"sgl-kernel/vscode:/vscode.git/clone" did not exist on "53dcc750b6d40635de35a589b7ca7297f0d5b988"
scheduling_unipc_multistep.py 46.1 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 TSAIL Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Quentin Gallouédec's avatar
Quentin Gallouédec committed
15
# DISCLAIMER: check https://huggingface.co/papers/2302.04867 and https://github.com/wl-zhao/UniPC for more info
Wenliang Zhao's avatar
Wenliang Zhao committed
16
# The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
17
18
19
20
21
22
23
24

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
25
from ..utils import deprecate, is_scipy_available
26
27
28
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput


29
30
31
32
if is_scipy_available():
    import scipy.stats


33
34
35
36
37
38
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
39
40
41
42
43
44
45
46
47
48
49
50
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
51
52
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
53
54
55
56

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
57
    if alpha_transform_type == "cosine":
58

59
60
61
62
63
64
65
66
67
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
68
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
69
70
71
72
73

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
74
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
75
76
77
    return torch.tensor(betas, dtype=torch.float32)


78
79
80
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
    """
Quentin Gallouédec's avatar
Quentin Gallouédec committed
81
    Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
82
83

    Args:
84
        betas (`torch.Tensor`):
85
86
87
            the betas that the scheduler is being initialized with.

    Returns:
88
        `torch.Tensor`: rescaled betas with zero terminal SNR
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


114
115
class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
    """
116
    `UniPCMultistepScheduler` is a training-free framework designed for the fast sampling of diffusion models.
117

118
119
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
120
121

    Args:
122
123
124
125
126
127
128
129
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
130
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
131
132
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
133
        solver_order (`int`, default `2`):
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
            The UniPC order which can be any positive integer. The effective order of accuracy is `solver_order + 1`
            due to the UniC. It is recommended to use `solver_order=2` for guided sampling, and `solver_order=3` for
            unconditional sampling.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and `predict_x0=True`.
        predict_x0 (`bool`, defaults to `True`):
            Whether to use the updating algorithm on the predicted x0.
150
        solver_type (`str`, default `bh2`):
151
            Solver type for UniPC. It is recommended to use `bh1` for unconditional sampling when steps < 10, and `bh2`
152
153
            otherwise.
        lower_order_final (`bool`, default `True`):
154
155
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
156
        disable_corrector (`list`, default `[]`):
157
158
159
            Decides which step to disable the corrector to mitigate the misalignment between `epsilon_theta(x_t, c)`
            and `epsilon_theta(x_t^c, c)` which can influence convergence for a large guidance scale. Corrector is
            usually disabled during the first few steps.
160
        solver_p (`SchedulerMixin`, default `None`):
161
            Any other scheduler that if specified, the algorithm becomes `solver_p + UniC`.
162
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
163
164
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
165
166
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
167
168
169
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
170
171
        use_flow_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use flow sigmas for step sizes in the noise schedule during the sampling process.
172
173
174
175
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
176
            An offset added to the inference steps, as required by some model families.
177
        final_sigmas_type (`str`, defaults to `"zero"`):
178
179
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
            sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
180
181
182
183
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        solver_order: int = 2,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        predict_x0: bool = True,
Wenliang Zhao's avatar
Wenliang Zhao committed
203
        solver_type: str = "bh2",
204
205
206
        lower_order_final: bool = True,
        disable_corrector: List[int] = [],
        solver_p: SchedulerMixin = None,
207
        use_karras_sigmas: Optional[bool] = False,
208
        use_exponential_sigmas: Optional[bool] = False,
209
        use_beta_sigmas: Optional[bool] = False,
210
211
        use_flow_sigmas: Optional[bool] = False,
        flow_shift: Optional[float] = 1.0,
212
213
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
214
        final_sigmas_type: Optional[str] = "zero",  # "zero", "sigma_min"
215
        rescale_betas_zero_snr: bool = False,
216
217
        use_dynamic_shifting: bool = False,
        time_shift_type: str = "exponential",
218
    ):
219
220
221
222
223
224
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
225
226
227
228
229
230
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
231
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
232
233
234
235
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
236
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
237

238
239
240
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

241
242
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
243
244
245
246
247
248

        if rescale_betas_zero_snr:
            # Close to 0 without being 0 so first sigma is not inf
            # FP16 smallest positive subnormal works well here
            self.alphas_cumprod[-1] = 2**-24

249
250
251
252
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
253
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
254
255
256
257
258
259

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        if solver_type not in ["bh1", "bh2"]:
            if solver_type in ["midpoint", "heun", "logrho"]:
260
                self.register_to_config(solver_type="bh2")
261
            else:
262
                raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
263
264
265
266
267
268
269
270
271
272
273
274

        self.predict_x0 = predict_x0
        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.timestep_list = [None] * solver_order
        self.lower_order_nums = 0
        self.disable_corrector = disable_corrector
        self.solver_p = solver_p
        self.last_sample = None
275
        self._step_index = None
276
        self._begin_index = None
277
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
278
279
280
281

    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
282
        The index counter for current timestep. It will increase 1 after each scheduler step.
283
284
        """
        return self._step_index
285

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

304
305
306
    def set_timesteps(
        self, num_inference_steps: int, device: Union[str, torch.device] = None, mu: Optional[float] = None
    ):
307
        """
308
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
309
310
311

        Args:
            num_inference_steps (`int`):
312
313
314
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
315
        """
Quentin Gallouédec's avatar
Quentin Gallouédec committed
316
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
317
318
319
        if mu is not None:
            assert self.config.use_dynamic_shifting and self.config.time_shift_type == "exponential"
            self.config.flow_shift = np.exp(mu)
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1)
                .round()[::-1][:-1]
                .copy()
                .astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // (num_inference_steps + 1)
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.arange(self.config.num_train_timesteps, 0, -step_ratio).round().copy().astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
343

344
345
346
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        if self.config.use_karras_sigmas:
            log_sigmas = np.log(sigmas)
347
            sigmas = np.flip(sigmas).copy()
348
349
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
350
351
352
353
354
355
356
357
358
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = sigmas[-1]
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
359
        elif self.config.use_exponential_sigmas:
360
361
362
            log_sigmas = np.log(sigmas)
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
363
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
364
365
366
367
368
369
370
371
372
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = sigmas[-1]
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
373
        elif self.config.use_beta_sigmas:
374
375
376
            log_sigmas = np.log(sigmas)
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
377
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
378
379
380
381
382
383
384
385
386
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = sigmas[-1]
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
387
388
389
        elif self.config.use_flow_sigmas:
            alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
            sigmas = 1.0 - alphas
hlky's avatar
hlky committed
390
            sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
391
            timesteps = (sigmas * self.config.num_train_timesteps).copy()
392
393
394
395
396
397
398
399
400
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = sigmas[-1]
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
401
402
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
403
404
405
406
407
408
409
410
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )
411
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
412

413
414
        self.sigmas = torch.from_numpy(sigmas)
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
415
416
417

        self.num_inference_steps = len(timesteps)

418
419
420
421
422
423
        self.model_outputs = [
            None,
        ] * self.config.solver_order
        self.lower_order_nums = 0
        self.last_sample = None
        if self.solver_p:
424
            self.solver_p.set_timesteps(self.num_inference_steps, device=device)
425

426
427
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
428
        self._begin_index = None
429
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
430

431
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
432
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
433
434
435
436
437
438
439
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

Quentin Gallouédec's avatar
Quentin Gallouédec committed
440
        https://huggingface.co/papers/2205.11487
441
442
        """
        dtype = sample.dtype
443
        batch_size, channels, *remaining_dims = sample.shape
444
445
446
447
448

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
449
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
450
451
452
453
454
455
456
457
458
459

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

460
        sample = sample.reshape(batch_size, channels, *remaining_dims)
461
462
463
        sample = sample.to(dtype)

        return sample
464

465
466
467
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
468
        log_sigma = np.log(np.maximum(sigma, 1e-10))
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

489
490
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
491
492
493
494
495
496
        if self.config.use_flow_sigmas:
            alpha_t = 1 - sigma
            sigma_t = sigma
        else:
            alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
            sigma_t = sigma * alpha_t
497
498
499

        return alpha_t, sigma_t

500
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
501
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
502
503
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
518
519
520
521
522
523
524
525

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
        """Constructs an exponential noise schedule."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

545
        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
546
547
        return sigmas

548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
        """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

569
        sigmas = np.array(
570
571
572
573
574
575
576
577
578
579
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

580
    def convert_model_output(
581
        self,
582
        model_output: torch.Tensor,
583
        *args,
584
        sample: torch.Tensor = None,
585
        **kwargs,
586
    ) -> torch.Tensor:
587
        r"""
588
        Convert the model output to the corresponding type the UniPC algorithm needs.
589
590

        Args:
591
            model_output (`torch.Tensor`):
592
593
594
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
595
            sample (`torch.Tensor`):
596
                A current instance of a sample created by the diffusion process.
597
598

        Returns:
599
            `torch.Tensor`:
600
                The converted model output.
601
        """
602
603
604
605
606
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
607
                raise ValueError("missing `sample` as a required keyword argument")
608
609
610
611
612
613
614
615
616
617
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma = self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)

618
619
620
621
622
623
624
        if self.predict_x0:
            if self.config.prediction_type == "epsilon":
                x0_pred = (sample - sigma_t * model_output) / alpha_t
            elif self.config.prediction_type == "sample":
                x0_pred = model_output
            elif self.config.prediction_type == "v_prediction":
                x0_pred = alpha_t * sample - sigma_t * model_output
625
626
627
            elif self.config.prediction_type == "flow_prediction":
                sigma_t = self.sigmas[self.step_index]
                x0_pred = sample - sigma_t * model_output
628
629
            else:
                raise ValueError(
630
631
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
                    "`v_prediction`, or `flow_prediction` for the UniPCMultistepScheduler."
632
633
634
                )

            if self.config.thresholding:
635
636
                x0_pred = self._threshold_sample(x0_pred)

637
638
639
640
641
642
643
644
645
646
647
648
649
            return x0_pred
        else:
            if self.config.prediction_type == "epsilon":
                return model_output
            elif self.config.prediction_type == "sample":
                epsilon = (sample - alpha_t * model_output) / sigma_t
                return epsilon
            elif self.config.prediction_type == "v_prediction":
                epsilon = alpha_t * model_output + sigma_t * sample
                return epsilon
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
Wenliang Zhao's avatar
Wenliang Zhao committed
650
                    " `v_prediction` for the UniPCMultistepScheduler."
651
652
653
654
                )

    def multistep_uni_p_bh_update(
        self,
655
        model_output: torch.Tensor,
656
        *args,
657
        sample: torch.Tensor = None,
658
659
        order: int = None,
        **kwargs,
660
    ) -> torch.Tensor:
661
662
663
664
        """
        One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified.

        Args:
665
            model_output (`torch.Tensor`):
666
667
668
                The direct output from the learned diffusion model at the current timestep.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
669
            sample (`torch.Tensor`):
670
671
672
                A current instance of a sample created by the diffusion process.
            order (`int`):
                The order of UniP at this timestep (corresponds to the *p* in UniPC-p).
673
674

        Returns:
675
            `torch.Tensor`:
676
                The sample tensor at the previous timestep.
677
        """
678
679
680
681
682
        prev_timestep = args[0] if len(args) > 0 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
683
                raise ValueError("missing `sample` as a required keyword argument")
684
685
686
687
        if order is None:
            if len(args) > 2:
                order = args[2]
            else:
688
                raise ValueError("missing `order` as a required keyword argument")
689
690
691
692
693
694
        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
695
696
        model_output_list = self.model_outputs

697
        s0 = self.timestep_list[-1]
698
699
700
701
702
703
704
        m0 = model_output_list[-1]
        x = sample

        if self.solver_p:
            x_t = self.solver_p.step(model_output, s0, x).prev_sample
            return x_t

705
706
707
708
709
710
        sigma_t, sigma_s0 = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
711
712
713
714
715
716
717

        h = lambda_t - lambda_s0
        device = sample.device

        rks = []
        D1s = []
        for i in range(1, order):
718
            si = self.step_index - i
719
            mi = model_output_list[-(i + 1)]
720
721
            alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
            lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
            rk = (lambda_si - lambda_s0) / h
            rks.append(rk)
            D1s.append((mi - m0) / rk)

        rks.append(1.0)
        rks = torch.tensor(rks, device=device)

        R = []
        b = []

        hh = -h if self.predict_x0 else h
        h_phi_1 = torch.expm1(hh)  # h\phi_1(h) = e^h - 1
        h_phi_k = h_phi_1 / hh - 1

        factorial_i = 1

        if self.config.solver_type == "bh1":
            B_h = hh
        elif self.config.solver_type == "bh2":
            B_h = torch.expm1(hh)
        else:
            raise NotImplementedError()

        for i in range(1, order + 1):
            R.append(torch.pow(rks, i - 1))
            b.append(h_phi_k * factorial_i / B_h)
            factorial_i *= i + 1
            h_phi_k = h_phi_k / hh - 1 / factorial_i

        R = torch.stack(R)
        b = torch.tensor(b, device=device)

        if len(D1s) > 0:
            D1s = torch.stack(D1s, dim=1)  # (B, K)
            # for order 2, we use a simplified version
            if order == 2:
                rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device)
            else:
760
                rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]).to(device).to(x.dtype)
761
762
763
764
765
766
        else:
            D1s = None

        if self.predict_x0:
            x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
            if D1s is not None:
767
                pred_res = torch.einsum("k,bkc...->bc...", rhos_p, D1s)
768
769
770
771
772
773
            else:
                pred_res = 0
            x_t = x_t_ - alpha_t * B_h * pred_res
        else:
            x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
            if D1s is not None:
774
                pred_res = torch.einsum("k,bkc...->bc...", rhos_p, D1s)
775
776
777
778
779
780
781
782
783
            else:
                pred_res = 0
            x_t = x_t_ - sigma_t * B_h * pred_res

        x_t = x_t.to(x.dtype)
        return x_t

    def multistep_uni_c_bh_update(
        self,
784
        this_model_output: torch.Tensor,
785
        *args,
786
787
        last_sample: torch.Tensor = None,
        this_sample: torch.Tensor = None,
788
789
        order: int = None,
        **kwargs,
790
    ) -> torch.Tensor:
791
792
793
794
        """
        One step for the UniC (B(h) version).

        Args:
795
            this_model_output (`torch.Tensor`):
796
797
798
                The model outputs at `x_t`.
            this_timestep (`int`):
                The current timestep `t`.
799
            last_sample (`torch.Tensor`):
800
                The generated sample before the last predictor `x_{t-1}`.
801
            this_sample (`torch.Tensor`):
802
803
804
                The generated sample after the last predictor `x_{t}`.
            order (`int`):
                The `p` of UniC-p at this step. The effective order of accuracy should be `order + 1`.
805
806

        Returns:
807
            `torch.Tensor`:
808
                The corrected sample tensor at the current timestep.
809
        """
810
811
812
813
814
        this_timestep = args[0] if len(args) > 0 else kwargs.pop("this_timestep", None)
        if last_sample is None:
            if len(args) > 1:
                last_sample = args[1]
            else:
815
                raise ValueError("missing `last_sample` as a required keyword argument")
816
817
818
819
        if this_sample is None:
            if len(args) > 2:
                this_sample = args[2]
            else:
820
                raise ValueError("missing `this_sample` as a required keyword argument")
821
822
823
824
        if order is None:
            if len(args) > 3:
                order = args[3]
            else:
825
                raise ValueError("missing `order` as a required keyword argument")
826
827
828
829
830
831
832
        if this_timestep is not None:
            deprecate(
                "this_timestep",
                "1.0.0",
                "Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

833
834
835
836
837
838
839
        model_output_list = self.model_outputs

        m0 = model_output_list[-1]
        x = last_sample
        x_t = this_sample
        model_t = this_model_output

840
841
842
843
844
845
        sigma_t, sigma_s0 = self.sigmas[self.step_index], self.sigmas[self.step_index - 1]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
846
847
848
849
850
851
852

        h = lambda_t - lambda_s0
        device = this_sample.device

        rks = []
        D1s = []
        for i in range(1, order):
853
            si = self.step_index - (i + 1)
854
            mi = model_output_list[-(i + 1)]
855
856
            alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
            lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
            rk = (lambda_si - lambda_s0) / h
            rks.append(rk)
            D1s.append((mi - m0) / rk)

        rks.append(1.0)
        rks = torch.tensor(rks, device=device)

        R = []
        b = []

        hh = -h if self.predict_x0 else h
        h_phi_1 = torch.expm1(hh)  # h\phi_1(h) = e^h - 1
        h_phi_k = h_phi_1 / hh - 1

        factorial_i = 1

        if self.config.solver_type == "bh1":
            B_h = hh
        elif self.config.solver_type == "bh2":
            B_h = torch.expm1(hh)
        else:
            raise NotImplementedError()

        for i in range(1, order + 1):
            R.append(torch.pow(rks, i - 1))
            b.append(h_phi_k * factorial_i / B_h)
            factorial_i *= i + 1
            h_phi_k = h_phi_k / hh - 1 / factorial_i

        R = torch.stack(R)
        b = torch.tensor(b, device=device)

        if len(D1s) > 0:
            D1s = torch.stack(D1s, dim=1)
        else:
            D1s = None

        # for order 1, we use a simplified version
        if order == 1:
            rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device)
        else:
898
            rhos_c = torch.linalg.solve(R, b).to(device).to(x.dtype)
899
900
901
902

        if self.predict_x0:
            x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
            if D1s is not None:
903
                corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s)
904
905
906
907
908
909
910
            else:
                corr_res = 0
            D1_t = model_t - m0
            x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t)
        else:
            x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
            if D1s is not None:
911
                corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s)
912
913
914
915
916
917
918
            else:
                corr_res = 0
            D1_t = model_t - m0
            x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t)
        x_t = x_t.to(x.dtype)
        return x_t

919
920
921
922
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
923

924
        index_candidates = (schedule_timesteps == timestep).nonzero()
925
926
927
928
929
930
931
932
933
934
935
936

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

937
938
939
940
941
942
943
944
945
946
947
948
949
950
        return step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
    def _init_step_index(self, timestep):
        """
        Initialize the step_index counter for the scheduler.
        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
951

952
953
    def step(
        self,
954
        model_output: torch.Tensor,
955
        timestep: Union[int, torch.Tensor],
956
        sample: torch.Tensor,
957
958
959
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
960
961
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the multistep UniPC.
962
963

        Args:
964
            model_output (`torch.Tensor`):
965
966
967
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
968
            sample (`torch.Tensor`):
969
970
971
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
972
973

        Returns:
974
975
976
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
977
978
979
980
981
982
983

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

984
985
        if self.step_index is None:
            self._init_step_index(timestep)
986
987

        use_corrector = (
988
            self.step_index > 0 and self.step_index - 1 not in self.disable_corrector and self.last_sample is not None
989
990
        )

991
        model_output_convert = self.convert_model_output(model_output, sample=sample)
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
        if use_corrector:
            sample = self.multistep_uni_c_bh_update(
                this_model_output=model_output_convert,
                last_sample=self.last_sample,
                this_sample=sample,
                order=self.this_order,
            )

        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
            self.timestep_list[i] = self.timestep_list[i + 1]

        self.model_outputs[-1] = model_output_convert
        self.timestep_list[-1] = timestep

        if self.config.lower_order_final:
1008
            this_order = min(self.config.solver_order, len(self.timesteps) - self.step_index)
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
        else:
            this_order = self.config.solver_order

        self.this_order = min(this_order, self.lower_order_nums + 1)  # warmup for multistep
        assert self.this_order > 0

        self.last_sample = sample
        prev_sample = self.multistep_uni_p_bh_update(
            model_output=model_output,  # pass the original non-converted model output, in case solver-p is used
            sample=sample,
            order=self.this_order,
        )

        if self.lower_order_nums < self.config.solver_order:
            self.lower_order_nums += 1

1025
1026
1027
        # upon completion increase step index by one
        self._step_index += 1

1028
1029
1030
1031
1032
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

1033
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
1034
1035
1036
1037
1038
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
1039
            sample (`torch.Tensor`):
1040
                The input sample.
1041
1042

        Returns:
1043
            `torch.Tensor`:
1044
                A scaled input sample.
1045
1046
1047
        """
        return sample

1048
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
1049
1050
    def add_noise(
        self,
1051
1052
        original_samples: torch.Tensor,
        noise: torch.Tensor,
1053
        timesteps: torch.IntTensor,
1054
    ) -> torch.Tensor:
1055
1056
1057
1058
1059
1060
1061
1062
1063
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
1064

1065
        # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
1066
1067
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
1068
1069
1070
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
1071
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1072
            # add noise is called before first denoising step to create initial latent(img2img)
1073
            step_indices = [self.begin_index] * timesteps.shape[0]
1074

1075
1076
1077
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
1078

1079
1080
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
1081
1082
1083
1084
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps