scheduling_unipc_multistep.py 44.3 KB
Newer Older
1
# Copyright 2024 TSAIL Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Wenliang Zhao's avatar
Wenliang Zhao committed
15
16
# DISCLAIMER: check https://arxiv.org/abs/2302.04867 and https://github.com/wl-zhao/UniPC for more info
# The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
17
18
19
20
21
22
23
24

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
25
from ..utils import deprecate, is_scipy_available
26
27
28
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput


29
30
31
32
if is_scipy_available():
    import scipy.stats


33
34
35
36
37
38
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
39
40
41
42
43
44
45
46
47
48
49
50
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
51
52
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
53
54
55
56

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
57
    if alpha_transform_type == "cosine":
58

59
60
61
62
63
64
65
66
67
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
68
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
69
70
71
72
73

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
74
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
75
76
77
    return torch.tensor(betas, dtype=torch.float32)


78
79
80
81
82
83
84
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
    """
    Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)


    Args:
85
        betas (`torch.Tensor`):
86
87
88
            the betas that the scheduler is being initialized with.

    Returns:
89
        `torch.Tensor`: rescaled betas with zero terminal SNR
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


115
116
class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
    """
117
    `UniPCMultistepScheduler` is a training-free framework designed for the fast sampling of diffusion models.
118

119
120
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
121
122

    Args:
123
124
125
126
127
128
129
130
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
131
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
132
133
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
134
        solver_order (`int`, default `2`):
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
            The UniPC order which can be any positive integer. The effective order of accuracy is `solver_order + 1`
            due to the UniC. It is recommended to use `solver_order=2` for guided sampling, and `solver_order=3` for
            unconditional sampling.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and `predict_x0=True`.
        predict_x0 (`bool`, defaults to `True`):
            Whether to use the updating algorithm on the predicted x0.
151
        solver_type (`str`, default `bh2`):
152
            Solver type for UniPC. It is recommended to use `bh1` for unconditional sampling when steps < 10, and `bh2`
153
154
            otherwise.
        lower_order_final (`bool`, default `True`):
155
156
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
157
        disable_corrector (`list`, default `[]`):
158
159
160
            Decides which step to disable the corrector to mitigate the misalignment between `epsilon_theta(x_t, c)`
            and `epsilon_theta(x_t^c, c)` which can influence convergence for a large guidance scale. Corrector is
            usually disabled during the first few steps.
161
        solver_p (`SchedulerMixin`, default `None`):
162
            Any other scheduler that if specified, the algorithm becomes `solver_p + UniC`.
163
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
164
165
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
166
167
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
168
169
170
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
171
172
173
174
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
175
            An offset added to the inference steps, as required by some model families.
176
        final_sigmas_type (`str`, defaults to `"zero"`):
177
178
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
            sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
179
180
181
182
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        solver_order: int = 2,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        predict_x0: bool = True,
Wenliang Zhao's avatar
Wenliang Zhao committed
202
        solver_type: str = "bh2",
203
204
205
        lower_order_final: bool = True,
        disable_corrector: List[int] = [],
        solver_p: SchedulerMixin = None,
206
        use_karras_sigmas: Optional[bool] = False,
207
        use_exponential_sigmas: Optional[bool] = False,
208
        use_beta_sigmas: Optional[bool] = False,
209
210
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
211
        final_sigmas_type: Optional[str] = "zero",  # "zero", "sigma_min"
212
        rescale_betas_zero_snr: bool = False,
213
    ):
214
215
216
217
218
219
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
220
221
222
223
224
225
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
226
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
227
228
229
230
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
231
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
232

233
234
235
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

236
237
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
238
239
240
241
242
243

        if rescale_betas_zero_snr:
            # Close to 0 without being 0 so first sigma is not inf
            # FP16 smallest positive subnormal works well here
            self.alphas_cumprod[-1] = 2**-24

244
245
246
247
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
248
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
249
250
251
252
253
254

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        if solver_type not in ["bh1", "bh2"]:
            if solver_type in ["midpoint", "heun", "logrho"]:
255
                self.register_to_config(solver_type="bh2")
256
            else:
257
                raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
258
259
260
261
262
263
264
265
266
267
268
269

        self.predict_x0 = predict_x0
        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.timestep_list = [None] * solver_order
        self.lower_order_nums = 0
        self.disable_corrector = disable_corrector
        self.solver_p = solver_p
        self.last_sample = None
270
        self._step_index = None
271
        self._begin_index = None
272
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
273
274
275
276

    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
277
        The index counter for current timestep. It will increase 1 after each scheduler step.
278
279
        """
        return self._step_index
280

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

299
300
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
301
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
302
303
304

        Args:
            num_inference_steps (`int`):
305
306
307
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
308
        """
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1)
                .round()[::-1][:-1]
                .copy()
                .astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // (num_inference_steps + 1)
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.arange(self.config.num_train_timesteps, 0, -step_ratio).round().copy().astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
333

334
335
336
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        if self.config.use_karras_sigmas:
            log_sigmas = np.log(sigmas)
337
            sigmas = np.flip(sigmas).copy()
338
339
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
340
341
342
343
344
345
346
347
348
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = sigmas[-1]
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
349
        elif self.config.use_exponential_sigmas:
350
351
352
            log_sigmas = np.log(sigmas)
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
353
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
354
355
356
357
358
359
360
361
362
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = sigmas[-1]
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
363
        elif self.config.use_beta_sigmas:
364
365
366
            log_sigmas = np.log(sigmas)
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
367
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
368
369
370
371
372
373
374
375
376
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = sigmas[-1]
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
377
378
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
379
380
381
382
383
384
385
386
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )
387
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
388

389
390
        self.sigmas = torch.from_numpy(sigmas)
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
391
392
393

        self.num_inference_steps = len(timesteps)

394
395
396
397
398
399
        self.model_outputs = [
            None,
        ] * self.config.solver_order
        self.lower_order_nums = 0
        self.last_sample = None
        if self.solver_p:
400
            self.solver_p.set_timesteps(self.num_inference_steps, device=device)
401

402
403
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
404
        self._begin_index = None
405
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
406

407
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
408
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
409
410
411
412
413
414
415
416
417
418
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
419
        batch_size, channels, *remaining_dims = sample.shape
420
421
422
423
424

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
425
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
426
427
428
429
430
431
432
433
434
435

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

436
        sample = sample.reshape(batch_size, channels, *remaining_dims)
437
438
439
        sample = sample.to(dtype)

        return sample
440

441
442
443
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
444
        log_sigma = np.log(np.maximum(sigma, 1e-10))
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

465
466
467
468
469
470
471
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
        alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
        sigma_t = sigma * alpha_t

        return alpha_t, sigma_t

472
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
473
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
474
475
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
476
477
478
479
480
481
482
483
484
485
486
487
488
489
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
490
491
492
493
494
495
496
497

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
        """Constructs an exponential noise schedule."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

517
        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
518
519
        return sigmas

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
        """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

541
        sigmas = np.array(
542
543
544
545
546
547
548
549
550
551
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

552
    def convert_model_output(
553
        self,
554
        model_output: torch.Tensor,
555
        *args,
556
        sample: torch.Tensor = None,
557
        **kwargs,
558
    ) -> torch.Tensor:
559
        r"""
560
        Convert the model output to the corresponding type the UniPC algorithm needs.
561
562

        Args:
563
            model_output (`torch.Tensor`):
564
565
566
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
567
            sample (`torch.Tensor`):
568
                A current instance of a sample created by the diffusion process.
569
570

        Returns:
571
            `torch.Tensor`:
572
                The converted model output.
573
        """
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
                raise ValueError("missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma = self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)

590
591
592
593
594
595
596
597
598
599
        if self.predict_x0:
            if self.config.prediction_type == "epsilon":
                x0_pred = (sample - sigma_t * model_output) / alpha_t
            elif self.config.prediction_type == "sample":
                x0_pred = model_output
            elif self.config.prediction_type == "v_prediction":
                x0_pred = alpha_t * sample - sigma_t * model_output
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
Wenliang Zhao's avatar
Wenliang Zhao committed
600
                    " `v_prediction` for the UniPCMultistepScheduler."
601
602
603
                )

            if self.config.thresholding:
604
605
                x0_pred = self._threshold_sample(x0_pred)

606
607
608
609
610
611
612
613
614
615
616
617
618
            return x0_pred
        else:
            if self.config.prediction_type == "epsilon":
                return model_output
            elif self.config.prediction_type == "sample":
                epsilon = (sample - alpha_t * model_output) / sigma_t
                return epsilon
            elif self.config.prediction_type == "v_prediction":
                epsilon = alpha_t * model_output + sigma_t * sample
                return epsilon
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
Wenliang Zhao's avatar
Wenliang Zhao committed
619
                    " `v_prediction` for the UniPCMultistepScheduler."
620
621
622
623
                )

    def multistep_uni_p_bh_update(
        self,
624
        model_output: torch.Tensor,
625
        *args,
626
        sample: torch.Tensor = None,
627
628
        order: int = None,
        **kwargs,
629
    ) -> torch.Tensor:
630
631
632
633
        """
        One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified.

        Args:
634
            model_output (`torch.Tensor`):
635
636
637
                The direct output from the learned diffusion model at the current timestep.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
638
            sample (`torch.Tensor`):
639
640
641
                A current instance of a sample created by the diffusion process.
            order (`int`):
                The order of UniP at this timestep (corresponds to the *p* in UniPC-p).
642
643

        Returns:
644
            `torch.Tensor`:
645
                The sample tensor at the previous timestep.
646
        """
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
        prev_timestep = args[0] if len(args) > 0 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if order is None:
            if len(args) > 2:
                order = args[2]
            else:
                raise ValueError(" missing `order` as a required keyward argument")
        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
664
665
        model_output_list = self.model_outputs

666
        s0 = self.timestep_list[-1]
667
668
669
670
671
672
673
        m0 = model_output_list[-1]
        x = sample

        if self.solver_p:
            x_t = self.solver_p.step(model_output, s0, x).prev_sample
            return x_t

674
675
676
677
678
679
        sigma_t, sigma_s0 = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
680
681
682
683
684
685
686

        h = lambda_t - lambda_s0
        device = sample.device

        rks = []
        D1s = []
        for i in range(1, order):
687
            si = self.step_index - i
688
            mi = model_output_list[-(i + 1)]
689
690
            alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
            lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
            rk = (lambda_si - lambda_s0) / h
            rks.append(rk)
            D1s.append((mi - m0) / rk)

        rks.append(1.0)
        rks = torch.tensor(rks, device=device)

        R = []
        b = []

        hh = -h if self.predict_x0 else h
        h_phi_1 = torch.expm1(hh)  # h\phi_1(h) = e^h - 1
        h_phi_k = h_phi_1 / hh - 1

        factorial_i = 1

        if self.config.solver_type == "bh1":
            B_h = hh
        elif self.config.solver_type == "bh2":
            B_h = torch.expm1(hh)
        else:
            raise NotImplementedError()

        for i in range(1, order + 1):
            R.append(torch.pow(rks, i - 1))
            b.append(h_phi_k * factorial_i / B_h)
            factorial_i *= i + 1
            h_phi_k = h_phi_k / hh - 1 / factorial_i

        R = torch.stack(R)
        b = torch.tensor(b, device=device)

        if len(D1s) > 0:
            D1s = torch.stack(D1s, dim=1)  # (B, K)
            # for order 2, we use a simplified version
            if order == 2:
                rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device)
            else:
729
                rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]).to(device).to(x.dtype)
730
731
732
733
734
735
        else:
            D1s = None

        if self.predict_x0:
            x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
            if D1s is not None:
736
                pred_res = torch.einsum("k,bkc...->bc...", rhos_p, D1s)
737
738
739
740
741
742
            else:
                pred_res = 0
            x_t = x_t_ - alpha_t * B_h * pred_res
        else:
            x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
            if D1s is not None:
743
                pred_res = torch.einsum("k,bkc...->bc...", rhos_p, D1s)
744
745
746
747
748
749
750
751
752
            else:
                pred_res = 0
            x_t = x_t_ - sigma_t * B_h * pred_res

        x_t = x_t.to(x.dtype)
        return x_t

    def multistep_uni_c_bh_update(
        self,
753
        this_model_output: torch.Tensor,
754
        *args,
755
756
        last_sample: torch.Tensor = None,
        this_sample: torch.Tensor = None,
757
758
        order: int = None,
        **kwargs,
759
    ) -> torch.Tensor:
760
761
762
763
        """
        One step for the UniC (B(h) version).

        Args:
764
            this_model_output (`torch.Tensor`):
765
766
767
                The model outputs at `x_t`.
            this_timestep (`int`):
                The current timestep `t`.
768
            last_sample (`torch.Tensor`):
769
                The generated sample before the last predictor `x_{t-1}`.
770
            this_sample (`torch.Tensor`):
771
772
773
                The generated sample after the last predictor `x_{t}`.
            order (`int`):
                The `p` of UniC-p at this step. The effective order of accuracy should be `order + 1`.
774
775

        Returns:
776
            `torch.Tensor`:
777
                The corrected sample tensor at the current timestep.
778
        """
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
        this_timestep = args[0] if len(args) > 0 else kwargs.pop("this_timestep", None)
        if last_sample is None:
            if len(args) > 1:
                last_sample = args[1]
            else:
                raise ValueError(" missing`last_sample` as a required keyward argument")
        if this_sample is None:
            if len(args) > 2:
                this_sample = args[2]
            else:
                raise ValueError(" missing`this_sample` as a required keyward argument")
        if order is None:
            if len(args) > 3:
                order = args[3]
            else:
                raise ValueError(" missing`order` as a required keyward argument")
        if this_timestep is not None:
            deprecate(
                "this_timestep",
                "1.0.0",
                "Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

802
803
804
805
806
807
808
        model_output_list = self.model_outputs

        m0 = model_output_list[-1]
        x = last_sample
        x_t = this_sample
        model_t = this_model_output

809
810
811
812
813
814
        sigma_t, sigma_s0 = self.sigmas[self.step_index], self.sigmas[self.step_index - 1]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
815
816
817
818
819
820
821

        h = lambda_t - lambda_s0
        device = this_sample.device

        rks = []
        D1s = []
        for i in range(1, order):
822
            si = self.step_index - (i + 1)
823
            mi = model_output_list[-(i + 1)]
824
825
            alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
            lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
            rk = (lambda_si - lambda_s0) / h
            rks.append(rk)
            D1s.append((mi - m0) / rk)

        rks.append(1.0)
        rks = torch.tensor(rks, device=device)

        R = []
        b = []

        hh = -h if self.predict_x0 else h
        h_phi_1 = torch.expm1(hh)  # h\phi_1(h) = e^h - 1
        h_phi_k = h_phi_1 / hh - 1

        factorial_i = 1

        if self.config.solver_type == "bh1":
            B_h = hh
        elif self.config.solver_type == "bh2":
            B_h = torch.expm1(hh)
        else:
            raise NotImplementedError()

        for i in range(1, order + 1):
            R.append(torch.pow(rks, i - 1))
            b.append(h_phi_k * factorial_i / B_h)
            factorial_i *= i + 1
            h_phi_k = h_phi_k / hh - 1 / factorial_i

        R = torch.stack(R)
        b = torch.tensor(b, device=device)

        if len(D1s) > 0:
            D1s = torch.stack(D1s, dim=1)
        else:
            D1s = None

        # for order 1, we use a simplified version
        if order == 1:
            rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device)
        else:
867
            rhos_c = torch.linalg.solve(R, b).to(device).to(x.dtype)
868
869
870
871

        if self.predict_x0:
            x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
            if D1s is not None:
872
                corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s)
873
874
875
876
877
878
879
            else:
                corr_res = 0
            D1_t = model_t - m0
            x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t)
        else:
            x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
            if D1s is not None:
880
                corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s)
881
882
883
884
885
886
887
            else:
                corr_res = 0
            D1_t = model_t - m0
            x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t)
        x_t = x_t.to(x.dtype)
        return x_t

888
889
890
891
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
892

893
        index_candidates = (schedule_timesteps == timestep).nonzero()
894
895
896
897
898
899
900
901
902
903
904
905

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

906
907
908
909
910
911
912
913
914
915
916
917
918
919
        return step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
    def _init_step_index(self, timestep):
        """
        Initialize the step_index counter for the scheduler.
        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
920

921
922
    def step(
        self,
923
        model_output: torch.Tensor,
924
        timestep: Union[int, torch.Tensor],
925
        sample: torch.Tensor,
926
927
928
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
929
930
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the multistep UniPC.
931
932

        Args:
933
            model_output (`torch.Tensor`):
934
935
936
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
937
            sample (`torch.Tensor`):
938
939
940
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
941
942

        Returns:
943
944
945
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
946
947
948
949
950
951
952

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

953
954
        if self.step_index is None:
            self._init_step_index(timestep)
955
956

        use_corrector = (
957
            self.step_index > 0 and self.step_index - 1 not in self.disable_corrector and self.last_sample is not None
958
959
        )

960
        model_output_convert = self.convert_model_output(model_output, sample=sample)
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
        if use_corrector:
            sample = self.multistep_uni_c_bh_update(
                this_model_output=model_output_convert,
                last_sample=self.last_sample,
                this_sample=sample,
                order=self.this_order,
            )

        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
            self.timestep_list[i] = self.timestep_list[i + 1]

        self.model_outputs[-1] = model_output_convert
        self.timestep_list[-1] = timestep

        if self.config.lower_order_final:
977
            this_order = min(self.config.solver_order, len(self.timesteps) - self.step_index)
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
        else:
            this_order = self.config.solver_order

        self.this_order = min(this_order, self.lower_order_nums + 1)  # warmup for multistep
        assert self.this_order > 0

        self.last_sample = sample
        prev_sample = self.multistep_uni_p_bh_update(
            model_output=model_output,  # pass the original non-converted model output, in case solver-p is used
            sample=sample,
            order=self.this_order,
        )

        if self.lower_order_nums < self.config.solver_order:
            self.lower_order_nums += 1

994
995
996
        # upon completion increase step index by one
        self._step_index += 1

997
998
999
1000
1001
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

1002
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
1003
1004
1005
1006
1007
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
1008
            sample (`torch.Tensor`):
1009
                The input sample.
1010
1011

        Returns:
1012
            `torch.Tensor`:
1013
                A scaled input sample.
1014
1015
1016
        """
        return sample

1017
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
1018
1019
    def add_noise(
        self,
1020
1021
        original_samples: torch.Tensor,
        noise: torch.Tensor,
1022
        timesteps: torch.IntTensor,
1023
    ) -> torch.Tensor:
1024
1025
1026
1027
1028
1029
1030
1031
1032
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
1033

1034
        # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
1035
1036
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
1037
1038
1039
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
1040
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1041
            # add noise is called before first denoising step to create initial latent(img2img)
1042
            step_indices = [self.begin_index] * timesteps.shape[0]
1043

1044
1045
1046
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
1047

1048
1049
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
1050
1051
1052
1053
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps