scheduling_unipc_multistep.py 34.7 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 TSAIL Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Wenliang Zhao's avatar
Wenliang Zhao committed
15
16
# DISCLAIMER: check https://arxiv.org/abs/2302.04867 and https://github.com/wl-zhao/UniPC for more info
# The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
17
18
19
20
21
22
23
24

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
25
from ..utils import deprecate
26
27
28
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput


29
30
31
32
33
34
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
35
36
37
38
39
40
41
42
43
44
45
46
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
47
48
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
49
50
51
52

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
53
    if alpha_transform_type == "cosine":
54

55
56
57
58
59
60
61
62
63
64
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
        raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
65
66
67
68
69

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
70
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
71
72
73
74
75
    return torch.tensor(betas, dtype=torch.float32)


class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
    """
76
    `UniPCMultistepScheduler` is a training-free framework designed for the fast sampling of diffusion models.
77

78
79
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
80
81

    Args:
82
83
84
85
86
87
88
89
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
90
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
91
92
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
93
        solver_order (`int`, default `2`):
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
            The UniPC order which can be any positive integer. The effective order of accuracy is `solver_order + 1`
            due to the UniC. It is recommended to use `solver_order=2` for guided sampling, and `solver_order=3` for
            unconditional sampling.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and `predict_x0=True`.
        predict_x0 (`bool`, defaults to `True`):
            Whether to use the updating algorithm on the predicted x0.
110
        solver_type (`str`, default `bh2`):
111
            Solver type for UniPC. It is recommended to use `bh1` for unconditional sampling when steps < 10, and `bh2`
112
113
            otherwise.
        lower_order_final (`bool`, default `True`):
114
115
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
116
        disable_corrector (`list`, default `[]`):
117
118
119
            Decides which step to disable the corrector to mitigate the misalignment between `epsilon_theta(x_t, c)`
            and `epsilon_theta(x_t^c, c)` which can influence convergence for a large guidance scale. Corrector is
            usually disabled during the first few steps.
120
        solver_p (`SchedulerMixin`, default `None`):
121
            Any other scheduler that if specified, the algorithm becomes `solver_p + UniC`.
122
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
123
124
125
126
127
128
129
130
131
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
            An offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
            Diffusion.
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        solver_order: int = 2,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        predict_x0: bool = True,
Wenliang Zhao's avatar
Wenliang Zhao committed
151
        solver_type: str = "bh2",
152
153
154
        lower_order_final: bool = True,
        disable_corrector: List[int] = [],
        solver_p: SchedulerMixin = None,
155
        use_karras_sigmas: Optional[bool] = False,
156
157
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
158
159
160
161
162
163
164
    ):
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
165
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        if solver_type not in ["bh1", "bh2"]:
            if solver_type in ["midpoint", "heun", "logrho"]:
184
                self.register_to_config(solver_type="bh2")
185
186
187
188
189
190
191
192
193
194
195
196
197
198
            else:
                raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")

        self.predict_x0 = predict_x0
        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.timestep_list = [None] * solver_order
        self.lower_order_nums = 0
        self.disable_corrector = disable_corrector
        self.solver_p = solver_p
        self.last_sample = None
199
200
201
202
203
204
205
206
        self._step_index = None

    @property
    def step_index(self):
        """
        The index counter for current timestep. It will increae 1 after each scheduler step.
        """
        return self._step_index
207
208
209

    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
210
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
211
212
213

        Args:
            num_inference_steps (`int`):
214
215
216
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
217
        """
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1)
                .round()[::-1][:-1]
                .copy()
                .astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // (num_inference_steps + 1)
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.arange(self.config.num_train_timesteps, 0, -step_ratio).round().copy().astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
242

243
244
245
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        if self.config.use_karras_sigmas:
            log_sigmas = np.log(sigmas)
246
            sigmas = np.flip(sigmas).copy()
247
248
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
249
250
251
252
253
            sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
            sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
254

255
256
        self.sigmas = torch.from_numpy(sigmas)
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
257
258
259

        self.num_inference_steps = len(timesteps)

260
261
262
263
264
265
        self.model_outputs = [
            None,
        ] * self.config.solver_order
        self.lower_order_nums = 0
        self.last_sample = None
        if self.solver_p:
266
            self.solver_p.set_timesteps(self.num_inference_steps, device=device)
267

268
269
270
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None

271
272
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
    def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
273
274
275
276
277
278
279
280
281
282
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
283
        batch_size, channels, *remaining_dims = sample.shape
284
285
286
287
288

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
289
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
290
291
292
293
294
295
296
297
298
299

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

300
        sample = sample.reshape(batch_size, channels, *remaining_dims)
301
302
303
        sample = sample.to(dtype)

        return sample
304

305
306
307
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
308
        log_sigma = np.log(np.maximum(sigma, 1e-10))
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

329
330
331
332
333
334
335
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
        alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
        sigma_t = sigma * alpha_t

        return alpha_t, sigma_t

336
337
338
339
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
    def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
354
355
356
357
358
359
360
361

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

362
    def convert_model_output(
363
364
365
366
367
        self,
        model_output: torch.FloatTensor,
        *args,
        sample: torch.FloatTensor = None,
        **kwargs,
368
369
    ) -> torch.FloatTensor:
        r"""
370
        Convert the model output to the corresponding type the UniPC algorithm needs.
371
372

        Args:
373
374
375
376
            model_output (`torch.FloatTensor`):
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
377
            sample (`torch.FloatTensor`):
378
                A current instance of a sample created by the diffusion process.
379
380

        Returns:
381
382
            `torch.FloatTensor`:
                The converted model output.
383
        """
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
                raise ValueError("missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma = self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)

400
401
402
403
404
405
406
407
408
409
        if self.predict_x0:
            if self.config.prediction_type == "epsilon":
                x0_pred = (sample - sigma_t * model_output) / alpha_t
            elif self.config.prediction_type == "sample":
                x0_pred = model_output
            elif self.config.prediction_type == "v_prediction":
                x0_pred = alpha_t * sample - sigma_t * model_output
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
Wenliang Zhao's avatar
Wenliang Zhao committed
410
                    " `v_prediction` for the UniPCMultistepScheduler."
411
412
413
                )

            if self.config.thresholding:
414
415
                x0_pred = self._threshold_sample(x0_pred)

416
417
418
419
420
421
422
423
424
425
426
427
428
            return x0_pred
        else:
            if self.config.prediction_type == "epsilon":
                return model_output
            elif self.config.prediction_type == "sample":
                epsilon = (sample - alpha_t * model_output) / sigma_t
                return epsilon
            elif self.config.prediction_type == "v_prediction":
                epsilon = alpha_t * model_output + sigma_t * sample
                return epsilon
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
Wenliang Zhao's avatar
Wenliang Zhao committed
429
                    " `v_prediction` for the UniPCMultistepScheduler."
430
431
432
433
434
                )

    def multistep_uni_p_bh_update(
        self,
        model_output: torch.FloatTensor,
435
436
437
438
        *args,
        sample: torch.FloatTensor = None,
        order: int = None,
        **kwargs,
439
440
441
442
443
444
    ) -> torch.FloatTensor:
        """
        One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified.

        Args:
            model_output (`torch.FloatTensor`):
445
446
447
                The direct output from the learned diffusion model at the current timestep.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
448
            sample (`torch.FloatTensor`):
449
450
451
                A current instance of a sample created by the diffusion process.
            order (`int`):
                The order of UniP at this timestep (corresponds to the *p* in UniPC-p).
452
453

        Returns:
454
455
            `torch.FloatTensor`:
                The sample tensor at the previous timestep.
456
        """
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
        prev_timestep = args[0] if len(args) > 0 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if order is None:
            if len(args) > 2:
                order = args[2]
            else:
                raise ValueError(" missing `order` as a required keyward argument")
        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
474
475
        model_output_list = self.model_outputs

476
        s0 = self.timestep_list[-1]
477
478
479
480
481
482
483
        m0 = model_output_list[-1]
        x = sample

        if self.solver_p:
            x_t = self.solver_p.step(model_output, s0, x).prev_sample
            return x_t

484
485
486
487
488
489
        sigma_t, sigma_s0 = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
490
491
492
493
494
495
496

        h = lambda_t - lambda_s0
        device = sample.device

        rks = []
        D1s = []
        for i in range(1, order):
497
            si = self.step_index - i
498
            mi = model_output_list[-(i + 1)]
499
500
            alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
            lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
            rk = (lambda_si - lambda_s0) / h
            rks.append(rk)
            D1s.append((mi - m0) / rk)

        rks.append(1.0)
        rks = torch.tensor(rks, device=device)

        R = []
        b = []

        hh = -h if self.predict_x0 else h
        h_phi_1 = torch.expm1(hh)  # h\phi_1(h) = e^h - 1
        h_phi_k = h_phi_1 / hh - 1

        factorial_i = 1

        if self.config.solver_type == "bh1":
            B_h = hh
        elif self.config.solver_type == "bh2":
            B_h = torch.expm1(hh)
        else:
            raise NotImplementedError()

        for i in range(1, order + 1):
            R.append(torch.pow(rks, i - 1))
            b.append(h_phi_k * factorial_i / B_h)
            factorial_i *= i + 1
            h_phi_k = h_phi_k / hh - 1 / factorial_i

        R = torch.stack(R)
        b = torch.tensor(b, device=device)

        if len(D1s) > 0:
            D1s = torch.stack(D1s, dim=1)  # (B, K)
            # for order 2, we use a simplified version
            if order == 2:
                rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device)
            else:
                rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
        else:
            D1s = None

        if self.predict_x0:
            x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
            if D1s is not None:
546
                pred_res = torch.einsum("k,bkc...->bc...", rhos_p, D1s)
547
548
549
550
551
552
            else:
                pred_res = 0
            x_t = x_t_ - alpha_t * B_h * pred_res
        else:
            x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
            if D1s is not None:
553
                pred_res = torch.einsum("k,bkc...->bc...", rhos_p, D1s)
554
555
556
557
558
559
560
561
562
563
            else:
                pred_res = 0
            x_t = x_t_ - sigma_t * B_h * pred_res

        x_t = x_t.to(x.dtype)
        return x_t

    def multistep_uni_c_bh_update(
        self,
        this_model_output: torch.FloatTensor,
564
565
566
567
568
        *args,
        last_sample: torch.FloatTensor = None,
        this_sample: torch.FloatTensor = None,
        order: int = None,
        **kwargs,
569
570
571
572
573
    ) -> torch.FloatTensor:
        """
        One step for the UniC (B(h) version).

        Args:
574
575
576
577
578
579
580
581
582
583
            this_model_output (`torch.FloatTensor`):
                The model outputs at `x_t`.
            this_timestep (`int`):
                The current timestep `t`.
            last_sample (`torch.FloatTensor`):
                The generated sample before the last predictor `x_{t-1}`.
            this_sample (`torch.FloatTensor`):
                The generated sample after the last predictor `x_{t}`.
            order (`int`):
                The `p` of UniC-p at this step. The effective order of accuracy should be `order + 1`.
584
585

        Returns:
586
587
            `torch.FloatTensor`:
                The corrected sample tensor at the current timestep.
588
        """
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
        this_timestep = args[0] if len(args) > 0 else kwargs.pop("this_timestep", None)
        if last_sample is None:
            if len(args) > 1:
                last_sample = args[1]
            else:
                raise ValueError(" missing`last_sample` as a required keyward argument")
        if this_sample is None:
            if len(args) > 2:
                this_sample = args[2]
            else:
                raise ValueError(" missing`this_sample` as a required keyward argument")
        if order is None:
            if len(args) > 3:
                order = args[3]
            else:
                raise ValueError(" missing`order` as a required keyward argument")
        if this_timestep is not None:
            deprecate(
                "this_timestep",
                "1.0.0",
                "Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

612
613
614
615
616
617
618
        model_output_list = self.model_outputs

        m0 = model_output_list[-1]
        x = last_sample
        x_t = this_sample
        model_t = this_model_output

619
620
621
622
623
624
        sigma_t, sigma_s0 = self.sigmas[self.step_index], self.sigmas[self.step_index - 1]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
625
626
627
628
629
630
631

        h = lambda_t - lambda_s0
        device = this_sample.device

        rks = []
        D1s = []
        for i in range(1, order):
632
            si = self.step_index - (i + 1)
633
            mi = model_output_list[-(i + 1)]
634
635
            alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
            lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
            rk = (lambda_si - lambda_s0) / h
            rks.append(rk)
            D1s.append((mi - m0) / rk)

        rks.append(1.0)
        rks = torch.tensor(rks, device=device)

        R = []
        b = []

        hh = -h if self.predict_x0 else h
        h_phi_1 = torch.expm1(hh)  # h\phi_1(h) = e^h - 1
        h_phi_k = h_phi_1 / hh - 1

        factorial_i = 1

        if self.config.solver_type == "bh1":
            B_h = hh
        elif self.config.solver_type == "bh2":
            B_h = torch.expm1(hh)
        else:
            raise NotImplementedError()

        for i in range(1, order + 1):
            R.append(torch.pow(rks, i - 1))
            b.append(h_phi_k * factorial_i / B_h)
            factorial_i *= i + 1
            h_phi_k = h_phi_k / hh - 1 / factorial_i

        R = torch.stack(R)
        b = torch.tensor(b, device=device)

        if len(D1s) > 0:
            D1s = torch.stack(D1s, dim=1)
        else:
            D1s = None

        # for order 1, we use a simplified version
        if order == 1:
            rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device)
        else:
            rhos_c = torch.linalg.solve(R, b)

        if self.predict_x0:
            x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
            if D1s is not None:
682
                corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s)
683
684
685
686
687
688
689
            else:
                corr_res = 0
            D1_t = model_t - m0
            x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t)
        else:
            x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
            if D1s is not None:
690
                corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s)
691
692
693
694
695
696
697
            else:
                corr_res = 0
            D1_t = model_t - m0
            x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t)
        x_t = x_t.to(x.dtype)
        return x_t

698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
    def _init_step_index(self, timestep):
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)

        index_candidates = (self.timesteps == timestep).nonzero()

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

        self._step_index = step_index

717
718
719
720
721
722
723
724
    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: int,
        sample: torch.FloatTensor,
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
725
726
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the multistep UniPC.
727
728

        Args:
729
730
731
732
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
733
            sample (`torch.FloatTensor`):
734
735
736
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
737
738

        Returns:
739
740
741
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
742
743
744
745
746
747
748

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

749
750
        if self.step_index is None:
            self._init_step_index(timestep)
751
752

        use_corrector = (
753
            self.step_index > 0 and self.step_index - 1 not in self.disable_corrector and self.last_sample is not None
754
755
        )

756
        model_output_convert = self.convert_model_output(model_output, sample=sample)
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
        if use_corrector:
            sample = self.multistep_uni_c_bh_update(
                this_model_output=model_output_convert,
                last_sample=self.last_sample,
                this_sample=sample,
                order=self.this_order,
            )

        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
            self.timestep_list[i] = self.timestep_list[i + 1]

        self.model_outputs[-1] = model_output_convert
        self.timestep_list[-1] = timestep

        if self.config.lower_order_final:
773
            this_order = min(self.config.solver_order, len(self.timesteps) - self.step_index)
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
        else:
            this_order = self.config.solver_order

        self.this_order = min(this_order, self.lower_order_nums + 1)  # warmup for multistep
        assert self.this_order > 0

        self.last_sample = sample
        prev_sample = self.multistep_uni_p_bh_update(
            model_output=model_output,  # pass the original non-converted model output, in case solver-p is used
            sample=sample,
            order=self.this_order,
        )

        if self.lower_order_nums < self.config.solver_order:
            self.lower_order_nums += 1

790
791
792
        # upon completion increase step index by one
        self._step_index += 1

793
794
795
796
797
798
799
800
801
802
803
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

    def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
804
805
            sample (`torch.FloatTensor`):
                The input sample.
806
807

        Returns:
808
809
            `torch.FloatTensor`:
                A scaled input sample.
810
811
812
        """
        return sample

813
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
814
815
816
817
    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
818
        timesteps: torch.IntTensor,
819
    ) -> torch.FloatTensor:
820
821
822
823
824
825
826
827
828
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
829

830
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
831

832
833
834
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
835

836
837
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
838
839
840
841
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps