilon":
            pred_original_sample = sample - sigma * model_output
        elif self.config.prediction_type == "v_prediction":
            # * c_out + input * c_skip
            pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )
231
232
233
234
235
236
237
238

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma
        self.derivatives.append(derivative)
        if len(self.derivatives) > order:
            self.derivatives.pop(0)

        # 3. Compute linear multistep coefficients
239
240
        order = min(step_index + 1, order)
        lms_coeffs = [self.get_lms_coefficient(order, step_index, curr_order) for curr_order in range(order)]
241
242
243
244
245
246

        # 4. Compute previous sample based on the derivatives path
        prev_sample = sample + sum(
            coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives))
        )

247
248
249
        if not return_dict:
            return (prev_sample,)

250
        return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
251

252
253
    def add_noise(
        self,
254
255
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
256
        timesteps: torch.FloatTensor,
257
    ) -> torch.FloatTensor:
258
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
259
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
260
261
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
262
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
263
264
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
265
            schedule_timesteps = self.timesteps.to(original_samples.device)
266
            timesteps = timesteps.to(original_samples.device)
267

Anton Lozhkov's avatar
Anton Lozhkov committed
268
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
269

270
        sigma = sigmas[step_indices].flatten()
271
272
273
274
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
275
276
277
278
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps