attention.py 17.3 KB
Newer Older
1
import math
Patrick von Platen's avatar
Patrick von Platen committed
2
from inspect import isfunction
3
4

import torch
Patrick von Platen's avatar
Patrick von Platen committed
5
import torch.nn.functional as F
6
7
8
from torch import nn


Patrick von Platen's avatar
Patrick von Platen committed
9
# unet_grad_tts.py
Patrick von Platen's avatar
Patrick von Platen committed
10
# TODO(Patrick) - weird linear attention layer. Check with: https://github.com/huawei-noah/Speech-Backbones/issues/15
Patrick von Platen's avatar
Patrick von Platen committed
11
12
13
14
15
16
17
18
19
class LinearAttention(torch.nn.Module):
    def __init__(self, dim, heads=4, dim_head=32):
        super(LinearAttention, self).__init__()
        self.heads = heads
        self.dim_head = dim_head
        hidden_dim = dim_head * heads
        self.to_qkv = torch.nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
        self.to_out = torch.nn.Conv2d(hidden_dim, dim, 1)

20
    def forward(self, x, encoder_states=None):
Patrick von Platen's avatar
Patrick von Platen committed
21
22
23
24
25
26
27
28
29
30
31
32
33
        b, c, h, w = x.shape
        qkv = self.to_qkv(x)
        q, k, v = (
            qkv.reshape(b, 3, self.heads, self.dim_head, h, w)
            .permute(1, 0, 2, 3, 4, 5)
            .reshape(3, b, self.heads, self.dim_head, -1)
        )
        k = k.softmax(dim=-1)
        context = torch.einsum("bhdn,bhen->bhde", k, v)
        out = torch.einsum("bhde,bhdn->bhen", context, q)
        out = out.reshape(b, self.heads, self.dim_head, h, w).reshape(b, self.heads * self.dim_head, h, w)
        return self.to_out(out)

34

Patrick von Platen's avatar
Patrick von Platen committed
35
# the main attention block that is used for all models
Patrick von Platen's avatar
Patrick von Platen committed
36
37
38
39
40
41
42
43
44
45
46
47
class AttentionBlock(nn.Module):
    """
    An attention block that allows spatial positions to attend to each other.

    Originally ported from here, but adapted to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
    """

    def __init__(
        self,
        channels,
        num_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
48
        num_head_channels=None,
Patrick von Platen's avatar
Patrick von Platen committed
49
        num_groups=32,
Patrick von Platen's avatar
Patrick von Platen committed
50
        encoder_channels=None,
Patrick von Platen's avatar
Patrick von Platen committed
51
        overwrite_qkv=False,
Patrick von Platen's avatar
Patrick von Platen committed
52
53
        overwrite_linear=False,
        rescale_output_factor=1.0,
Patrick von Platen's avatar
Patrick von Platen committed
54
        eps=1e-5,
Patrick von Platen's avatar
Patrick von Platen committed
55
56
57
    ):
        super().__init__()
        self.channels = channels
Patrick von Platen's avatar
Patrick von Platen committed
58
        if num_head_channels is None:
Patrick von Platen's avatar
Patrick von Platen committed
59
60
61
62
63
64
            self.num_heads = num_heads
        else:
            assert (
                channels % num_head_channels == 0
            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = channels // num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
65

Patrick von Platen's avatar
Patrick von Platen committed
66
        self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
67
        self.qkv = nn.Conv1d(channels, channels * 3, 1)
Patrick von Platen's avatar
Patrick von Platen committed
68
        self.n_heads = self.num_heads
Patrick von Platen's avatar
Patrick von Platen committed
69
        self.rescale_output_factor = rescale_output_factor
Patrick von Platen's avatar
Patrick von Platen committed
70
71

        if encoder_channels is not None:
Patrick von Platen's avatar
Patrick von Platen committed
72
            self.encoder_kv = nn.Conv1d(encoder_channels, channels * 2, 1)
Patrick von Platen's avatar
Patrick von Platen committed
73

74
        self.proj = zero_module(nn.Conv1d(channels, channels, 1))
Patrick von Platen's avatar
Patrick von Platen committed
75

Patrick von Platen's avatar
Patrick von Platen committed
76
        self.overwrite_qkv = overwrite_qkv
Anton Lozhkov's avatar
Anton Lozhkov committed
77
78
        self.overwrite_linear = overwrite_linear

Patrick von Platen's avatar
Patrick von Platen committed
79
80
        if overwrite_qkv:
            in_channels = channels
Patrick von Platen's avatar
Patrick von Platen committed
81
            self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=1e-6)
Patrick von Platen's avatar
Patrick von Platen committed
82
83
84
85
            self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
            self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
            self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
            self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
Anton Lozhkov's avatar
Anton Lozhkov committed
86
        elif self.overwrite_linear:
Patrick von Platen's avatar
Patrick von Platen committed
87
88
89
90
91
92
93
            num_groups = min(channels // 4, 32)
            self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=1e-6)
            self.NIN_0 = NIN(channels, channels)
            self.NIN_1 = NIN(channels, channels)
            self.NIN_2 = NIN(channels, channels)
            self.NIN_3 = NIN(channels, channels)

Patrick von Platen's avatar
Patrick von Platen committed
94
            self.GroupNorm_0 = nn.GroupNorm(num_groups=num_groups, num_channels=channels, eps=1e-6)
Anton Lozhkov's avatar
Anton Lozhkov committed
95
96
        else:
            self.proj_out = zero_module(nn.Conv1d(channels, channels, 1))
97
            self.set_weights(self)
Patrick von Platen's avatar
Patrick von Platen committed
98

Patrick von Platen's avatar
Patrick von Platen committed
99
        self.is_overwritten = False
100

Patrick von Platen's avatar
Patrick von Platen committed
101
102
    def set_weights(self, module):
        if self.overwrite_qkv:
Patrick von Platen's avatar
Patrick von Platen committed
103
104
105
            qkv_weight = torch.cat([module.q.weight.data, module.k.weight.data, module.v.weight.data], dim=0)[
                :, :, :, 0
            ]
Patrick von Platen's avatar
Patrick von Platen committed
106
            qkv_bias = torch.cat([module.q.bias.data, module.k.bias.data, module.v.bias.data], dim=0)
Patrick von Platen's avatar
Patrick von Platen committed
107

Patrick von Platen's avatar
Patrick von Platen committed
108
109
110
            self.qkv.weight.data = qkv_weight
            self.qkv.bias.data = qkv_bias

Patrick von Platen's avatar
Patrick von Platen committed
111
            proj_out = zero_module(nn.Conv1d(self.channels, self.channels, 1))
Patrick von Platen's avatar
Patrick von Platen committed
112
113
            proj_out.weight.data = module.proj_out.weight.data[:, :, :, 0]
            proj_out.bias.data = module.proj_out.bias.data
Patrick von Platen's avatar
Patrick von Platen committed
114

115
            self.proj = proj_out
Patrick von Platen's avatar
Patrick von Platen committed
116
        elif self.overwrite_linear:
Patrick von Platen's avatar
Patrick von Platen committed
117
118
119
            self.qkv.weight.data = torch.concat(
                [self.NIN_0.W.data.T, self.NIN_1.W.data.T, self.NIN_2.W.data.T], dim=0
            )[:, :, None]
Patrick von Platen's avatar
Patrick von Platen committed
120
121
            self.qkv.bias.data = torch.concat([self.NIN_0.b.data, self.NIN_1.b.data, self.NIN_2.b.data], dim=0)

122
123
            self.proj.weight.data = self.NIN_3.W.data.T[:, :, None]
            self.proj.bias.data = self.NIN_3.b.data
Patrick von Platen's avatar
Patrick von Platen committed
124

Patrick von Platen's avatar
Patrick von Platen committed
125
126
            self.norm.weight.data = self.GroupNorm_0.weight.data
            self.norm.bias.data = self.GroupNorm_0.bias.data
Anton Lozhkov's avatar
Anton Lozhkov committed
127
        else:
128
129
            self.proj.weight.data = self.proj_out.weight.data
            self.proj.bias.data = self.proj_out.bias.data
Patrick von Platen's avatar
Patrick von Platen committed
130

Patrick von Platen's avatar
Patrick von Platen committed
131
    def forward(self, x, encoder_out=None):
132
        if not self.is_overwritten and (self.overwrite_qkv or self.overwrite_linear):
Patrick von Platen's avatar
Patrick von Platen committed
133
134
135
136
            self.set_weights(self)
            self.is_overwritten = True

        b, c, *spatial = x.shape
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        hid_states = self.norm(x).view(b, c, -1)

        qkv = self.qkv(hid_states)
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)

        if encoder_out is not None:
            encoder_kv = self.encoder_kv(encoder_out)
            assert encoder_kv.shape[1] == self.n_heads * ch * 2
            ek, ev = encoder_kv.reshape(bs * self.n_heads, ch * 2, -1).split(ch, dim=1)
            k = torch.cat([ek, k], dim=-1)
            v = torch.cat([ev, v], dim=-1)

        scale = 1 / math.sqrt(math.sqrt(ch))
        weight = torch.einsum("bct,bcs->bts", q * scale, k * scale)  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)

        a = torch.einsum("bts,bcs->bct", weight, v)
        h = a.reshape(bs, -1, length)

        h = self.proj(h)
        h = h.reshape(b, c, *spatial)

        result = x + h

        result = result / self.rescale_output_factor

        return result


Patrick von Platen's avatar
Patrick von Platen committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
class AttentionBlockNew(nn.Module):
    """
    An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
    to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
    Uses three q, k, v linear layers to compute attention
    """

    def __init__(
        self,
        channels,
        num_heads=1,
        num_head_channels=None,
        num_groups=32,
        rescale_output_factor=1.0,
        eps=1e-5,
    ):
        super().__init__()
        self.channels = channels
        if num_head_channels is None:
            self.num_heads = num_heads
        else:
            assert (
                channels % num_head_channels == 0
            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = channels // num_head_channels

        self.num_head_size = num_head_channels
        self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True)

        # define q,k,v as linear layers
        self.query = nn.Linear(channels, channels)
        self.key = nn.Linear(channels, channels)
        self.value = nn.Linear(channels, channels)

        self.rescale_output_factor = rescale_output_factor
        self.proj_attn = zero_module(nn.Linear(channels, channels, 1))

    def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor:
208
        new_projection_shape = projection.size()[:-1] + (self.num_heads, -1)
Patrick von Platen's avatar
Patrick von Platen committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
        new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
        return new_projection

    def forward(self, hidden_states):
        residual = hidden_states
        batch, channel, height, width = hidden_states.shape

        # norm
        hidden_states = self.group_norm(hidden_states)
        hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)

        # proj to q, k, v
        query_proj = self.query(hidden_states)
        key_proj = self.key(hidden_states)
        value_proj = self.value(hidden_states)

        # transpose
        query_states = self.transpose_for_scores(query_proj)
        key_states = self.transpose_for_scores(key_proj)
        value_states = self.transpose_for_scores(value_proj)

        # get scores
        attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.channels // self.num_heads)
        attention_probs = nn.functional.softmax(attention_scores, dim=-1)

        # compute attention output
        context_states = torch.matmul(attention_probs, value_states)

        context_states = context_states.permute(0, 2, 1, 3).contiguous()
        new_context_states_shape = context_states.size()[:-2] + (self.channels,)
        context_states = context_states.view(new_context_states_shape)

        # compute next hidden_states
        hidden_states = self.proj_attn(context_states)
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)

        # res connect and rescale
        hidden_states = (hidden_states + residual) / self.rescale_output_factor
        return hidden_states

    def set_weight(self, attn_layer):
        self.group_norm.weight.data = attn_layer.norm.weight.data
        self.group_norm.bias.data = attn_layer.norm.bias.data

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
        if hasattr(attn_layer, "q"):
            self.query.weight.data = attn_layer.q.weight.data[:, :, 0, 0]
            self.key.weight.data = attn_layer.k.weight.data[:, :, 0, 0]
            self.value.weight.data = attn_layer.v.weight.data[:, :, 0, 0]

            self.query.bias.data = attn_layer.q.bias.data
            self.key.bias.data = attn_layer.k.bias.data
            self.value.bias.data = attn_layer.v.bias.data

            self.proj_attn.weight.data = attn_layer.proj_out.weight.data[:, :, 0, 0]
            self.proj_attn.bias.data = attn_layer.proj_out.bias.data
        else:
            qkv_weight = attn_layer.qkv.weight.data.reshape(
                self.num_heads, 3 * self.channels // self.num_heads, self.channels
            )
            qkv_bias = attn_layer.qkv.bias.data.reshape(self.num_heads, 3 * self.channels // self.num_heads)
Patrick von Platen's avatar
Patrick von Platen committed
271

272
273
            q_w, k_w, v_w = qkv_weight.split(self.channels // self.num_heads, dim=1)
            q_b, k_b, v_b = qkv_bias.split(self.channels // self.num_heads, dim=1)
Patrick von Platen's avatar
Patrick von Platen committed
274

275
276
277
            self.query.weight.data = q_w.reshape(-1, self.channels)
            self.key.weight.data = k_w.reshape(-1, self.channels)
            self.value.weight.data = v_w.reshape(-1, self.channels)
Patrick von Platen's avatar
Patrick von Platen committed
278

279
280
281
            self.query.bias.data = q_b.reshape(-1)
            self.key.bias.data = k_b.reshape(-1)
            self.value.bias.data = v_b.reshape(-1)
Patrick von Platen's avatar
Patrick von Platen committed
282

283
284
            self.proj_attn.weight.data = attn_layer.proj.weight.data[:, :, 0]
            self.proj_attn.bias.data = attn_layer.proj.bias.data
Patrick von Platen's avatar
Patrick von Platen committed
285
286


Patrick von Platen's avatar
Patrick von Platen committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply
    standard transformer action. Finally, reshape to image
    """

    def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None):
        super().__init__()
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
        self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)

        self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)

        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
                for d in range(depth)
            ]
        )

        self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))

    def forward(self, x, context=None):
        # note: if no context is given, cross-attention defaults to self-attention
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        x = self.proj_in(x)
        x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
        for block in self.transformer_blocks:
            x = block(x, context=context)
        x = x.reshape(b, h, w, c).permute(0, 3, 1, 2)
        x = self.proj_out(x)
        return x + x_in


class BasicTransformerBlock(nn.Module):
    def __init__(self, dim, n_heads, d_head, dropout=0.0, context_dim=None, gated_ff=True, checkpoint=True):
        super().__init__()
        self.attn1 = CrossAttention(
            query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is a self-attention
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
        self.attn2 = CrossAttention(
            query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is self-attn if context is none
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)
        self.checkpoint = checkpoint

    def forward(self, x, context=None):
        x = self.attn1(self.norm1(x)) + x
        x = self.attn2(self.norm2(x), context=context) + x
        x = self.ff(self.norm3(x)) + x
        return x


class CrossAttention(nn.Module):
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.scale = dim_head**-0.5
        self.heads = heads

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))

    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

    def forward(self, x, context=None, mask=None):
        batch_size, sequence_length, dim = x.shape

        h = self.heads

        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
        v = self.to_v(context)

        q = self.reshape_heads_to_batch_dim(q)
        k = self.reshape_heads_to_batch_dim(k)
        v = self.reshape_heads_to_batch_dim(v)

        sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale

        if exists(mask):
            mask = mask.reshape(batch_size, -1)
            max_neg_value = -torch.finfo(sim.dtype).max
            mask = mask[:, None, :].repeat(h, 1, 1)
            sim.masked_fill_(~mask, max_neg_value)

        # attention, what we cannot get enough of
        attn = sim.softmax(dim=-1)

        out = torch.einsum("b i j, b j d -> b i d", attn, v)
        out = self.reshape_batch_dim_to_heads(out)
        return self.to_out(out)


class FeedForward(nn.Module):
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim)

        self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))

    def forward(self, x):
        return self.net(x)
Patrick von Platen's avatar
Patrick von Platen committed
416

Patrick von Platen's avatar
Patrick von Platen committed
417

Patrick von Platen's avatar
Patrick von Platen committed
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# TODO(Patrick) - this can and should be removed
def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


# TODO(Patrick) - remove once all weights have been converted -> not needed anymore then
class NIN(nn.Module):
    def __init__(self, in_dim, num_units, init_scale=0.1):
        super().__init__()
        self.W = nn.Parameter(torch.zeros(in_dim, num_units), requires_grad=True)
        self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True)
Patrick von Platen's avatar
Patrick von Platen committed
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454


def exists(val):
    return val is not None


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


# feedforward
class GEGLU(nn.Module):
    def __init__(self, dim_in, dim_out):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)