scheduling_sde_ve.py 7.63 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
15
16
17
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch

# TODO(Patrick, Anton, Suraj) - make scheduler framework indepedent and clean-up a bit
18
from typing import Union
19
20
21
22

import numpy as np
import torch

23
from ..configuration_utils import ConfigMixin, register_to_config
24
25
26
from .scheduling_utils import SchedulerMixin


Patrick von Platen's avatar
Patrick von Platen committed
27
class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
Nathan Lambert's avatar
Nathan Lambert committed
28
29
30
    """
    The variance exploding stochastic differential equation (SDE) scheduler.

31
32
    :param snr: coefficient weighting the step from the model_output sample (from the network) to the random noise.
    :param sigma_min: initial noise scale for sigma sequence in sampling procedure. The minimum sigma should mirror the
Nathan Lambert's avatar
Nathan Lambert committed
33
34
35
36
37
38
            distribution of the data.
    :param sigma_max: :param sampling_eps: the end value of sampling, where timesteps decrease progessively from 1 to
    epsilon. :param correct_steps: number of correction steps performed on a produced sample. :param tensor_format:
    "np" or "pt" for the expected format of samples passed to the Scheduler.
    """

39
    @register_to_config
Nathan Lambert's avatar
Nathan Lambert committed
40
41
42
43
44
45
46
47
48
49
    def __init__(
        self,
        num_train_timesteps=2000,
        snr=0.15,
        sigma_min=0.01,
        sigma_max=1348,
        sampling_eps=1e-5,
        correct_steps=1,
        tensor_format="pt",
    ):
50
51
52
53
54
        # self.sigmas = None
        # self.discrete_sigmas = None
        #
        # # setable values
        # self.num_inference_steps = None
Patrick von Platen's avatar
Patrick von Platen committed
55
56
        self.timesteps = None

57
        self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps)
58
59

        self.tensor_format = tensor_format
Nathan Lambert's avatar
Nathan Lambert committed
60
61
        self.set_format(tensor_format=tensor_format)

62
63
    def set_timesteps(self, num_inference_steps, sampling_eps=None):
        sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
Nathan Lambert's avatar
Nathan Lambert committed
64
65
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
66
            self.timesteps = np.linspace(1, sampling_eps, num_inference_steps)
Nathan Lambert's avatar
Nathan Lambert committed
67
        elif tensor_format == "pt":
68
            self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps)
Nathan Lambert's avatar
Nathan Lambert committed
69
70
        else:
            raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")
Patrick von Platen's avatar
Patrick von Platen committed
71

72
73
74
75
    def set_sigmas(self, num_inference_steps, sigma_min=None, sigma_max=None, sampling_eps=None):
        sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min
        sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max
        sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps
Patrick von Platen's avatar
Patrick von Platen committed
76
        if self.timesteps is None:
77
            self.set_timesteps(num_inference_steps, sampling_eps)
Patrick von Platen's avatar
Patrick von Platen committed
78

Nathan Lambert's avatar
Nathan Lambert committed
79
80
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
81
82
            self.discrete_sigmas = np.exp(np.linspace(np.log(sigma_min), np.log(sigma_max), num_inference_steps))
            self.sigmas = np.array([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
Nathan Lambert's avatar
Nathan Lambert committed
83
        elif tensor_format == "pt":
84
85
            self.discrete_sigmas = torch.exp(torch.linspace(np.log(sigma_min), np.log(sigma_max), num_inference_steps))
            self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps])
Nathan Lambert's avatar
Nathan Lambert committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
        else:
            raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

    def get_adjacent_sigma(self, timesteps, t):
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            return np.where(timesteps == 0, np.zeros_like(t), self.discrete_sigmas[timesteps - 1])
        elif tensor_format == "pt":
            return torch.where(
                timesteps == 0, torch.zeros_like(t), self.discrete_sigmas[timesteps - 1].to(timesteps.device)
            )

        raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    def set_seed(self, seed):
        tensor_format = getattr(self, "tensor_format", "pt")
        if tensor_format == "np":
            np.random.seed(seed)
        elif tensor_format == "pt":
            torch.manual_seed(seed)
        else:
            raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")

    def step_pred(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        timestep: int,
        sample: Union[torch.FloatTensor, np.ndarray],
        seed=None,
    ):
Nathan Lambert's avatar
Nathan Lambert committed
116
117
118
        """
        Predict the sample at the previous timestep by reversing the SDE.
        """
119
120
121
122
123
124
125
126
        if seed is not None:
            self.set_seed(seed)
        # TODO(Patrick) non-PyTorch

        timestep = timestep * torch.ones(
            sample.shape[0], device=sample.device
        )  # torch.repeat_interleave(timestep, sample.shape[0])
        timesteps = (timestep * (len(self.timesteps) - 1)).long()
Nathan Lambert's avatar
Nathan Lambert committed
127

128
129
130
        sigma = self.discrete_sigmas[timesteps].to(sample.device)
        adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep)
        drift = self.zeros_like(sample)
Nathan Lambert's avatar
Nathan Lambert committed
131
132
        diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5

133
        # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
Nathan Lambert's avatar
Nathan Lambert committed
134
        # also equation 47 shows the analog from SDE models to ancestral sampling methods
135
        drift = drift - diffusion[:, None, None, None] ** 2 * model_output
Nathan Lambert's avatar
Nathan Lambert committed
136
137

        #  equation 6: sample noise for the diffusion term of
138
139
        noise = self.randn_like(sample)
        prev_sample_mean = sample - drift  # subtract because `dt` is a small negative timestep
Nathan Lambert's avatar
Nathan Lambert committed
140
        # TODO is the variable diffusion the correct scaling term for the noise?
141
        prev_sample = prev_sample_mean + diffusion[:, None, None, None] * noise  # add impact of diffusion field g
142

143
144
145
146
147
148
149
150
        return {"prev_sample": prev_sample, "prev_sample_mean": prev_sample_mean}

    def step_correct(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        sample: Union[torch.FloatTensor, np.ndarray],
        seed=None,
    ):
Nathan Lambert's avatar
Nathan Lambert committed
151
        """
152
153
        Correct the predicted sample based on the output model_output of the network. This is often run repeatedly
        after making the prediction for the previous timestep.
Nathan Lambert's avatar
Nathan Lambert committed
154
        """
155
156
        if seed is not None:
            self.set_seed(seed)
157

Nathan Lambert's avatar
Nathan Lambert committed
158
159
        # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
        # sample noise for correction
160
        noise = self.randn_like(sample)
161

162
163
        # compute step size from the model_output, the noise, and the snr
        grad_norm = self.norm(model_output)
Nathan Lambert's avatar
Nathan Lambert committed
164
        noise_norm = self.norm(noise)
Patrick von Platen's avatar
Patrick von Platen committed
165
        step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
166
167
        step_size = step_size * torch.ones(sample.shape[0]).to(sample.device)
        # self.repeat_scalar(step_size, sample.shape[0])
168

169
170
171
        # compute corrected sample: model_output term and noise term
        prev_sample_mean = sample + step_size[:, None, None, None] * model_output
        prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5)[:, None, None, None] * noise
172

173
        return {"prev_sample": prev_sample}
Nathan Lambert's avatar
Nathan Lambert committed
174
175
176

    def __len__(self):
        return self.config.num_train_timesteps