attention_processor.py 256 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import inspect
15
import math
16
from typing import Callable, List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
17
18
19

import torch
import torch.nn.functional as F
20
from torch import nn
Patrick von Platen's avatar
Patrick von Platen committed
21

22
from ..image_processor import IPAdapterMaskProcessor
Juan Acevedo's avatar
Juan Acevedo committed
23
24
from ..utils import deprecate, is_torch_xla_available, logging
from ..utils.import_utils import is_torch_npu_available, is_torch_xla_version, is_xformers_available
Sayak Paul's avatar
Sayak Paul committed
25
from ..utils.torch_utils import is_torch_version, maybe_allow_in_graph
Patrick von Platen's avatar
Patrick von Platen committed
26
27
28
29


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

30
31
if is_torch_npu_available():
    import torch_npu
Patrick von Platen's avatar
Patrick von Platen committed
32
33
34
35
36
37
38

if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None

Juan Acevedo's avatar
Juan Acevedo committed
39
40
41
42
43
44
45
46
47
if is_torch_xla_available():
    # flash attention pallas kernel is introduced in the torch_xla 2.3 release.
    if is_torch_xla_version(">", "2.2"):
        from torch_xla.experimental.custom_kernel import flash_attention
        from torch_xla.runtime import is_spmd
    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

Patrick von Platen's avatar
Patrick von Platen committed
48

49
@maybe_allow_in_graph
Patrick von Platen's avatar
Patrick von Platen committed
50
51
52
53
54
class Attention(nn.Module):
    r"""
    A cross attention layer.

    Parameters:
55
56
        query_dim (`int`):
            The number of channels in the query.
Patrick von Platen's avatar
Patrick von Platen committed
57
58
        cross_attention_dim (`int`, *optional*):
            The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
59
60
        heads (`int`,  *optional*, defaults to 8):
            The number of heads to use for multi-head attention.
61
62
63
64
        kv_heads (`int`,  *optional*, defaults to `None`):
            The number of key and value heads to use for multi-head attention. Defaults to `heads`. If
            `kv_heads=heads`, the model will use Multi Head Attention (MHA), if `kv_heads=1` the model will use Multi
            Query Attention (MQA) otherwise GQA is used.
65
66
67
68
        dim_head (`int`,  *optional*, defaults to 64):
            The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability to use.
Patrick von Platen's avatar
Patrick von Platen committed
69
70
        bias (`bool`, *optional*, defaults to False):
            Set to `True` for the query, key, and value linear layers to contain a bias parameter.
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        upcast_attention (`bool`, *optional*, defaults to False):
            Set to `True` to upcast the attention computation to `float32`.
        upcast_softmax (`bool`, *optional*, defaults to False):
            Set to `True` to upcast the softmax computation to `float32`.
        cross_attention_norm (`str`, *optional*, defaults to `None`):
            The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
        cross_attention_norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups to use for the group norm in the cross attention.
        added_kv_proj_dim (`int`, *optional*, defaults to `None`):
            The number of channels to use for the added key and value projections. If `None`, no projection is used.
        norm_num_groups (`int`, *optional*, defaults to `None`):
            The number of groups to use for the group norm in the attention.
        spatial_norm_dim (`int`, *optional*, defaults to `None`):
            The number of channels to use for the spatial normalization.
        out_bias (`bool`, *optional*, defaults to `True`):
            Set to `True` to use a bias in the output linear layer.
        scale_qk (`bool`, *optional*, defaults to `True`):
            Set to `True` to scale the query and key by `1 / sqrt(dim_head)`.
        only_cross_attention (`bool`, *optional*, defaults to `False`):
            Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if
            `added_kv_proj_dim` is not `None`.
        eps (`float`, *optional*, defaults to 1e-5):
            An additional value added to the denominator in group normalization that is used for numerical stability.
        rescale_output_factor (`float`, *optional*, defaults to 1.0):
            A factor to rescale the output by dividing it with this value.
        residual_connection (`bool`, *optional*, defaults to `False`):
            Set to `True` to add the residual connection to the output.
        _from_deprecated_attn_block (`bool`, *optional*, defaults to `False`):
            Set to `True` if the attention block is loaded from a deprecated state dict.
        processor (`AttnProcessor`, *optional*, defaults to `None`):
            The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and
            `AttnProcessor` otherwise.
Patrick von Platen's avatar
Patrick von Platen committed
103
104
105
106
107
108
109
    """

    def __init__(
        self,
        query_dim: int,
        cross_attention_dim: Optional[int] = None,
        heads: int = 8,
110
        kv_heads: Optional[int] = None,
Patrick von Platen's avatar
Patrick von Platen committed
111
112
        dim_head: int = 64,
        dropout: float = 0.0,
113
        bias: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
114
115
        upcast_attention: bool = False,
        upcast_softmax: bool = False,
116
117
        cross_attention_norm: Optional[str] = None,
        cross_attention_norm_num_groups: int = 32,
118
        qk_norm: Optional[str] = None,
Patrick von Platen's avatar
Patrick von Platen committed
119
        added_kv_proj_dim: Optional[int] = None,
Sayak Paul's avatar
Sayak Paul committed
120
        added_proj_bias: Optional[bool] = True,
Patrick von Platen's avatar
Patrick von Platen committed
121
        norm_num_groups: Optional[int] = None,
YiYi Xu's avatar
YiYi Xu committed
122
        spatial_norm_dim: Optional[int] = None,
Patrick von Platen's avatar
Patrick von Platen committed
123
124
        out_bias: bool = True,
        scale_qk: bool = True,
125
        only_cross_attention: bool = False,
126
127
128
        eps: float = 1e-5,
        rescale_output_factor: float = 1.0,
        residual_connection: bool = False,
129
        _from_deprecated_attn_block: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
130
        processor: Optional["AttnProcessor"] = None,
131
        out_dim: int = None,
Aryan's avatar
Aryan committed
132
        out_context_dim: int = None,
Dhruv Nair's avatar
Dhruv Nair committed
133
        context_pre_only=None,
Sayak Paul's avatar
Sayak Paul committed
134
        pre_only=False,
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
135
        elementwise_affine: bool = True,
Aryan's avatar
Aryan committed
136
        is_causal: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
137
138
    ):
        super().__init__()
Sayak Paul's avatar
Sayak Paul committed
139
140

        # To prevent circular import.
Aryan's avatar
Aryan committed
141
        from .normalization import FP32LayerNorm, LpNorm, RMSNorm
Sayak Paul's avatar
Sayak Paul committed
142

143
        self.inner_dim = out_dim if out_dim is not None else dim_head * heads
144
        self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads
145
        self.query_dim = query_dim
146
147
        self.use_bias = bias
        self.is_cross_attention = cross_attention_dim is not None
148
        self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
Patrick von Platen's avatar
Patrick von Platen committed
149
150
        self.upcast_attention = upcast_attention
        self.upcast_softmax = upcast_softmax
151
152
        self.rescale_output_factor = rescale_output_factor
        self.residual_connection = residual_connection
153
        self.dropout = dropout
154
        self.fused_projections = False
155
        self.out_dim = out_dim if out_dim is not None else query_dim
Aryan's avatar
Aryan committed
156
        self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim
Dhruv Nair's avatar
Dhruv Nair committed
157
        self.context_pre_only = context_pre_only
Sayak Paul's avatar
Sayak Paul committed
158
        self.pre_only = pre_only
Aryan's avatar
Aryan committed
159
        self.is_causal = is_causal
160
161
162
163

        # we make use of this private variable to know whether this class is loaded
        # with an deprecated state dict so that we can convert it on the fly
        self._from_deprecated_attn_block = _from_deprecated_attn_block
Patrick von Platen's avatar
Patrick von Platen committed
164

165
166
        self.scale_qk = scale_qk
        self.scale = dim_head**-0.5 if self.scale_qk else 1.0
Patrick von Platen's avatar
Patrick von Platen committed
167

168
        self.heads = out_dim // dim_head if out_dim is not None else heads
Patrick von Platen's avatar
Patrick von Platen committed
169
170
171
172
173
174
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self.sliceable_head_dim = heads

        self.added_kv_proj_dim = added_kv_proj_dim
175
176
177
178
179
180
        self.only_cross_attention = only_cross_attention

        if self.added_kv_proj_dim is None and self.only_cross_attention:
            raise ValueError(
                "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
            )
Patrick von Platen's avatar
Patrick von Platen committed
181
182

        if norm_num_groups is not None:
183
            self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
184
185
186
        else:
            self.group_norm = None

YiYi Xu's avatar
YiYi Xu committed
187
188
189
190
191
        if spatial_norm_dim is not None:
            self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim)
        else:
            self.spatial_norm = None

192
193
194
195
        if qk_norm is None:
            self.norm_q = None
            self.norm_k = None
        elif qk_norm == "layer_norm":
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
196
197
            self.norm_q = nn.LayerNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
            self.norm_k = nn.LayerNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
Sayak Paul's avatar
Sayak Paul committed
198
199
200
        elif qk_norm == "fp32_layer_norm":
            self.norm_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
            self.norm_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
201
        elif qk_norm == "layer_norm_across_heads":
Aryan's avatar
Aryan committed
202
            # Lumina applies qk norm across all heads
203
204
            self.norm_q = nn.LayerNorm(dim_head * heads, eps=eps)
            self.norm_k = nn.LayerNorm(dim_head * kv_heads, eps=eps)
Sayak Paul's avatar
Sayak Paul committed
205
206
207
        elif qk_norm == "rms_norm":
            self.norm_q = RMSNorm(dim_head, eps=eps)
            self.norm_k = RMSNorm(dim_head, eps=eps)
Aryan's avatar
Aryan committed
208
209
210
211
        elif qk_norm == "rms_norm_across_heads":
            # LTX applies qk norm across all heads
            self.norm_q = RMSNorm(dim_head * heads, eps=eps)
            self.norm_k = RMSNorm(dim_head * kv_heads, eps=eps)
Aryan's avatar
Aryan committed
212
213
214
        elif qk_norm == "l2":
            self.norm_q = LpNorm(p=2, dim=-1, eps=eps)
            self.norm_k = LpNorm(p=2, dim=-1, eps=eps)
215
        else:
YiYi Xu's avatar
YiYi Xu committed
216
            raise ValueError(f"unknown qk_norm: {qk_norm}. Should be None,'layer_norm','fp32_layer_norm','rms_norm'")
217

218
219
220
        if cross_attention_norm is None:
            self.norm_cross = None
        elif cross_attention_norm == "layer_norm":
221
            self.norm_cross = nn.LayerNorm(self.cross_attention_dim)
222
223
224
225
226
227
228
229
230
        elif cross_attention_norm == "group_norm":
            if self.added_kv_proj_dim is not None:
                # The given `encoder_hidden_states` are initially of shape
                # (batch_size, seq_len, added_kv_proj_dim) before being projected
                # to (batch_size, seq_len, cross_attention_dim). The norm is applied
                # before the projection, so we need to use `added_kv_proj_dim` as
                # the number of channels for the group norm.
                norm_cross_num_channels = added_kv_proj_dim
            else:
231
                norm_cross_num_channels = self.cross_attention_dim
232
233
234
235
236
237
238
239

            self.norm_cross = nn.GroupNorm(
                num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True
            )
        else:
            raise ValueError(
                f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'"
            )
Patrick von Platen's avatar
Patrick von Platen committed
240

241
        self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias)
242
243
244

        if not self.only_cross_attention:
            # only relevant for the `AddedKVProcessor` classes
245
246
            self.to_k = nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias)
            self.to_v = nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias)
247
248
249
        else:
            self.to_k = None
            self.to_v = None
Patrick von Platen's avatar
Patrick von Platen committed
250

251
        self.added_proj_bias = added_proj_bias
Patrick von Platen's avatar
Patrick von Platen committed
252
        if self.added_kv_proj_dim is not None:
Sayak Paul's avatar
Sayak Paul committed
253
254
            self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias)
            self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias)
Dhruv Nair's avatar
Dhruv Nair committed
255
            if self.context_pre_only is not None:
Sayak Paul's avatar
Sayak Paul committed
256
                self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
Aryan's avatar
Aryan committed
257
258
259
260
        else:
            self.add_q_proj = None
            self.add_k_proj = None
            self.add_v_proj = None
Patrick von Platen's avatar
Patrick von Platen committed
261

Sayak Paul's avatar
Sayak Paul committed
262
263
264
265
        if not self.pre_only:
            self.to_out = nn.ModuleList([])
            self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias))
            self.to_out.append(nn.Dropout(dropout))
Aryan's avatar
Aryan committed
266
267
        else:
            self.to_out = None
Patrick von Platen's avatar
Patrick von Platen committed
268

Dhruv Nair's avatar
Dhruv Nair committed
269
        if self.context_pre_only is not None and not self.context_pre_only:
Aryan's avatar
Aryan committed
270
            self.to_add_out = nn.Linear(self.inner_dim, self.out_context_dim, bias=out_bias)
Aryan's avatar
Aryan committed
271
272
        else:
            self.to_add_out = None
Dhruv Nair's avatar
Dhruv Nair committed
273

Sayak Paul's avatar
Sayak Paul committed
274
275
276
277
        if qk_norm is not None and added_kv_proj_dim is not None:
            if qk_norm == "fp32_layer_norm":
                self.norm_added_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
                self.norm_added_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
Sayak Paul's avatar
Sayak Paul committed
278
279
280
            elif qk_norm == "rms_norm":
                self.norm_added_q = RMSNorm(dim_head, eps=eps)
                self.norm_added_k = RMSNorm(dim_head, eps=eps)
YiYi Xu's avatar
YiYi Xu committed
281
282
283
284
            else:
                raise ValueError(
                    f"unknown qk_norm: {qk_norm}. Should be one of `None,'layer_norm','fp32_layer_norm','rms_norm'`"
                )
Sayak Paul's avatar
Sayak Paul committed
285
286
287
288
        else:
            self.norm_added_q = None
            self.norm_added_k = None

Patrick von Platen's avatar
Patrick von Platen committed
289
290
291
292
293
294
        # set attention processor
        # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
        # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
        # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
        if processor is None:
            processor = (
295
                AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
Patrick von Platen's avatar
Patrick von Platen committed
296
297
298
            )
        self.set_processor(processor)

Juan Acevedo's avatar
Juan Acevedo committed
299
    def set_use_xla_flash_attention(
300
301
302
303
        self,
        use_xla_flash_attention: bool,
        partition_spec: Optional[Tuple[Optional[str], ...]] = None,
        is_flux=False,
Juan Acevedo's avatar
Juan Acevedo committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    ) -> None:
        r"""
        Set whether to use xla flash attention from `torch_xla` or not.

        Args:
            use_xla_flash_attention (`bool`):
                Whether to use pallas flash attention kernel from `torch_xla` or not.
            partition_spec (`Tuple[]`, *optional*):
                Specify the partition specification if using SPMD. Otherwise None.
        """
        if use_xla_flash_attention:
            if not is_torch_xla_available:
                raise "torch_xla is not available"
            elif is_torch_xla_version("<", "2.3"):
                raise "flash attention pallas kernel is supported from torch_xla version 2.3"
            elif is_spmd() and is_torch_xla_version("<", "2.4"):
                raise "flash attention pallas kernel using SPMD is supported from torch_xla version 2.4"
            else:
322
323
324
325
                if is_flux:
                    processor = XLAFluxFlashAttnProcessor2_0(partition_spec)
                else:
                    processor = XLAFlashAttnProcessor2_0(partition_spec)
Juan Acevedo's avatar
Juan Acevedo committed
326
327
328
329
330
331
        else:
            processor = (
                AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
            )
        self.set_processor(processor)

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    def set_use_npu_flash_attention(self, use_npu_flash_attention: bool) -> None:
        r"""
        Set whether to use npu flash attention from `torch_npu` or not.

        """
        if use_npu_flash_attention:
            processor = AttnProcessorNPU()
        else:
            # set attention processor
            # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
            # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
            # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
            processor = (
                AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
            )
        self.set_processor(processor)

Patrick von Platen's avatar
Patrick von Platen committed
349
350
    def set_use_memory_efficient_attention_xformers(
        self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
351
352
353
354
355
356
357
358
359
360
361
    ) -> None:
        r"""
        Set whether to use memory efficient attention from `xformers` or not.

        Args:
            use_memory_efficient_attention_xformers (`bool`):
                Whether to use memory efficient attention from `xformers` or not.
            attention_op (`Callable`, *optional*):
                The attention operation to use. Defaults to `None` which uses the default attention operation from
                `xformers`.
        """
362
        is_custom_diffusion = hasattr(self, "processor") and isinstance(
363
364
            self.processor,
            (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0),
365
        )
366
367
368
369
370
371
372
373
374
        is_added_kv_processor = hasattr(self, "processor") and isinstance(
            self.processor,
            (
                AttnAddedKVProcessor,
                AttnAddedKVProcessor2_0,
                SlicedAttnAddedKVProcessor,
                XFormersAttnAddedKVProcessor,
            ),
        )
375
376
377
378
        is_ip_adapter = hasattr(self, "processor") and isinstance(
            self.processor,
            (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, IPAdapterXFormersAttnProcessor),
        )
379
380
381
382
383
384
385
386
        is_joint_processor = hasattr(self, "processor") and isinstance(
            self.processor,
            (
                JointAttnProcessor2_0,
                XFormersJointAttnProcessor,
            ),
        )

Patrick von Platen's avatar
Patrick von Platen committed
387
        if use_memory_efficient_attention_xformers:
388
            if is_added_kv_processor and is_custom_diffusion:
Patrick von Platen's avatar
Patrick von Platen committed
389
                raise NotImplementedError(
390
                    f"Memory efficient attention is currently not supported for custom diffusion for attention processor type {self.processor}"
Patrick von Platen's avatar
Patrick von Platen committed
391
                )
392
            if not is_xformers_available():
Patrick von Platen's avatar
Patrick von Platen committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
                raise ModuleNotFoundError(
                    (
                        "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                        " xformers"
                    ),
                    name="xformers",
                )
            elif not torch.cuda.is_available():
                raise ValueError(
                    "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
                    " only available for GPU "
                )
            else:
                try:
                    # Make sure we can run the memory efficient attention
408
409
410
411
412
413
                    dtype = None
                    if attention_op is not None:
                        op_fw, op_bw = attention_op
                        dtype, *_ = op_fw.SUPPORTED_DTYPES
                    q = torch.randn((1, 2, 40), device="cuda", dtype=dtype)
                    _ = xformers.ops.memory_efficient_attention(q, q, q)
Patrick von Platen's avatar
Patrick von Platen committed
414
415
416
                except Exception as e:
                    raise e

417
            if is_custom_diffusion:
418
419
420
421
422
423
424
425
426
427
                processor = CustomDiffusionXFormersAttnProcessor(
                    train_kv=self.processor.train_kv,
                    train_q_out=self.processor.train_q_out,
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    attention_op=attention_op,
                )
                processor.load_state_dict(self.processor.state_dict())
                if hasattr(self.processor, "to_k_custom_diffusion"):
                    processor.to(self.processor.to_k_custom_diffusion.weight.device)
428
429
430
431
432
433
434
435
436
            elif is_added_kv_processor:
                # TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP
                # which uses this type of cross attention ONLY because the attention mask of format
                # [0, ..., -10.000, ..., 0, ...,] is not supported
                # throw warning
                logger.info(
                    "Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation."
                )
                processor = XFormersAttnAddedKVProcessor(attention_op=attention_op)
437
438
439
440
441
442
443
444
445
446
447
448
449
            elif is_ip_adapter:
                processor = IPAdapterXFormersAttnProcessor(
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    num_tokens=self.processor.num_tokens,
                    scale=self.processor.scale,
                    attention_op=attention_op,
                )
                processor.load_state_dict(self.processor.state_dict())
                if hasattr(self.processor, "to_k_ip"):
                    processor.to(
                        device=self.processor.to_k_ip[0].weight.device, dtype=self.processor.to_k_ip[0].weight.dtype
                    )
450
451
            elif is_joint_processor:
                processor = XFormersJointAttnProcessor(attention_op=attention_op)
Patrick von Platen's avatar
Patrick von Platen committed
452
453
454
            else:
                processor = XFormersAttnProcessor(attention_op=attention_op)
        else:
455
            if is_custom_diffusion:
456
457
458
459
460
461
                attn_processor_class = (
                    CustomDiffusionAttnProcessor2_0
                    if hasattr(F, "scaled_dot_product_attention")
                    else CustomDiffusionAttnProcessor
                )
                processor = attn_processor_class(
462
463
464
465
466
467
468
469
                    train_kv=self.processor.train_kv,
                    train_q_out=self.processor.train_q_out,
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                )
                processor.load_state_dict(self.processor.state_dict())
                if hasattr(self.processor, "to_k_custom_diffusion"):
                    processor.to(self.processor.to_k_custom_diffusion.weight.device)
470
471
472
473
474
475
476
477
478
479
480
481
            elif is_ip_adapter:
                processor = IPAdapterAttnProcessor2_0(
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    num_tokens=self.processor.num_tokens,
                    scale=self.processor.scale,
                )
                processor.load_state_dict(self.processor.state_dict())
                if hasattr(self.processor, "to_k_ip"):
                    processor.to(
                        device=self.processor.to_k_ip[0].weight.device, dtype=self.processor.to_k_ip[0].weight.dtype
                    )
Patrick von Platen's avatar
Patrick von Platen committed
482
            else:
483
484
485
486
487
488
489
490
491
                # set attention processor
                # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
                # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
                # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
                processor = (
                    AttnProcessor2_0()
                    if hasattr(F, "scaled_dot_product_attention") and self.scale_qk
                    else AttnProcessor()
                )
Patrick von Platen's avatar
Patrick von Platen committed
492
493
494

        self.set_processor(processor)

495
496
497
498
499
500
501
502
    def set_attention_slice(self, slice_size: int) -> None:
        r"""
        Set the slice size for attention computation.

        Args:
            slice_size (`int`):
                The slice size for attention computation.
        """
Patrick von Platen's avatar
Patrick von Platen committed
503
504
505
506
507
508
509
510
511
512
        if slice_size is not None and slice_size > self.sliceable_head_dim:
            raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")

        if slice_size is not None and self.added_kv_proj_dim is not None:
            processor = SlicedAttnAddedKVProcessor(slice_size)
        elif slice_size is not None:
            processor = SlicedAttnProcessor(slice_size)
        elif self.added_kv_proj_dim is not None:
            processor = AttnAddedKVProcessor()
        else:
513
514
515
516
517
518
519
            # set attention processor
            # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
            # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
            # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
            processor = (
                AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
            )
Patrick von Platen's avatar
Patrick von Platen committed
520
521
522

        self.set_processor(processor)

523
    def set_processor(self, processor: "AttnProcessor") -> None:
524
525
526
527
528
529
530
        r"""
        Set the attention processor to use.

        Args:
            processor (`AttnProcessor`):
                The attention processor to use.
        """
Patrick von Platen's avatar
Patrick von Platen committed
531
532
533
534
535
536
537
538
539
540
541
542
        # if current processor is in `self._modules` and if passed `processor` is not, we need to
        # pop `processor` from `self._modules`
        if (
            hasattr(self, "processor")
            and isinstance(self.processor, torch.nn.Module)
            and not isinstance(processor, torch.nn.Module)
        ):
            logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
            self._modules.pop("processor")

        self.processor = processor

543
    def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor":
544
545
546
547
548
549
550
551
552
553
        r"""
        Get the attention processor in use.

        Args:
            return_deprecated_lora (`bool`, *optional*, defaults to `False`):
                Set to `True` to return the deprecated LoRA attention processor.

        Returns:
            "AttentionProcessor": The attention processor in use.
        """
554
555
556
        if not return_deprecated_lora:
            return self.processor

557
558
    def forward(
        self,
559
560
561
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
        **cross_attention_kwargs,
    ) -> torch.Tensor:
        r"""
        The forward method of the `Attention` class.

        Args:
            hidden_states (`torch.Tensor`):
                The hidden states of the query.
            encoder_hidden_states (`torch.Tensor`, *optional*):
                The hidden states of the encoder.
            attention_mask (`torch.Tensor`, *optional*):
                The attention mask to use. If `None`, no mask is applied.
            **cross_attention_kwargs:
                Additional keyword arguments to pass along to the cross attention.

        Returns:
            `torch.Tensor`: The output of the attention layer.
        """
Patrick von Platen's avatar
Patrick von Platen committed
580
581
582
        # The `Attention` class can call different attention processors / attention functions
        # here we simply pass along all tensors to the selected processor class
        # For standard processors that are defined here, `**cross_attention_kwargs` is empty
583
584

        attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
hlky's avatar
hlky committed
585
        quiet_attn_parameters = {"ip_adapter_masks", "ip_hidden_states"}
586
587
588
        unused_kwargs = [
            k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters and k not in quiet_attn_parameters
        ]
589
590
591
592
593
594
        if len(unused_kwargs) > 0:
            logger.warning(
                f"cross_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
            )
        cross_attention_kwargs = {k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters}

Patrick von Platen's avatar
Patrick von Platen committed
595
596
597
598
599
600
601
602
        return self.processor(
            self,
            hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )

603
604
605
606
607
608
609
610
611
612
613
    def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor:
        r"""
        Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads`
        is the number of heads initialized while constructing the `Attention` class.

        Args:
            tensor (`torch.Tensor`): The tensor to reshape.

        Returns:
            `torch.Tensor`: The reshaped tensor.
        """
Patrick von Platen's avatar
Patrick von Platen committed
614
615
616
617
618
619
        head_size = self.heads
        batch_size, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

620
621
622
623
624
625
626
627
628
629
630
631
632
    def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor:
        r"""
        Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is
        the number of heads initialized while constructing the `Attention` class.

        Args:
            tensor (`torch.Tensor`): The tensor to reshape.
            out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is
                reshaped to `[batch_size * heads, seq_len, dim // heads]`.

        Returns:
            `torch.Tensor`: The reshaped tensor.
        """
Patrick von Platen's avatar
Patrick von Platen committed
633
        head_size = self.heads
634
635
636
637
638
639
        if tensor.ndim == 3:
            batch_size, seq_len, dim = tensor.shape
            extra_dim = 1
        else:
            batch_size, extra_dim, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size, seq_len * extra_dim, head_size, dim // head_size)
640
641
642
        tensor = tensor.permute(0, 2, 1, 3)

        if out_dim == 3:
643
            tensor = tensor.reshape(batch_size * head_size, seq_len * extra_dim, dim // head_size)
644

Patrick von Platen's avatar
Patrick von Platen committed
645
646
        return tensor

647
    def get_attention_scores(
648
        self, query: torch.Tensor, key: torch.Tensor, attention_mask: Optional[torch.Tensor] = None
649
650
651
652
653
654
655
656
657
658
659
660
    ) -> torch.Tensor:
        r"""
        Compute the attention scores.

        Args:
            query (`torch.Tensor`): The query tensor.
            key (`torch.Tensor`): The key tensor.
            attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.

        Returns:
            `torch.Tensor`: The attention probabilities/scores.
        """
Patrick von Platen's avatar
Patrick von Platen committed
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
        dtype = query.dtype
        if self.upcast_attention:
            query = query.float()
            key = key.float()

        if attention_mask is None:
            baddbmm_input = torch.empty(
                query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
            )
            beta = 0
        else:
            baddbmm_input = attention_mask
            beta = 1

        attention_scores = torch.baddbmm(
            baddbmm_input,
            query,
            key.transpose(-1, -2),
            beta=beta,
            alpha=self.scale,
        )
682
        del baddbmm_input
Patrick von Platen's avatar
Patrick von Platen committed
683
684
685
686
687

        if self.upcast_softmax:
            attention_scores = attention_scores.float()

        attention_probs = attention_scores.softmax(dim=-1)
688
689
        del attention_scores

Patrick von Platen's avatar
Patrick von Platen committed
690
691
692
693
        attention_probs = attention_probs.to(dtype)

        return attention_probs

694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
    def prepare_attention_mask(
        self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3
    ) -> torch.Tensor:
        r"""
        Prepare the attention mask for the attention computation.

        Args:
            attention_mask (`torch.Tensor`):
                The attention mask to prepare.
            target_length (`int`):
                The target length of the attention mask. This is the length of the attention mask after padding.
            batch_size (`int`):
                The batch size, which is used to repeat the attention mask.
            out_dim (`int`, *optional*, defaults to `3`):
                The output dimension of the attention mask. Can be either `3` or `4`.

        Returns:
            `torch.Tensor`: The prepared attention mask.
        """
Patrick von Platen's avatar
Patrick von Platen committed
713
714
715
716
        head_size = self.heads
        if attention_mask is None:
            return attention_mask

717
        current_length: int = attention_mask.shape[-1]
718
        if current_length != target_length:
Patrick von Platen's avatar
Patrick von Platen committed
719
720
721
722
723
724
725
            if attention_mask.device.type == "mps":
                # HACK: MPS: Does not support padding by greater than dimension of input tensor.
                # Instead, we can manually construct the padding tensor.
                padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length)
                padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device)
                attention_mask = torch.cat([attention_mask, padding], dim=2)
            else:
726
727
728
729
                # TODO: for pipelines such as stable-diffusion, padding cross-attn mask:
                #       we want to instead pad by (0, remaining_length), where remaining_length is:
                #       remaining_length: int = target_length - current_length
                # TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding
Patrick von Platen's avatar
Patrick von Platen committed
730
731
                attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)

732
733
734
735
736
737
738
        if out_dim == 3:
            if attention_mask.shape[0] < batch_size * head_size:
                attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
        elif out_dim == 4:
            attention_mask = attention_mask.unsqueeze(1)
            attention_mask = attention_mask.repeat_interleave(head_size, dim=1)

Patrick von Platen's avatar
Patrick von Platen committed
739
740
        return attention_mask

741
742
743
744
745
746
747
748
749
750
751
    def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
        r"""
        Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the
        `Attention` class.

        Args:
            encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder.

        Returns:
            `torch.Tensor`: The normalized encoder hidden states.
        """
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
        assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states"

        if isinstance(self.norm_cross, nn.LayerNorm):
            encoder_hidden_states = self.norm_cross(encoder_hidden_states)
        elif isinstance(self.norm_cross, nn.GroupNorm):
            # Group norm norms along the channels dimension and expects
            # input to be in the shape of (N, C, *). In this case, we want
            # to norm along the hidden dimension, so we need to move
            # (batch_size, sequence_length, hidden_size) ->
            # (batch_size, hidden_size, sequence_length)
            encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
            encoder_hidden_states = self.norm_cross(encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
        else:
            assert False

        return encoder_hidden_states

770
771
772
773
774
    @torch.no_grad()
    def fuse_projections(self, fuse=True):
        device = self.to_q.weight.data.device
        dtype = self.to_q.weight.data.dtype

775
        if not self.is_cross_attention:
776
777
778
779
780
781
            # fetch weight matrices.
            concatenated_weights = torch.cat([self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data])
            in_features = concatenated_weights.shape[1]
            out_features = concatenated_weights.shape[0]

            # create a new single projection layer and copy over the weights.
782
            self.to_qkv = nn.Linear(in_features, out_features, bias=self.use_bias, device=device, dtype=dtype)
783
            self.to_qkv.weight.copy_(concatenated_weights)
784
785
786
            if self.use_bias:
                concatenated_bias = torch.cat([self.to_q.bias.data, self.to_k.bias.data, self.to_v.bias.data])
                self.to_qkv.bias.copy_(concatenated_bias)
787
788
789
790
791
792

        else:
            concatenated_weights = torch.cat([self.to_k.weight.data, self.to_v.weight.data])
            in_features = concatenated_weights.shape[1]
            out_features = concatenated_weights.shape[0]

793
            self.to_kv = nn.Linear(in_features, out_features, bias=self.use_bias, device=device, dtype=dtype)
794
            self.to_kv.weight.copy_(concatenated_weights)
795
796
797
            if self.use_bias:
                concatenated_bias = torch.cat([self.to_k.bias.data, self.to_v.bias.data])
                self.to_kv.bias.copy_(concatenated_bias)
798

799
        # handle added projections for SD3 and others.
Aryan's avatar
Aryan committed
800
801
802
803
804
        if (
            getattr(self, "add_q_proj", None) is not None
            and getattr(self, "add_k_proj", None) is not None
            and getattr(self, "add_v_proj", None) is not None
        ):
805
806
807
808
809
810
            concatenated_weights = torch.cat(
                [self.add_q_proj.weight.data, self.add_k_proj.weight.data, self.add_v_proj.weight.data]
            )
            in_features = concatenated_weights.shape[1]
            out_features = concatenated_weights.shape[0]

811
812
            self.to_added_qkv = nn.Linear(
                in_features, out_features, bias=self.added_proj_bias, device=device, dtype=dtype
813
            )
814
815
816
817
818
819
            self.to_added_qkv.weight.copy_(concatenated_weights)
            if self.added_proj_bias:
                concatenated_bias = torch.cat(
                    [self.add_q_proj.bias.data, self.add_k_proj.bias.data, self.add_v_proj.bias.data]
                )
                self.to_added_qkv.bias.copy_(concatenated_bias)
820

821
822
        self.fused_projections = fuse

Patrick von Platen's avatar
Patrick von Platen committed
823

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
class SanaMultiscaleAttentionProjection(nn.Module):
    def __init__(
        self,
        in_channels: int,
        num_attention_heads: int,
        kernel_size: int,
    ) -> None:
        super().__init__()

        channels = 3 * in_channels
        self.proj_in = nn.Conv2d(
            channels,
            channels,
            kernel_size,
            padding=kernel_size // 2,
            groups=channels,
            bias=False,
        )
        self.proj_out = nn.Conv2d(channels, channels, 1, 1, 0, groups=3 * num_attention_heads, bias=False)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.proj_in(hidden_states)
        hidden_states = self.proj_out(hidden_states)
        return hidden_states


class SanaMultiscaleLinearAttention(nn.Module):
    r"""Lightweight multi-scale linear attention"""

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        num_attention_heads: Optional[int] = None,
        attention_head_dim: int = 8,
        mult: float = 1.0,
        norm_type: str = "batch_norm",
        kernel_sizes: Tuple[int, ...] = (5,),
        eps: float = 1e-15,
        residual_connection: bool = False,
    ):
        super().__init__()

        # To prevent circular import
        from .normalization import get_normalization

        self.eps = eps
        self.attention_head_dim = attention_head_dim
        self.norm_type = norm_type
        self.residual_connection = residual_connection

        num_attention_heads = (
            int(in_channels // attention_head_dim * mult) if num_attention_heads is None else num_attention_heads
        )
        inner_dim = num_attention_heads * attention_head_dim

        self.to_q = nn.Linear(in_channels, inner_dim, bias=False)
        self.to_k = nn.Linear(in_channels, inner_dim, bias=False)
        self.to_v = nn.Linear(in_channels, inner_dim, bias=False)

        self.to_qkv_multiscale = nn.ModuleList()
        for kernel_size in kernel_sizes:
            self.to_qkv_multiscale.append(
                SanaMultiscaleAttentionProjection(inner_dim, num_attention_heads, kernel_size)
            )

        self.nonlinearity = nn.ReLU()
        self.to_out = nn.Linear(inner_dim * (1 + len(kernel_sizes)), out_channels, bias=False)
        self.norm_out = get_normalization(norm_type, num_features=out_channels)

        self.processor = SanaMultiscaleAttnProcessor2_0()

    def apply_linear_attention(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor) -> torch.Tensor:
        value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1)  # Adds padding
        scores = torch.matmul(value, key.transpose(-1, -2))
        hidden_states = torch.matmul(scores, query)

        hidden_states = hidden_states.to(dtype=torch.float32)
        hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + self.eps)
        return hidden_states

    def apply_quadratic_attention(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor) -> torch.Tensor:
        scores = torch.matmul(key.transpose(-1, -2), query)
        scores = scores.to(dtype=torch.float32)
        scores = scores / (torch.sum(scores, dim=2, keepdim=True) + self.eps)
909
        hidden_states = torch.matmul(value, scores.to(value.dtype))
910
911
912
913
914
915
        return hidden_states

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        return self.processor(self, hidden_states)


Dhruv Nair's avatar
Dhruv Nair committed
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
class MochiAttention(nn.Module):
    def __init__(
        self,
        query_dim: int,
        added_kv_proj_dim: int,
        processor: "MochiAttnProcessor2_0",
        heads: int = 8,
        dim_head: int = 64,
        dropout: float = 0.0,
        bias: bool = False,
        added_proj_bias: bool = True,
        out_dim: Optional[int] = None,
        out_context_dim: Optional[int] = None,
        out_bias: bool = True,
        context_pre_only: bool = False,
        eps: float = 1e-5,
    ):
        super().__init__()
        from .normalization import MochiRMSNorm

        self.inner_dim = out_dim if out_dim is not None else dim_head * heads
        self.out_dim = out_dim if out_dim is not None else query_dim
        self.out_context_dim = out_context_dim if out_context_dim else query_dim
        self.context_pre_only = context_pre_only

        self.heads = out_dim // dim_head if out_dim is not None else heads

        self.norm_q = MochiRMSNorm(dim_head, eps, True)
        self.norm_k = MochiRMSNorm(dim_head, eps, True)
        self.norm_added_q = MochiRMSNorm(dim_head, eps, True)
        self.norm_added_k = MochiRMSNorm(dim_head, eps, True)

        self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias)
        self.to_k = nn.Linear(query_dim, self.inner_dim, bias=bias)
        self.to_v = nn.Linear(query_dim, self.inner_dim, bias=bias)

        self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
        self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
        if self.context_pre_only is not None:
            self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)

        self.to_out = nn.ModuleList([])
        self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias))
        self.to_out.append(nn.Dropout(dropout))

        if not self.context_pre_only:
            self.to_add_out = nn.Linear(self.inner_dim, self.out_context_dim, bias=out_bias)

        self.processor = processor

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        **kwargs,
    ):
        return self.processor(
            self,
            hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            **kwargs,
        )


class MochiAttnProcessor2_0:
    """Attention processor used in Mochi."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("MochiAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: "MochiAttention",
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        query = query.unflatten(2, (attn.heads, -1))
        key = key.unflatten(2, (attn.heads, -1))
        value = value.unflatten(2, (attn.heads, -1))

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        encoder_query = attn.add_q_proj(encoder_hidden_states)
        encoder_key = attn.add_k_proj(encoder_hidden_states)
        encoder_value = attn.add_v_proj(encoder_hidden_states)

        encoder_query = encoder_query.unflatten(2, (attn.heads, -1))
        encoder_key = encoder_key.unflatten(2, (attn.heads, -1))
        encoder_value = encoder_value.unflatten(2, (attn.heads, -1))

        if attn.norm_added_q is not None:
            encoder_query = attn.norm_added_q(encoder_query)
        if attn.norm_added_k is not None:
            encoder_key = attn.norm_added_k(encoder_key)

        if image_rotary_emb is not None:

            def apply_rotary_emb(x, freqs_cos, freqs_sin):
                x_even = x[..., 0::2].float()
                x_odd = x[..., 1::2].float()

                cos = (x_even * freqs_cos - x_odd * freqs_sin).to(x.dtype)
                sin = (x_even * freqs_sin + x_odd * freqs_cos).to(x.dtype)

                return torch.stack([cos, sin], dim=-1).flatten(-2)

            query = apply_rotary_emb(query, *image_rotary_emb)
            key = apply_rotary_emb(key, *image_rotary_emb)

        query, key, value = query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2)
        encoder_query, encoder_key, encoder_value = (
            encoder_query.transpose(1, 2),
            encoder_key.transpose(1, 2),
            encoder_value.transpose(1, 2),
        )

        sequence_length = query.size(2)
        encoder_sequence_length = encoder_query.size(2)
        total_length = sequence_length + encoder_sequence_length

        batch_size, heads, _, dim = query.shape
        attn_outputs = []
        for idx in range(batch_size):
            mask = attention_mask[idx][None, :]
            valid_prompt_token_indices = torch.nonzero(mask.flatten(), as_tuple=False).flatten()

            valid_encoder_query = encoder_query[idx : idx + 1, :, valid_prompt_token_indices, :]
            valid_encoder_key = encoder_key[idx : idx + 1, :, valid_prompt_token_indices, :]
            valid_encoder_value = encoder_value[idx : idx + 1, :, valid_prompt_token_indices, :]

            valid_query = torch.cat([query[idx : idx + 1], valid_encoder_query], dim=2)
            valid_key = torch.cat([key[idx : idx + 1], valid_encoder_key], dim=2)
            valid_value = torch.cat([value[idx : idx + 1], valid_encoder_value], dim=2)

            attn_output = F.scaled_dot_product_attention(
                valid_query, valid_key, valid_value, dropout_p=0.0, is_causal=False
            )
            valid_sequence_length = attn_output.size(2)
            attn_output = F.pad(attn_output, (0, 0, 0, total_length - valid_sequence_length))
            attn_outputs.append(attn_output)

        hidden_states = torch.cat(attn_outputs, dim=0)
        hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)

        hidden_states, encoder_hidden_states = hidden_states.split_with_sizes(
            (sequence_length, encoder_sequence_length), dim=1
        )

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if hasattr(attn, "to_add_out"):
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

        return hidden_states, encoder_hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1087
class AttnProcessor:
1088
1089
1090
1091
    r"""
    Default processor for performing attention-related computations.
    """

Patrick von Platen's avatar
Patrick von Platen committed
1092
1093
1094
    def __call__(
        self,
        attn: Attention,
1095
1096
1097
1098
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
1099
1100
        *args,
        **kwargs,
1101
    ) -> torch.Tensor:
1102
1103
1104
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)
1105

1106
        residual = hidden_states
1107

YiYi Xu's avatar
YiYi Xu committed
1108
1109
1110
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

1111
1112
1113
1114
1115
1116
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

Patrick von Platen's avatar
Patrick von Platen committed
1117
1118
1119
1120
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
1121
1122
1123
1124

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

1125
        query = attn.to_q(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1126
1127
1128

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
1129
1130
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1131

1132
1133
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
1134

Patrick von Platen's avatar
Patrick von Platen committed
1135
1136
1137
1138
1139
1140
1141
1142
1143
        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
1144
        hidden_states = attn.to_out[0](hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1145
1146
1147
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

1148
1149
1150
1151
1152
1153
1154
1155
        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

Patrick von Platen's avatar
Patrick von Platen committed
1156
1157
1158
        return hidden_states


1159
class CustomDiffusionAttnProcessor(nn.Module):
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
    r"""
    Processor for implementing attention for the Custom Diffusion method.

    Args:
        train_kv (`bool`, defaults to `True`):
            Whether to newly train the key and value matrices corresponding to the text features.
        train_q_out (`bool`, defaults to `True`):
            Whether to newly train query matrices corresponding to the latent image features.
        hidden_size (`int`, *optional*, defaults to `None`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`, *optional*, defaults to `None`):
            The number of channels in the `encoder_hidden_states`.
        out_bias (`bool`, defaults to `True`):
            Whether to include the bias parameter in `train_q_out`.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability to use.
    """

1178
1179
    def __init__(
        self,
1180
1181
1182
1183
1184
1185
        train_kv: bool = True,
        train_q_out: bool = True,
        hidden_size: Optional[int] = None,
        cross_attention_dim: Optional[int] = None,
        out_bias: bool = True,
        dropout: float = 0.0,
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
    ):
        super().__init__()
        self.train_kv = train_kv
        self.train_q_out = train_q_out

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim

        # `_custom_diffusion` id for easy serialization and loading.
        if self.train_kv:
            self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
            self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
        if self.train_q_out:
            self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
            self.to_out_custom_diffusion = nn.ModuleList([])
            self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
            self.to_out_custom_diffusion.append(nn.Dropout(dropout))

1204
1205
1206
    def __call__(
        self,
        attn: Attention,
1207
1208
1209
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
1210
    ) -> torch.Tensor:
1211
1212
1213
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        if self.train_q_out:
1214
            query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype)
1215
        else:
1216
            query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype))
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226

        if encoder_hidden_states is None:
            crossattn = False
            encoder_hidden_states = hidden_states
        else:
            crossattn = True
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if self.train_kv:
1227
1228
1229
1230
            key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype))
            value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype))
            key = key.to(attn.to_q.weight.dtype)
            value = value.to(attn.to_q.weight.dtype)
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
        else:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)

        if crossattn:
            detach = torch.ones_like(key)
            detach[:, :1, :] = detach[:, :1, :] * 0.0
            key = detach * key + (1 - detach) * key.detach()
            value = detach * value + (1 - detach) * value.detach()

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        if self.train_q_out:
            # linear proj
            hidden_states = self.to_out_custom_diffusion[0](hidden_states)
            # dropout
            hidden_states = self.to_out_custom_diffusion[1](hidden_states)
        else:
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1263
class AttnAddedKVProcessor:
1264
1265
1266
1267
1268
    r"""
    Processor for performing attention-related computations with extra learnable key and value matrices for the text
    encoder.
    """

1269
1270
1271
    def __call__(
        self,
        attn: Attention,
1272
1273
1274
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
1275
1276
        *args,
        **kwargs,
1277
    ) -> torch.Tensor:
1278
1279
1280
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)
1281

1282
        residual = hidden_states
1283

Patrick von Platen's avatar
Patrick von Platen committed
1284
1285
1286
1287
1288
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

1289
1290
1291
1292
1293
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

Patrick von Platen's avatar
Patrick von Platen committed
1294
1295
        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

1296
        query = attn.to_q(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1297
1298
        query = attn.head_to_batch_dim(query)

1299
1300
        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1301
1302
1303
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

1304
        if not attn.only_cross_attention:
1305
1306
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
1307
1308
1309
1310
1311
1312
1313
            key = attn.head_to_batch_dim(key)
            value = attn.head_to_batch_dim(value)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj
Patrick von Platen's avatar
Patrick von Platen committed
1314
1315
1316
1317
1318
1319

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
1320
        hidden_states = attn.to_out[0](hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1321
1322
1323
1324
1325
1326
1327
1328
1329
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


1330
class AttnAddedKVProcessor2_0:
1331
1332
1333
1334
1335
    r"""
    Processor for performing scaled dot-product attention (enabled by default if you're using PyTorch 2.0), with extra
    learnable key and value matrices for the text encoder.
    """

1336
1337
1338
1339
1340
1341
    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "AttnAddedKVProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

1342
1343
1344
    def __call__(
        self,
        attn: Attention,
1345
1346
1347
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
1348
1349
        *args,
        **kwargs,
1350
    ) -> torch.Tensor:
1351
1352
1353
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)
1354

1355
        residual = hidden_states
1356

1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, out_dim=4)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

1369
        query = attn.to_q(hidden_states)
1370
1371
1372
1373
1374
1375
1376
1377
        query = attn.head_to_batch_dim(query, out_dim=4)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj, out_dim=4)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj, out_dim=4)

        if not attn.only_cross_attention:
1378
1379
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
            key = attn.head_to_batch_dim(key, out_dim=4)
            value = attn.head_to_batch_dim(value, out_dim=4)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, residual.shape[1])

        # linear proj
1396
        hidden_states = attn.to_out[0](hidden_states)
Will Berman's avatar
Will Berman committed
1397
1398
1399
1400
1401
1402
1403
1404
1405
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


Dhruv Nair's avatar
Dhruv Nair committed
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
class JointAttnProcessor2_0:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        *args,
        **kwargs,
    ) -> torch.FloatTensor:
        residual = hidden_states

YiYi Xu's avatar
YiYi Xu committed
1424
        batch_size = hidden_states.shape[0]
Dhruv Nair's avatar
Dhruv Nair committed
1425
1426
1427
1428
1429
1430
1431
1432

        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads
YiYi Xu's avatar
YiYi Xu committed
1433

Dhruv Nair's avatar
Dhruv Nair committed
1434
1435
1436
1437
        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

YiYi Xu's avatar
YiYi Xu committed
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # `context` projections.
        if encoder_hidden_states is not None:
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)

            query = torch.cat([query, encoder_hidden_states_query_proj], dim=2)
            key = torch.cat([key, encoder_hidden_states_key_proj], dim=2)
            value = torch.cat([value, encoder_hidden_states_value_proj], dim=2)

1468
        hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
Dhruv Nair's avatar
Dhruv Nair committed
1469
1470
1471
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

YiYi Xu's avatar
YiYi Xu committed
1472
1473
1474
1475
1476
1477
1478
1479
        if encoder_hidden_states is not None:
            # Split the attention outputs.
            hidden_states, encoder_hidden_states = (
                hidden_states[:, : residual.shape[1]],
                hidden_states[:, residual.shape[1] :],
            )
            if not attn.context_pre_only:
                encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
Dhruv Nair's avatar
Dhruv Nair committed
1480
1481
1482
1483
1484
1485

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

YiYi Xu's avatar
YiYi Xu committed
1486
1487
1488
1489
        if encoder_hidden_states is not None:
            return hidden_states, encoder_hidden_states
        else:
            return hidden_states
Dhruv Nair's avatar
Dhruv Nair committed
1490
1491


1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
class PAGJointAttnProcessor2_0:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "PAGJointAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
1506
        attention_mask: Optional[torch.FloatTensor] = None,
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
    ) -> torch.FloatTensor:
        residual = hidden_states

        input_ndim = hidden_states.ndim
        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
        context_input_ndim = encoder_hidden_states.ndim
        if context_input_ndim == 4:
            batch_size, channel, height, width = encoder_hidden_states.shape
            encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        # store the length of image patch sequences to create a mask that prevents interaction between patches
        # similar to making the self-attention map an identity matrix
        identity_block_size = hidden_states.shape[1]

        # chunk
        hidden_states_org, hidden_states_ptb = hidden_states.chunk(2)
        encoder_hidden_states_org, encoder_hidden_states_ptb = encoder_hidden_states.chunk(2)

        ################## original path ##################
        batch_size = encoder_hidden_states_org.shape[0]

        # `sample` projections.
        query_org = attn.to_q(hidden_states_org)
        key_org = attn.to_k(hidden_states_org)
        value_org = attn.to_v(hidden_states_org)

        # `context` projections.
        encoder_hidden_states_org_query_proj = attn.add_q_proj(encoder_hidden_states_org)
        encoder_hidden_states_org_key_proj = attn.add_k_proj(encoder_hidden_states_org)
        encoder_hidden_states_org_value_proj = attn.add_v_proj(encoder_hidden_states_org)

        # attention
        query_org = torch.cat([query_org, encoder_hidden_states_org_query_proj], dim=1)
        key_org = torch.cat([key_org, encoder_hidden_states_org_key_proj], dim=1)
        value_org = torch.cat([value_org, encoder_hidden_states_org_value_proj], dim=1)

        inner_dim = key_org.shape[-1]
        head_dim = inner_dim // attn.heads
        query_org = query_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key_org = key_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value_org = value_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        hidden_states_org = F.scaled_dot_product_attention(
            query_org, key_org, value_org, dropout_p=0.0, is_causal=False
        )
        hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states_org = hidden_states_org.to(query_org.dtype)

        # Split the attention outputs.
        hidden_states_org, encoder_hidden_states_org = (
            hidden_states_org[:, : residual.shape[1]],
            hidden_states_org[:, residual.shape[1] :],
        )

        # linear proj
        hidden_states_org = attn.to_out[0](hidden_states_org)
        # dropout
        hidden_states_org = attn.to_out[1](hidden_states_org)
        if not attn.context_pre_only:
            encoder_hidden_states_org = attn.to_add_out(encoder_hidden_states_org)

        if input_ndim == 4:
            hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width)
        if context_input_ndim == 4:
            encoder_hidden_states_org = encoder_hidden_states_org.transpose(-1, -2).reshape(
                batch_size, channel, height, width
            )

        ################## perturbed path ##################

        batch_size = encoder_hidden_states_ptb.shape[0]

        # `sample` projections.
        query_ptb = attn.to_q(hidden_states_ptb)
        key_ptb = attn.to_k(hidden_states_ptb)
        value_ptb = attn.to_v(hidden_states_ptb)

        # `context` projections.
        encoder_hidden_states_ptb_query_proj = attn.add_q_proj(encoder_hidden_states_ptb)
        encoder_hidden_states_ptb_key_proj = attn.add_k_proj(encoder_hidden_states_ptb)
        encoder_hidden_states_ptb_value_proj = attn.add_v_proj(encoder_hidden_states_ptb)

        # attention
        query_ptb = torch.cat([query_ptb, encoder_hidden_states_ptb_query_proj], dim=1)
        key_ptb = torch.cat([key_ptb, encoder_hidden_states_ptb_key_proj], dim=1)
        value_ptb = torch.cat([value_ptb, encoder_hidden_states_ptb_value_proj], dim=1)

        inner_dim = key_ptb.shape[-1]
        head_dim = inner_dim // attn.heads
        query_ptb = query_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key_ptb = key_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value_ptb = value_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # create a full mask with all entries set to 0
        seq_len = query_ptb.size(2)
        full_mask = torch.zeros((seq_len, seq_len), device=query_ptb.device, dtype=query_ptb.dtype)

        # set the attention value between image patches to -inf
        full_mask[:identity_block_size, :identity_block_size] = float("-inf")

        # set the diagonal of the attention value between image patches to 0
        full_mask[:identity_block_size, :identity_block_size].fill_diagonal_(0)

        # expand the mask to match the attention weights shape
        full_mask = full_mask.unsqueeze(0).unsqueeze(0)  # Add batch and num_heads dimensions

        hidden_states_ptb = F.scaled_dot_product_attention(
            query_ptb, key_ptb, value_ptb, attn_mask=full_mask, dropout_p=0.0, is_causal=False
        )
        hidden_states_ptb = hidden_states_ptb.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states_ptb = hidden_states_ptb.to(query_ptb.dtype)

        # split the attention outputs.
        hidden_states_ptb, encoder_hidden_states_ptb = (
            hidden_states_ptb[:, : residual.shape[1]],
            hidden_states_ptb[:, residual.shape[1] :],
        )

        # linear proj
        hidden_states_ptb = attn.to_out[0](hidden_states_ptb)
        # dropout
        hidden_states_ptb = attn.to_out[1](hidden_states_ptb)
        if not attn.context_pre_only:
            encoder_hidden_states_ptb = attn.to_add_out(encoder_hidden_states_ptb)

        if input_ndim == 4:
            hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width)
        if context_input_ndim == 4:
            encoder_hidden_states_ptb = encoder_hidden_states_ptb.transpose(-1, -2).reshape(
                batch_size, channel, height, width
            )

        ################ concat ###############
        hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])
        encoder_hidden_states = torch.cat([encoder_hidden_states_org, encoder_hidden_states_ptb])

        return hidden_states, encoder_hidden_states


class PAGCFGJointAttnProcessor2_0:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "PAGCFGJointAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        *args,
        **kwargs,
    ) -> torch.FloatTensor:
        residual = hidden_states

        input_ndim = hidden_states.ndim
        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
        context_input_ndim = encoder_hidden_states.ndim
        if context_input_ndim == 4:
            batch_size, channel, height, width = encoder_hidden_states.shape
            encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        identity_block_size = hidden_states.shape[
            1
        ]  # patch embeddings width * height (correspond to self-attention map width or height)

        # chunk
        hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3)
        hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org])

        (
            encoder_hidden_states_uncond,
            encoder_hidden_states_org,
            encoder_hidden_states_ptb,
        ) = encoder_hidden_states.chunk(3)
        encoder_hidden_states_org = torch.cat([encoder_hidden_states_uncond, encoder_hidden_states_org])

        ################## original path ##################
        batch_size = encoder_hidden_states_org.shape[0]

        # `sample` projections.
        query_org = attn.to_q(hidden_states_org)
        key_org = attn.to_k(hidden_states_org)
        value_org = attn.to_v(hidden_states_org)

        # `context` projections.
        encoder_hidden_states_org_query_proj = attn.add_q_proj(encoder_hidden_states_org)
        encoder_hidden_states_org_key_proj = attn.add_k_proj(encoder_hidden_states_org)
        encoder_hidden_states_org_value_proj = attn.add_v_proj(encoder_hidden_states_org)

        # attention
        query_org = torch.cat([query_org, encoder_hidden_states_org_query_proj], dim=1)
        key_org = torch.cat([key_org, encoder_hidden_states_org_key_proj], dim=1)
        value_org = torch.cat([value_org, encoder_hidden_states_org_value_proj], dim=1)

        inner_dim = key_org.shape[-1]
        head_dim = inner_dim // attn.heads
        query_org = query_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key_org = key_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value_org = value_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        hidden_states_org = F.scaled_dot_product_attention(
            query_org, key_org, value_org, dropout_p=0.0, is_causal=False
        )
        hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states_org = hidden_states_org.to(query_org.dtype)

        # Split the attention outputs.
        hidden_states_org, encoder_hidden_states_org = (
            hidden_states_org[:, : residual.shape[1]],
            hidden_states_org[:, residual.shape[1] :],
        )

        # linear proj
        hidden_states_org = attn.to_out[0](hidden_states_org)
        # dropout
        hidden_states_org = attn.to_out[1](hidden_states_org)
        if not attn.context_pre_only:
            encoder_hidden_states_org = attn.to_add_out(encoder_hidden_states_org)

        if input_ndim == 4:
            hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width)
        if context_input_ndim == 4:
            encoder_hidden_states_org = encoder_hidden_states_org.transpose(-1, -2).reshape(
                batch_size, channel, height, width
            )

        ################## perturbed path ##################

        batch_size = encoder_hidden_states_ptb.shape[0]

        # `sample` projections.
        query_ptb = attn.to_q(hidden_states_ptb)
        key_ptb = attn.to_k(hidden_states_ptb)
        value_ptb = attn.to_v(hidden_states_ptb)

        # `context` projections.
        encoder_hidden_states_ptb_query_proj = attn.add_q_proj(encoder_hidden_states_ptb)
        encoder_hidden_states_ptb_key_proj = attn.add_k_proj(encoder_hidden_states_ptb)
        encoder_hidden_states_ptb_value_proj = attn.add_v_proj(encoder_hidden_states_ptb)

        # attention
        query_ptb = torch.cat([query_ptb, encoder_hidden_states_ptb_query_proj], dim=1)
        key_ptb = torch.cat([key_ptb, encoder_hidden_states_ptb_key_proj], dim=1)
        value_ptb = torch.cat([value_ptb, encoder_hidden_states_ptb_value_proj], dim=1)

        inner_dim = key_ptb.shape[-1]
        head_dim = inner_dim // attn.heads
        query_ptb = query_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key_ptb = key_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value_ptb = value_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # create a full mask with all entries set to 0
        seq_len = query_ptb.size(2)
        full_mask = torch.zeros((seq_len, seq_len), device=query_ptb.device, dtype=query_ptb.dtype)

        # set the attention value between image patches to -inf
        full_mask[:identity_block_size, :identity_block_size] = float("-inf")

        # set the diagonal of the attention value between image patches to 0
        full_mask[:identity_block_size, :identity_block_size].fill_diagonal_(0)

        # expand the mask to match the attention weights shape
        full_mask = full_mask.unsqueeze(0).unsqueeze(0)  # Add batch and num_heads dimensions

        hidden_states_ptb = F.scaled_dot_product_attention(
            query_ptb, key_ptb, value_ptb, attn_mask=full_mask, dropout_p=0.0, is_causal=False
        )
        hidden_states_ptb = hidden_states_ptb.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states_ptb = hidden_states_ptb.to(query_ptb.dtype)

        # split the attention outputs.
        hidden_states_ptb, encoder_hidden_states_ptb = (
            hidden_states_ptb[:, : residual.shape[1]],
            hidden_states_ptb[:, residual.shape[1] :],
        )

        # linear proj
        hidden_states_ptb = attn.to_out[0](hidden_states_ptb)
        # dropout
        hidden_states_ptb = attn.to_out[1](hidden_states_ptb)
        if not attn.context_pre_only:
            encoder_hidden_states_ptb = attn.to_add_out(encoder_hidden_states_ptb)

        if input_ndim == 4:
            hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width)
        if context_input_ndim == 4:
            encoder_hidden_states_ptb = encoder_hidden_states_ptb.transpose(-1, -2).reshape(
                batch_size, channel, height, width
            )

        ################ concat ###############
        hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])
        encoder_hidden_states = torch.cat([encoder_hidden_states_org, encoder_hidden_states_ptb])

        return hidden_states, encoder_hidden_states


Dhruv Nair's avatar
Dhruv Nair committed
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
class FusedJointAttnProcessor2_0:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        *args,
        **kwargs,
    ) -> torch.FloatTensor:
        residual = hidden_states

        input_ndim = hidden_states.ndim
        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
        context_input_ndim = encoder_hidden_states.ndim
        if context_input_ndim == 4:
            batch_size, channel, height, width = encoder_hidden_states.shape
            encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size = encoder_hidden_states.shape[0]

        # `sample` projections.
        qkv = attn.to_qkv(hidden_states)
        split_size = qkv.shape[-1] // 3
        query, key, value = torch.split(qkv, split_size, dim=-1)

        # `context` projections.
        encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
        split_size = encoder_qkv.shape[-1] // 3
        (
            encoder_hidden_states_query_proj,
            encoder_hidden_states_key_proj,
            encoder_hidden_states_value_proj,
        ) = torch.split(encoder_qkv, split_size, dim=-1)

        # attention
        query = torch.cat([query, encoder_hidden_states_query_proj], dim=1)
        key = torch.cat([key, encoder_hidden_states_key_proj], dim=1)
        value = torch.cat([value, encoder_hidden_states_value_proj], dim=1)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads
        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

1867
        hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
Dhruv Nair's avatar
Dhruv Nair committed
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # Split the attention outputs.
        hidden_states, encoder_hidden_states = (
            hidden_states[:, : residual.shape[1]],
            hidden_states[:, residual.shape[1] :],
        )

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
        if not attn.context_pre_only:
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
        if context_input_ndim == 4:
            encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        return hidden_states, encoder_hidden_states


1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
class XFormersJointAttnProcessor:
    r"""
    Processor for implementing memory efficient attention using xFormers.

    Args:
        attention_op (`Callable`, *optional*, defaults to `None`):
            The base
            [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
            use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
            operator.
    """

    def __init__(self, attention_op: Optional[Callable] = None):
        self.attention_op = attention_op

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        *args,
        **kwargs,
    ) -> torch.FloatTensor:
        residual = hidden_states

        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        query = attn.head_to_batch_dim(query).contiguous()
        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # `context` projections.
        if encoder_hidden_states is not None:
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

            encoder_hidden_states_query_proj = attn.head_to_batch_dim(encoder_hidden_states_query_proj).contiguous()
            encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj).contiguous()
            encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj).contiguous()

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)

            query = torch.cat([query, encoder_hidden_states_query_proj], dim=1)
            key = torch.cat([key, encoder_hidden_states_key_proj], dim=1)
            value = torch.cat([value, encoder_hidden_states_value_proj], dim=1)

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        if encoder_hidden_states is not None:
            # Split the attention outputs.
            hidden_states, encoder_hidden_states = (
                hidden_states[:, : residual.shape[1]],
                hidden_states[:, residual.shape[1] :],
            )
            if not attn.context_pre_only:
                encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if encoder_hidden_states is not None:
            return hidden_states, encoder_hidden_states
        else:
            return hidden_states


Aryan's avatar
Aryan committed
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
class AllegroAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
    used in the Allegro model. It applies a normalization layer and rotary embedding on the query and key vector.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "AllegroAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # Apply RoPE if needed
        if image_rotary_emb is not None and not attn.is_cross_attention:
            from .embeddings import apply_rotary_emb_allegro

            query = apply_rotary_emb_allegro(query, image_rotary_emb[0], image_rotary_emb[1])
            key = apply_rotary_emb_allegro(key, image_rotary_emb[0], image_rotary_emb[1])

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


Sayak Paul's avatar
Sayak Paul committed
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
class AuraFlowAttnProcessor2_0:
    """Attention processor used typically in processing Aura Flow."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention") and is_torch_version("<", "2.1"):
            raise ImportError(
                "AuraFlowAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to at least 2.1 or above as we use `scale` in `F.scaled_dot_product_attention()`. "
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        *args,
        **kwargs,
    ) -> torch.FloatTensor:
        batch_size = hidden_states.shape[0]

        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        # `context` projections.
        if encoder_hidden_states is not None:
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

        # Reshape.
        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads
        query = query.view(batch_size, -1, attn.heads, head_dim)
        key = key.view(batch_size, -1, attn.heads, head_dim)
        value = value.view(batch_size, -1, attn.heads, head_dim)
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203

        # Apply QK norm.
        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Concatenate the projections.
        if encoder_hidden_states is not None:
            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            )
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            )

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_q(encoder_hidden_states_key_proj)

            query = torch.cat([encoder_hidden_states_query_proj, query], dim=1)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)

        query = query.transpose(1, 2)
        key = key.transpose(1, 2)
        value = value.transpose(1, 2)

        # Attention.
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, dropout_p=0.0, scale=attn.scale, is_causal=False
        )
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # Split the attention outputs.
        if encoder_hidden_states is not None:
            hidden_states, encoder_hidden_states = (
                hidden_states[:, encoder_hidden_states.shape[1] :],
                hidden_states[:, : encoder_hidden_states.shape[1]],
            )

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
        if encoder_hidden_states is not None:
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

        if encoder_hidden_states is not None:
            return hidden_states, encoder_hidden_states
        else:
            return hidden_states


class FusedAuraFlowAttnProcessor2_0:
    """Attention processor used typically in processing Aura Flow with fused projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention") and is_torch_version("<", "2.1"):
            raise ImportError(
                "FusedAuraFlowAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to at least 2.1 or above as we use `scale` in `F.scaled_dot_product_attention()`. "
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        *args,
        **kwargs,
    ) -> torch.FloatTensor:
        batch_size = hidden_states.shape[0]

        # `sample` projections.
        qkv = attn.to_qkv(hidden_states)
        split_size = qkv.shape[-1] // 3
        query, key, value = torch.split(qkv, split_size, dim=-1)

        # `context` projections.
        if encoder_hidden_states is not None:
            encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
            split_size = encoder_qkv.shape[-1] // 3
            (
                encoder_hidden_states_query_proj,
                encoder_hidden_states_key_proj,
                encoder_hidden_states_value_proj,
            ) = torch.split(encoder_qkv, split_size, dim=-1)

        # Reshape.
        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads
        query = query.view(batch_size, -1, attn.heads, head_dim)
        key = key.view(batch_size, -1, attn.heads, head_dim)
        value = value.view(batch_size, -1, attn.heads, head_dim)
Sayak Paul's avatar
Sayak Paul committed
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260

        # Apply QK norm.
        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Concatenate the projections.
        if encoder_hidden_states is not None:
            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            )
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            )

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_q(encoder_hidden_states_key_proj)

            query = torch.cat([encoder_hidden_states_query_proj, query], dim=1)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)

        query = query.transpose(1, 2)
        key = key.transpose(1, 2)
        value = value.transpose(1, 2)

        # Attention.
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, dropout_p=0.0, scale=attn.scale, is_causal=False
        )
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # Split the attention outputs.
        if encoder_hidden_states is not None:
            hidden_states, encoder_hidden_states = (
                hidden_states[:, encoder_hidden_states.shape[1] :],
                hidden_states[:, : encoder_hidden_states.shape[1]],
            )

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
        if encoder_hidden_states is not None:
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

        if encoder_hidden_states is not None:
            return hidden_states, encoder_hidden_states
        else:
            return hidden_states


Sayak Paul's avatar
Sayak Paul committed
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
class FluxAttnProcessor2_0:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
YiYi Xu's avatar
YiYi Xu committed
2276
        batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
Sayak Paul's avatar
Sayak Paul committed
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294

        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

YiYi Xu's avatar
YiYi Xu committed
2295
2296
2297
2298
2299
2300
        # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
        if encoder_hidden_states is not None:
            # `context` projections.
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
Sayak Paul's avatar
Sayak Paul committed
2301

2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)

            # attention
            query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)

        if image_rotary_emb is not None:
            from .embeddings import apply_rotary_emb

            query = apply_rotary_emb(query, image_rotary_emb)
            key = apply_rotary_emb(key, image_rotary_emb)

2328
2329
        hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)

2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        if encoder_hidden_states is not None:
            encoder_hidden_states, hidden_states = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[:, encoder_hidden_states.shape[1] :],
            )

            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
Aryan's avatar
Aryan committed
2343

2344
2345
2346
2347
2348
2349
2350
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

            return hidden_states, encoder_hidden_states
        else:
            return hidden_states


Leo Jiang's avatar
Leo Jiang committed
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
class FluxAttnProcessor2_0_NPU:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "FluxAttnProcessor2_0_NPU requires PyTorch 2.0 and torch NPU, to use it, please upgrade PyTorch to 2.0 and install torch NPU"
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
        batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape

        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
        if encoder_hidden_states is not None:
            # `context` projections.
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)

            # attention
            query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)

        if image_rotary_emb is not None:
            from .embeddings import apply_rotary_emb

            query = apply_rotary_emb(query, image_rotary_emb)
            key = apply_rotary_emb(key, image_rotary_emb)

        if query.dtype in (torch.float16, torch.bfloat16):
            hidden_states = torch_npu.npu_fusion_attention(
                query,
                key,
                value,
                attn.heads,
                input_layout="BNSD",
                pse=None,
                scale=1.0 / math.sqrt(query.shape[-1]),
                pre_tockens=65536,
                next_tockens=65536,
                keep_prob=1.0,
                sync=False,
                inner_precise=0,
            )[0]
        else:
            hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        if encoder_hidden_states is not None:
            encoder_hidden_states, hidden_states = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[:, encoder_hidden_states.shape[1] :],
            )

            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

            return hidden_states, encoder_hidden_states
        else:
            return hidden_states


2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
class FusedFluxAttnProcessor2_0:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "FusedFluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
        batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape

        # `sample` projections.
        qkv = attn.to_qkv(hidden_states)
        split_size = qkv.shape[-1] // 3
        query, key, value = torch.split(qkv, split_size, dim=-1)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
        # `context` projections.
        if encoder_hidden_states is not None:
            encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
            split_size = encoder_qkv.shape[-1] // 3
            (
                encoder_hidden_states_query_proj,
                encoder_hidden_states_key_proj,
                encoder_hidden_states_value_proj,
            ) = torch.split(encoder_qkv, split_size, dim=-1)

YiYi Xu's avatar
YiYi Xu committed
2504
2505
2506
2507
2508
2509
2510
2511
2512
            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
Sayak Paul's avatar
Sayak Paul committed
2513

YiYi Xu's avatar
YiYi Xu committed
2514
2515
2516
2517
2518
2519
2520
2521
2522
            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)

            # attention
            query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
Sayak Paul's avatar
Sayak Paul committed
2523
2524

        if image_rotary_emb is not None:
YiYi Xu's avatar
YiYi Xu committed
2525
2526
2527
2528
            from .embeddings import apply_rotary_emb

            query = apply_rotary_emb(query, image_rotary_emb)
            key = apply_rotary_emb(key, image_rotary_emb)
Sayak Paul's avatar
Sayak Paul committed
2529
2530

        hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
2531

Sayak Paul's avatar
Sayak Paul committed
2532
2533
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)
Leo Jiang's avatar
Leo Jiang committed
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644

        if encoder_hidden_states is not None:
            encoder_hidden_states, hidden_states = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[:, encoder_hidden_states.shape[1] :],
            )

            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

            return hidden_states, encoder_hidden_states
        else:
            return hidden_states


class FusedFluxAttnProcessor2_0_NPU:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "FluxAttnProcessor2_0_NPU requires PyTorch 2.0 and torch NPU, to use it, please upgrade PyTorch to 2.0, and install torch NPU"
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
        batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape

        # `sample` projections.
        qkv = attn.to_qkv(hidden_states)
        split_size = qkv.shape[-1] // 3
        query, key, value = torch.split(qkv, split_size, dim=-1)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
        # `context` projections.
        if encoder_hidden_states is not None:
            encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
            split_size = encoder_qkv.shape[-1] // 3
            (
                encoder_hidden_states_query_proj,
                encoder_hidden_states_key_proj,
                encoder_hidden_states_value_proj,
            ) = torch.split(encoder_qkv, split_size, dim=-1)

            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)

            # attention
            query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)

        if image_rotary_emb is not None:
            from .embeddings import apply_rotary_emb

            query = apply_rotary_emb(query, image_rotary_emb)
            key = apply_rotary_emb(key, image_rotary_emb)

        if query.dtype in (torch.float16, torch.bfloat16):
            hidden_states = torch_npu.npu_fusion_attention(
                query,
                key,
                value,
                attn.heads,
                input_layout="BNSD",
                pse=None,
                scale=1.0 / math.sqrt(query.shape[-1]),
                pre_tockens=65536,
                next_tockens=65536,
                keep_prob=1.0,
                sync=False,
                inner_precise=0,
            )[0]
        else:
            hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)
Sayak Paul's avatar
Sayak Paul committed
2645

YiYi Xu's avatar
YiYi Xu committed
2646
2647
2648
2649
2650
        if encoder_hidden_states is not None:
            encoder_hidden_states, hidden_states = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[:, encoder_hidden_states.shape[1] :],
            )
Sayak Paul's avatar
Sayak Paul committed
2651

YiYi Xu's avatar
YiYi Xu committed
2652
2653
2654
2655
2656
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
Sayak Paul's avatar
Sayak Paul committed
2657

YiYi Xu's avatar
YiYi Xu committed
2658
2659
2660
            return hidden_states, encoder_hidden_states
        else:
            return hidden_states
Sayak Paul's avatar
Sayak Paul committed
2661
2662


hlky's avatar
hlky committed
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
class FluxIPAdapterJointAttnProcessor2_0(torch.nn.Module):
    """Flux Attention processor for IP-Adapter."""

    def __init__(
        self, hidden_size: int, cross_attention_dim: int, num_tokens=(4,), scale=1.0, device=None, dtype=None
    ):
        super().__init__()

        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim

        if not isinstance(num_tokens, (tuple, list)):
            num_tokens = [num_tokens]

        if not isinstance(scale, list):
            scale = [scale] * len(num_tokens)
        if len(scale) != len(num_tokens):
            raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.")
        self.scale = scale

        self.to_k_ip = nn.ModuleList(
            [
                nn.Linear(cross_attention_dim, hidden_size, bias=True, device=device, dtype=dtype)
                for _ in range(len(num_tokens))
            ]
        )
        self.to_v_ip = nn.ModuleList(
            [
                nn.Linear(cross_attention_dim, hidden_size, bias=True, device=device, dtype=dtype)
                for _ in range(len(num_tokens))
            ]
        )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
        ip_hidden_states: Optional[List[torch.Tensor]] = None,
        ip_adapter_masks: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
        batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape

        # `sample` projections.
        hidden_states_query_proj = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        hidden_states_query_proj = hidden_states_query_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            hidden_states_query_proj = attn.norm_q(hidden_states_query_proj)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
        if encoder_hidden_states is not None:
            # `context` projections.
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)

            # attention
            query = torch.cat([encoder_hidden_states_query_proj, hidden_states_query_proj], dim=2)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)

        if image_rotary_emb is not None:
            from .embeddings import apply_rotary_emb

            query = apply_rotary_emb(query, image_rotary_emb)
            key = apply_rotary_emb(key, image_rotary_emb)

        hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        if encoder_hidden_states is not None:
            encoder_hidden_states, hidden_states = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[:, encoder_hidden_states.shape[1] :],
            )

            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

            # IP-adapter
            ip_query = hidden_states_query_proj
            ip_attn_output = None
            # for ip-adapter
            # TODO: support for multiple adapters
            for current_ip_hidden_states, scale, to_k_ip, to_v_ip in zip(
                ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip
            ):
                ip_key = to_k_ip(current_ip_hidden_states)
                ip_value = to_v_ip(current_ip_hidden_states)

                ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
                ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
                # the output of sdp = (batch, num_heads, seq_len, head_dim)
                # TODO: add support for attn.scale when we move to Torch 2.1
                ip_attn_output = F.scaled_dot_product_attention(
                    ip_query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
                )
                ip_attn_output = ip_attn_output.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
                ip_attn_output = scale * ip_attn_output
                ip_attn_output = ip_attn_output.to(ip_query.dtype)

            return hidden_states, encoder_hidden_states, ip_attn_output
        else:
            return hidden_states


zR's avatar
zR committed
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
class CogVideoXAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on
    query and key vectors, but does not include spatial normalization.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        text_seq_length = encoder_hidden_states.size(1)

        hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)

2828
        batch_size, sequence_length, _ = hidden_states.shape
zR's avatar
zR committed
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE if needed
        if image_rotary_emb is not None:
            from .embeddings import apply_rotary_emb

            query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb)
            if not attn.is_cross_attention:
                key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb)

        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        encoder_hidden_states, hidden_states = hidden_states.split(
            [text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
        )
        return hidden_states, encoder_hidden_states


class FusedCogVideoXAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on
    query and key vectors, but does not include spatial normalization.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        text_seq_length = encoder_hidden_states.size(1)

        hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        qkv = attn.to_qkv(hidden_states)
        split_size = qkv.shape[-1] // 3
        query, key, value = torch.split(qkv, split_size, dim=-1)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE if needed
        if image_rotary_emb is not None:
            from .embeddings import apply_rotary_emb

            query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb)
            if not attn.is_cross_attention:
                key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb)

        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        encoder_hidden_states, hidden_states = hidden_states.split(
            [text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
        )
        return hidden_states, encoder_hidden_states


2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
class XFormersAttnAddedKVProcessor:
    r"""
    Processor for implementing memory efficient attention using xFormers.

    Args:
        attention_op (`Callable`, *optional*, defaults to `None`):
            The base
            [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
            use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
            operator.
    """

    def __init__(self, attention_op: Optional[Callable] = None):
        self.attention_op = attention_op

2961
2962
2963
    def __call__(
        self,
        attn: Attention,
2964
2965
2966
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
2967
    ) -> torch.Tensor:
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
        residual = hidden_states
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)
        query = attn.head_to_batch_dim(query)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

        if not attn.only_cross_attention:
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
            key = attn.head_to_batch_dim(key)
            value = attn.head_to_batch_dim(value)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
3017
class XFormersAttnProcessor:
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
    r"""
    Processor for implementing memory efficient attention using xFormers.

    Args:
        attention_op (`Callable`, *optional*, defaults to `None`):
            The base
            [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
            use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
            operator.
    """

Patrick von Platen's avatar
Patrick von Platen committed
3029
3030
3031
    def __init__(self, attention_op: Optional[Callable] = None):
        self.attention_op = attention_op

3032
3033
3034
    def __call__(
        self,
        attn: Attention,
3035
3036
3037
3038
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
3039
3040
        *args,
        **kwargs,
3041
    ) -> torch.Tensor:
3042
3043
3044
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)
3045

3046
        residual = hidden_states
3047

3048
3049
3050
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

3051
3052
3053
3054
3055
3056
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

3057
        batch_size, key_tokens, _ = (
Patrick von Platen's avatar
Patrick von Platen committed
3058
3059
3060
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
        attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size)
        if attention_mask is not None:
            # expand our mask's singleton query_tokens dimension:
            #   [batch*heads,            1, key_tokens] ->
            #   [batch*heads, query_tokens, key_tokens]
            # so that it can be added as a bias onto the attention scores that xformers computes:
            #   [batch*heads, query_tokens, key_tokens]
            # we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
            _, query_tokens, _ = hidden_states.shape
            attention_mask = attention_mask.expand(-1, query_tokens, -1)
Patrick von Platen's avatar
Patrick von Platen committed
3071

3072
3073
3074
        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

3075
        query = attn.to_q(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
3076
3077
3078

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
3079
3080
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
3081

3082
3083
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095

        query = attn.head_to_batch_dim(query).contiguous()
        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
3096
        hidden_states = attn.to_out[0](hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
3097
3098
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class AttnProcessorNPU:
    r"""
    Processor for implementing flash attention using torch_npu. Torch_npu supports only fp16 and bf16 data types. If
    fp32 is used, F.scaled_dot_product_attention will be used for computation, but the acceleration effect on NPU is
    not significant.

    """

    def __init__(self):
        if not is_torch_npu_available():
            raise ImportError("AttnProcessorNPU requires torch_npu extensions and is supported only on npu devices.")

    def __call__(
        self,
        attn: Attention,
3126
3127
3128
3129
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
3130
3131
        *args,
        **kwargs,
3132
    ) -> torch.Tensor:
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)

        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
Leo Jiang's avatar
Leo Jiang committed
3156
3157
3158
3159
3160
            attention_mask = attention_mask.repeat(1, 1, hidden_states.shape[1], 1)
            if attention_mask.dtype == torch.bool:
                attention_mask = torch.logical_not(attention_mask.bool())
            else:
                attention_mask = attention_mask.bool()
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        if query.dtype in (torch.float16, torch.bfloat16):
            hidden_states = torch_npu.npu_fusion_attention(
                query,
                key,
                value,
                attn.heads,
                input_layout="BNSD",
                pse=None,
                atten_mask=attention_mask,
                scale=1.0 / math.sqrt(query.shape[-1]),
                pre_tockens=65536,
                next_tockens=65536,
                keep_prob=1.0,
                sync=False,
                inner_precise=0,
            )[0]
        else:
            # TODO: add support for attn.scale when we move to Torch 2.1
            hidden_states = F.scaled_dot_product_attention(
                query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
            )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
3213
3214
3215
3216
3217
3218
3219
3220
3221

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

Patrick von Platen's avatar
Patrick von Platen committed
3222
3223
3224
3225
        return hidden_states


class AttnProcessor2_0:
3226
3227
3228
3229
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    """

Patrick von Platen's avatar
Patrick von Platen committed
3230
3231
3232
3233
    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

YiYi Xu's avatar
YiYi Xu committed
3234
3235
3236
    def __call__(
        self,
        attn: Attention,
3237
3238
3239
3240
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
3241
3242
        *args,
        **kwargs,
3243
    ) -> torch.Tensor:
3244
3245
3246
3247
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)

3248
        residual = hidden_states
YiYi Xu's avatar
YiYi Xu committed
3249
3250
3251
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

3252
3253
3254
3255
3256
3257
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

Patrick von Platen's avatar
Patrick von Platen committed
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

3268
3269
3270
        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

3271
        query = attn.to_q(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
3272
3273
3274

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
3275
3276
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
3277

3278
3279
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
3280

3281
        inner_dim = key.shape[-1]
Patrick von Platen's avatar
Patrick von Platen committed
3282
        head_dim = inner_dim // attn.heads
3283

Patrick von Platen's avatar
Patrick von Platen committed
3284
        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
3285

Patrick von Platen's avatar
Patrick von Platen committed
3286
3287
3288
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

3289
3290
3291
3292
3293
        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

Patrick von Platen's avatar
Patrick von Platen committed
3294
3295
3296
3297
3298
3299
3300
3301
        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


Juan Acevedo's avatar
Juan Acevedo committed
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
class XLAFlashAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention with pallas flash attention kernel if using `torch_xla`.
    """

    def __init__(self, partition_spec: Optional[Tuple[Optional[str], ...]] = None):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "XLAFlashAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )
        if is_torch_xla_version("<", "2.3"):
            raise ImportError("XLA flash attention requires torch_xla version >= 2.3.")
        if is_spmd() and is_torch_xla_version("<", "2.4"):
            raise ImportError("SPMD support for XLA flash attention needs torch_xla version >= 2.4.")
        self.partition_spec = partition_spec

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
        *args,
        **kwargs,
    ) -> torch.Tensor:
        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        if all(tensor.shape[2] >= 4096 for tensor in [query, key, value]):
            if attention_mask is not None:
                attention_mask = attention_mask.view(batch_size, 1, 1, attention_mask.shape[-1])
                # Convert mask to float and replace 0s with -inf and 1s with 0
                attention_mask = (
                    attention_mask.float()
                    .masked_fill(attention_mask == 0, float("-inf"))
                    .masked_fill(attention_mask == 1, float(0.0))
                )

                # Apply attention mask to key
                key = key + attention_mask
            query /= math.sqrt(query.shape[3])
            partition_spec = self.partition_spec if is_spmd() else None
            hidden_states = flash_attention(query, key, value, causal=False, partition_spec=partition_spec)
        else:
            logger.warning(
                "Unable to use the flash attention pallas kernel API call due to QKV sequence length < 4096."
            )
            hidden_states = F.scaled_dot_product_attention(
                query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
            )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
class XLAFluxFlashAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention with pallas flash attention kernel if using `torch_xla`.
    """

    def __init__(self, partition_spec: Optional[Tuple[Optional[str], ...]] = None):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "XLAFlashAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )
        if is_torch_xla_version("<", "2.3"):
            raise ImportError("XLA flash attention requires torch_xla version >= 2.3.")
        if is_spmd() and is_torch_xla_version("<", "2.4"):
            raise ImportError("SPMD support for XLA flash attention needs torch_xla version >= 2.4.")
        self.partition_spec = partition_spec

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
        batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape

        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
        if encoder_hidden_states is not None:
            # `context` projections.
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)

            # attention
            query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)

        if image_rotary_emb is not None:
            from .embeddings import apply_rotary_emb

            query = apply_rotary_emb(query, image_rotary_emb)
            key = apply_rotary_emb(key, image_rotary_emb)

        query /= math.sqrt(head_dim)
        hidden_states = flash_attention(query, key, value, causal=False)

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        if encoder_hidden_states is not None:
            encoder_hidden_states, hidden_states = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[:, encoder_hidden_states.shape[1] :],
            )

            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)

            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

            return hidden_states, encoder_hidden_states
        else:
            return hidden_states


Aryan's avatar
Aryan committed
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
class MochiVaeAttnProcessor2_0:
    r"""
    Attention processor used in Mochi VAE.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        residual = hidden_states
        is_single_frame = hidden_states.shape[1] == 1

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if is_single_frame:
            hidden_states = attn.to_v(hidden_states)

            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)

            if attn.residual_connection:
                hidden_states = hidden_states + residual

            hidden_states = hidden_states / attn.rescale_output_factor
            return hidden_states

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=attn.is_causal
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
class StableAudioAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
    used in the Stable Audio model. It applies rotary embedding on query and key vector, and allows MHA, GQA or MQA.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "StableAudioAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def apply_partial_rotary_emb(
        self,
        x: torch.Tensor,
        freqs_cis: Tuple[torch.Tensor],
    ) -> torch.Tensor:
        from .embeddings import apply_rotary_emb

        rot_dim = freqs_cis[0].shape[-1]
        x_to_rotate, x_unrotated = x[..., :rot_dim], x[..., rot_dim:]

        x_rotated = apply_rotary_emb(x_to_rotate, freqs_cis, use_real=True, use_real_unbind_dim=-2)

        out = torch.cat((x_rotated, x_unrotated), dim=-1)
        return out

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        from .embeddings import apply_rotary_emb

        residual = hidden_states

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        head_dim = query.shape[-1] // attn.heads
        kv_heads = key.shape[-1] // head_dim

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2)

        if kv_heads != attn.heads:
            # if GQA or MQA, repeat the key/value heads to reach the number of query heads.
            heads_per_kv_head = attn.heads // kv_heads
            key = torch.repeat_interleave(key, heads_per_kv_head, dim=1)
            value = torch.repeat_interleave(value, heads_per_kv_head, dim=1)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE if needed
        if rotary_emb is not None:
            query_dtype = query.dtype
            key_dtype = key.dtype
            query = query.to(torch.float32)
            key = key.to(torch.float32)

            rot_dim = rotary_emb[0].shape[-1]
            query_to_rotate, query_unrotated = query[..., :rot_dim], query[..., rot_dim:]
            query_rotated = apply_rotary_emb(query_to_rotate, rotary_emb, use_real=True, use_real_unbind_dim=-2)

            query = torch.cat((query_rotated, query_unrotated), dim=-1)

            if not attn.is_cross_attention:
                key_to_rotate, key_unrotated = key[..., :rot_dim], key[..., rot_dim:]
                key_rotated = apply_rotary_emb(key_to_rotate, rotary_emb, use_real=True, use_real_unbind_dim=-2)

                key = torch.cat((key_rotated, key_unrotated), dim=-1)

            query = query.to(query_dtype)
            key = key.to(key_dtype)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)
Patrick von Platen's avatar
Patrick von Platen committed
3734
3735

        # linear proj
3736
        hidden_states = attn.to_out[0](hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
3737
3738
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
3739
3740
3741
3742
3743

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class HunyuanAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
    used in the HunyuanDiT model. It applies a s normalization layer and rotary embedding on query and key vector.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        from .embeddings import apply_rotary_emb

        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE if needed
        if image_rotary_emb is not None:
            query = apply_rotary_emb(query, image_rotary_emb)
            if not attn.is_cross_attention:
                key = apply_rotary_emb(key, image_rotary_emb)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class FusedHunyuanAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0) with fused
    projection layers. This is used in the HunyuanDiT model. It applies a s normalization layer and rotary embedding on
    query and key vector.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "FusedHunyuanAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        from .embeddings import apply_rotary_emb

        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        if encoder_hidden_states is None:
            qkv = attn.to_qkv(hidden_states)
            split_size = qkv.shape[-1] // 3
            query, key, value = torch.split(qkv, split_size, dim=-1)
        else:
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
            query = attn.to_q(hidden_states)

            kv = attn.to_kv(encoder_hidden_states)
            split_size = kv.shape[-1] // 2
            key, value = torch.split(kv, split_size, dim=-1)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE if needed
        if image_rotary_emb is not None:
            query = apply_rotary_emb(query, image_rotary_emb)
            if not attn.is_cross_attention:
                key = apply_rotary_emb(key, image_rotary_emb)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
3945
3946
3947
3948
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

Patrick von Platen's avatar
Patrick von Platen committed
3949
3950
3951
        return hidden_states


3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
class PAGHunyuanAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
    used in the HunyuanDiT model. It applies a normalization layer and rotary embedding on query and key vector. This
    variant of the processor employs [Pertubed Attention Guidance](https://arxiv.org/abs/2403.17377).
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "PAGHunyuanAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        from .embeddings import apply_rotary_emb

        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        # chunk
        hidden_states_org, hidden_states_ptb = hidden_states.chunk(2)

        # 1. Original Path
        batch_size, sequence_length, _ = (
            hidden_states_org.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states_org)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states_org
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE if needed
        if image_rotary_emb is not None:
            query = apply_rotary_emb(query, image_rotary_emb)
            if not attn.is_cross_attention:
                key = apply_rotary_emb(key, image_rotary_emb)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states_org = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states_org = hidden_states_org.to(query.dtype)

        # linear proj
        hidden_states_org = attn.to_out[0](hidden_states_org)
        # dropout
        hidden_states_org = attn.to_out[1](hidden_states_org)

        if input_ndim == 4:
            hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width)

        # 2. Perturbed Path
        if attn.group_norm is not None:
            hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2)

        hidden_states_ptb = attn.to_v(hidden_states_ptb)
        hidden_states_ptb = hidden_states_ptb.to(query.dtype)

        # linear proj
        hidden_states_ptb = attn.to_out[0](hidden_states_ptb)
        # dropout
        hidden_states_ptb = attn.to_out[1](hidden_states_ptb)

        if input_ndim == 4:
            hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width)

        # cat
        hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class PAGCFGHunyuanAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
    used in the HunyuanDiT model. It applies a normalization layer and rotary embedding on query and key vector. This
    variant of the processor employs [Pertubed Attention Guidance](https://arxiv.org/abs/2403.17377).
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "PAGCFGHunyuanAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        from .embeddings import apply_rotary_emb

        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        # chunk
        hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3)
        hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org])

        # 1. Original Path
        batch_size, sequence_length, _ = (
            hidden_states_org.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states_org)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states_org
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE if needed
        if image_rotary_emb is not None:
            query = apply_rotary_emb(query, image_rotary_emb)
            if not attn.is_cross_attention:
                key = apply_rotary_emb(key, image_rotary_emb)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states_org = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states_org = hidden_states_org.to(query.dtype)

        # linear proj
        hidden_states_org = attn.to_out[0](hidden_states_org)
        # dropout
        hidden_states_org = attn.to_out[1](hidden_states_org)

        if input_ndim == 4:
            hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width)

        # 2. Perturbed Path
        if attn.group_norm is not None:
            hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2)

        hidden_states_ptb = attn.to_v(hidden_states_ptb)
        hidden_states_ptb = hidden_states_ptb.to(query.dtype)

        # linear proj
        hidden_states_ptb = attn.to_out[0](hidden_states_ptb)
        # dropout
        hidden_states_ptb = attn.to_out[1](hidden_states_ptb)

        if input_ndim == 4:
            hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width)

        # cat
        hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
class LuminaAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
    used in the LuminaNextDiT model. It applies a s normalization layer and rotary embedding on query and key vector.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        query_rotary_emb: Optional[torch.Tensor] = None,
        key_rotary_emb: Optional[torch.Tensor] = None,
        base_sequence_length: Optional[int] = None,
    ) -> torch.Tensor:
        from .embeddings import apply_rotary_emb

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = hidden_states.shape

        # Get Query-Key-Value Pair
        query = attn.to_q(hidden_states)
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query_dim = query.shape[-1]
        inner_dim = key.shape[-1]
        head_dim = query_dim // attn.heads
        dtype = query.dtype

        # Get key-value heads
        kv_heads = inner_dim // head_dim

        # Apply Query-Key Norm if needed
        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        query = query.view(batch_size, -1, attn.heads, head_dim)

        key = key.view(batch_size, -1, kv_heads, head_dim)
        value = value.view(batch_size, -1, kv_heads, head_dim)

        # Apply RoPE if needed
        if query_rotary_emb is not None:
            query = apply_rotary_emb(query, query_rotary_emb, use_real=False)
        if key_rotary_emb is not None:
            key = apply_rotary_emb(key, key_rotary_emb, use_real=False)

        query, key = query.to(dtype), key.to(dtype)

        # Apply proportional attention if true
        if key_rotary_emb is None:
            softmax_scale = None
        else:
            if base_sequence_length is not None:
                softmax_scale = math.sqrt(math.log(sequence_length, base_sequence_length)) * attn.scale
            else:
                softmax_scale = attn.scale

        # perform Grouped-qurey Attention (GQA)
        n_rep = attn.heads // kv_heads
        if n_rep >= 1:
            key = key.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
            value = value.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)

        # scaled_dot_product_attention expects attention_mask shape to be
        # (batch, heads, source_length, target_length)
        attention_mask = attention_mask.bool().view(batch_size, 1, 1, -1)
        attention_mask = attention_mask.expand(-1, attn.heads, sequence_length, -1)

        query = query.transpose(1, 2)
        key = key.transpose(1, 2)
        value = value.transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, scale=softmax_scale
        )
        hidden_states = hidden_states.transpose(1, 2).to(dtype)

        return hidden_states


4295
4296
class FusedAttnProcessor2_0:
    r"""
4297
4298
4299
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). It uses
    fused projection layers. For self-attention modules, all projection matrices (i.e., query, key, value) are fused.
    For cross-attention modules, key and value projection matrices are fused.
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316

    <Tip warning={true}>

    This API is currently 🧪 experimental in nature and can change in future.

    </Tip>
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "FusedAttnProcessor2_0 requires at least PyTorch 2.0, to use it. Please upgrade PyTorch to > 2.0."
            )

    def __call__(
        self,
        attn: Attention,
4317
4318
4319
4320
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
4321
4322
        *args,
        **kwargs,
4323
    ) -> torch.Tensor:
4324
4325
4326
4327
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)

4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        if encoder_hidden_states is None:
4352
            qkv = attn.to_qkv(hidden_states)
4353
4354
4355
4356
4357
            split_size = qkv.shape[-1] // 3
            query, key, value = torch.split(qkv, split_size, dim=-1)
        else:
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
4358
            query = attn.to_q(hidden_states)
4359

4360
            kv = attn.to_kv(encoder_hidden_states)
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
            split_size = kv.shape[-1] // 2
            key, value = torch.split(kv, split_size, dim=-1)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

4371
4372
4373
4374
4375
        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
4386
        hidden_states = attn.to_out[0](hidden_states)
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


4401
class CustomDiffusionXFormersAttnProcessor(nn.Module):
4402
    r"""
4403
    Processor for implementing memory efficient attention using xFormers for the Custom Diffusion method.
4404
4405

    Args:
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
    train_kv (`bool`, defaults to `True`):
        Whether to newly train the key and value matrices corresponding to the text features.
    train_q_out (`bool`, defaults to `True`):
        Whether to newly train query matrices corresponding to the latent image features.
    hidden_size (`int`, *optional*, defaults to `None`):
        The hidden size of the attention layer.
    cross_attention_dim (`int`, *optional*, defaults to `None`):
        The number of channels in the `encoder_hidden_states`.
    out_bias (`bool`, defaults to `True`):
        Whether to include the bias parameter in `train_q_out`.
    dropout (`float`, *optional*, defaults to 0.0):
        The dropout probability to use.
    attention_op (`Callable`, *optional*, defaults to `None`):
        The base
        [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use
        as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator.
4422
4423
    """

4424
    def __init__(
4425
        self,
4426
4427
4428
4429
4430
4431
        train_kv: bool = True,
        train_q_out: bool = False,
        hidden_size: Optional[int] = None,
        cross_attention_dim: Optional[int] = None,
        out_bias: bool = True,
        dropout: float = 0.0,
4432
        attention_op: Optional[Callable] = None,
4433
    ):
Patrick von Platen's avatar
Patrick von Platen committed
4434
        super().__init__()
4435
4436
        self.train_kv = train_kv
        self.train_q_out = train_q_out
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.attention_op = attention_op

        # `_custom_diffusion` id for easy serialization and loading.
        if self.train_kv:
            self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
            self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
        if self.train_q_out:
            self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
            self.to_out_custom_diffusion = nn.ModuleList([])
            self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
            self.to_out_custom_diffusion.append(nn.Dropout(dropout))

4452
4453
4454
    def __call__(
        self,
        attn: Attention,
4455
4456
4457
4458
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
4459
4460
4461
4462
4463
4464
4465
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if self.train_q_out:
4466
            query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype)
4467
        else:
4468
            query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype))
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478

        if encoder_hidden_states is None:
            crossattn = False
            encoder_hidden_states = hidden_states
        else:
            crossattn = True
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if self.train_kv:
4479
4480
4481
4482
            key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype))
            value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype))
            key = key.to(attn.to_q.weight.dtype)
            value = value.to(attn.to_q.weight.dtype)
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
        else:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)

        if crossattn:
            detach = torch.ones_like(key)
            detach[:, :1, :] = detach[:, :1, :] * 0.0
            key = detach * key + (1 - detach) * key.detach()
            value = detach * value + (1 - detach) * value.detach()

        query = attn.head_to_batch_dim(query).contiguous()
        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        if self.train_q_out:
            # linear proj
            hidden_states = self.to_out_custom_diffusion[0](hidden_states)
            # dropout
            hidden_states = self.to_out_custom_diffusion[1](hidden_states)
        else:
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
4513

4514
4515
4516
        return hidden_states


4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
class CustomDiffusionAttnProcessor2_0(nn.Module):
    r"""
    Processor for implementing attention for the Custom Diffusion method using PyTorch 2.0’s memory-efficient scaled
    dot-product attention.

    Args:
        train_kv (`bool`, defaults to `True`):
            Whether to newly train the key and value matrices corresponding to the text features.
        train_q_out (`bool`, defaults to `True`):
            Whether to newly train query matrices corresponding to the latent image features.
        hidden_size (`int`, *optional*, defaults to `None`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`, *optional*, defaults to `None`):
            The number of channels in the `encoder_hidden_states`.
        out_bias (`bool`, defaults to `True`):
            Whether to include the bias parameter in `train_q_out`.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability to use.
    """

    def __init__(
        self,
4539
4540
4541
4542
4543
4544
        train_kv: bool = True,
        train_q_out: bool = True,
        hidden_size: Optional[int] = None,
        cross_attention_dim: Optional[int] = None,
        out_bias: bool = True,
        dropout: float = 0.0,
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
    ):
        super().__init__()
        self.train_kv = train_kv
        self.train_q_out = train_q_out

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim

        # `_custom_diffusion` id for easy serialization and loading.
        if self.train_kv:
            self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
            self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
        if self.train_q_out:
            self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
            self.to_out_custom_diffusion = nn.ModuleList([])
            self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
            self.to_out_custom_diffusion.append(nn.Dropout(dropout))

4563
4564
4565
    def __call__(
        self,
        attn: Attention,
4566
4567
4568
4569
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        if self.train_q_out:
            query = self.to_q_custom_diffusion(hidden_states)
        else:
            query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            crossattn = False
            encoder_hidden_states = hidden_states
        else:
            crossattn = True
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if self.train_kv:
4586
4587
4588
4589
4590
            key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype))
            value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype))
            key = key.to(attn.to_q.weight.dtype)
            value = value.to(attn.to_q.weight.dtype)

4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
        else:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)

        if crossattn:
            detach = torch.ones_like(key)
            detach[:, :1, :] = detach[:, :1, :] * 0.0
            key = detach * key + (1 - detach) * key.detach()
            value = detach * value + (1 - detach) * value.detach()

        inner_dim = hidden_states.shape[-1]

        head_dim = inner_dim // attn.heads
        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        if self.train_q_out:
            # linear proj
            hidden_states = self.to_out_custom_diffusion[0](hidden_states)
            # dropout
            hidden_states = self.to_out_custom_diffusion[1](hidden_states)
        else:
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
4631
class SlicedAttnProcessor:
4632
4633
4634
4635
4636
4637
4638
4639
4640
    r"""
    Processor for implementing sliced attention.

    Args:
        slice_size (`int`, *optional*):
            The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
            `attention_head_dim` must be a multiple of the `slice_size`.
    """

4641
    def __init__(self, slice_size: int):
Patrick von Platen's avatar
Patrick von Platen committed
4642
4643
        self.slice_size = slice_size

4644
4645
4646
    def __call__(
        self,
        attn: Attention,
4647
4648
4649
4650
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
4651
4652
4653
4654
4655
4656
4657
4658
        residual = hidden_states

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

Patrick von Platen's avatar
Patrick von Platen committed
4659
4660
4661
4662
4663
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

4664
4665
4666
        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

Patrick von Platen's avatar
Patrick von Platen committed
4667
4668
4669
4670
4671
4672
        query = attn.to_q(hidden_states)
        dim = query.shape[-1]
        query = attn.head_to_batch_dim(query)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
4673
4674
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        batch_size_attention, query_tokens, _ = query.shape
        hidden_states = torch.zeros(
            (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
        )

4686
        for i in range((batch_size_attention - 1) // self.slice_size + 1):
Patrick von Platen's avatar
Patrick von Platen committed
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
            start_idx = i * self.slice_size
            end_idx = (i + 1) * self.slice_size

            query_slice = query[start_idx:end_idx]
            key_slice = key[start_idx:end_idx]
            attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None

            attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)

            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])

            hidden_states[start_idx:end_idx] = attn_slice

        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

4707
4708
4709
4710
4711
4712
4713
4714
        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

Patrick von Platen's avatar
Patrick von Platen committed
4715
4716
4717
4718
        return hidden_states


class SlicedAttnAddedKVProcessor:
4719
4720
4721
4722
4723
4724
4725
4726
4727
    r"""
    Processor for implementing sliced attention with extra learnable key and value matrices for the text encoder.

    Args:
        slice_size (`int`, *optional*):
            The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
            `attention_head_dim` must be a multiple of the `slice_size`.
    """

Patrick von Platen's avatar
Patrick von Platen committed
4728
4729
4730
    def __init__(self, slice_size):
        self.slice_size = slice_size

4731
4732
4733
    def __call__(
        self,
        attn: "Attention",
4734
4735
4736
4737
4738
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
Patrick von Platen's avatar
Patrick von Platen committed
4739
        residual = hidden_states
4740
4741
4742
4743

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

Patrick von Platen's avatar
Patrick von Platen committed
4744
4745
4746
4747
4748
4749
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)

        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

4750
4751
4752
4753
4754
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

Patrick von Platen's avatar
Patrick von Platen committed
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)
        dim = query.shape[-1]
        query = attn.head_to_batch_dim(query)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
        if not attn.only_cross_attention:
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
            key = attn.head_to_batch_dim(key)
            value = attn.head_to_batch_dim(value)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj
Patrick von Platen's avatar
Patrick von Platen committed
4777
4778
4779
4780
4781
4782

        batch_size_attention, query_tokens, _ = query.shape
        hidden_states = torch.zeros(
            (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
        )

4783
        for i in range((batch_size_attention - 1) // self.slice_size + 1):
Patrick von Platen's avatar
Patrick von Platen committed
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
            start_idx = i * self.slice_size
            end_idx = (i + 1) * self.slice_size

            query_slice = query[start_idx:end_idx]
            key_slice = key[start_idx:end_idx]
            attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None

            attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)

            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])

            hidden_states[start_idx:end_idx] = attn_slice

        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


YiYi Xu's avatar
YiYi Xu committed
4810
4811
class SpatialNorm(nn.Module):
    """
4812
4813
4814
4815
4816
4817
4818
    Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002.

    Args:
        f_channels (`int`):
            The number of channels for input to group normalization layer, and output of the spatial norm layer.
        zq_channels (`int`):
            The number of channels for the quantized vector as described in the paper.
YiYi Xu's avatar
YiYi Xu committed
4819
4820
4821
4822
    """

    def __init__(
        self,
4823
4824
        f_channels: int,
        zq_channels: int,
YiYi Xu's avatar
YiYi Xu committed
4825
4826
4827
4828
4829
4830
    ):
        super().__init__()
        self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=32, eps=1e-6, affine=True)
        self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)
        self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)

4831
    def forward(self, f: torch.Tensor, zq: torch.Tensor) -> torch.Tensor:
YiYi Xu's avatar
YiYi Xu committed
4832
4833
4834
4835
4836
        f_size = f.shape[-2:]
        zq = F.interpolate(zq, size=f_size, mode="nearest")
        norm_f = self.norm_layer(f)
        new_f = norm_f * self.conv_y(zq) + self.conv_b(zq)
        return new_f
4837
4838


4839
4840
class IPAdapterAttnProcessor(nn.Module):
    r"""
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4841
    Attention processor for Multiple IP-Adapters.
4842
4843
4844
4845
4846
4847

    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`):
            The number of channels in the `encoder_hidden_states`.
4848
        num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`):
4849
            The context length of the image features.
4850
        scale (`float` or List[`float`], defaults to 1.0):
4851
4852
4853
            the weight scale of image prompt.
    """

4854
    def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0):
4855
4856
4857
4858
        super().__init__()

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
4859
4860
4861

        if not isinstance(num_tokens, (tuple, list)):
            num_tokens = [num_tokens]
4862
        self.num_tokens = num_tokens
4863
4864
4865
4866
4867

        if not isinstance(scale, list):
            scale = [scale] * len(num_tokens)
        if len(scale) != len(num_tokens):
            raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.")
4868
4869
        self.scale = scale

4870
4871
4872
4873
4874
4875
        self.to_k_ip = nn.ModuleList(
            [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
        )
        self.to_v_ip = nn.ModuleList(
            [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
        )
4876
4877
4878

    def __call__(
        self,
4879
        attn: Attention,
4880
4881
4882
4883
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
4884
        scale: float = 1.0,
4885
        ip_adapter_masks: Optional[torch.Tensor] = None,
4886
4887
4888
    ):
        residual = hidden_states

4889
4890
4891
4892
4893
4894
        # separate ip_hidden_states from encoder_hidden_states
        if encoder_hidden_states is not None:
            if isinstance(encoder_hidden_states, tuple):
                encoder_hidden_states, ip_hidden_states = encoder_hidden_states
            else:
                deprecation_message = (
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4895
4896
                    "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release."
                    " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning."
4897
4898
4899
4900
4901
4902
4903
4904
                )
                deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False)
                end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0]
                encoder_hidden_states, ip_hidden_states = (
                    encoder_hidden_states[:, :end_pos, :],
                    [encoder_hidden_states[:, end_pos:, :]],
                )

4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

4940
        if ip_adapter_masks is not None:
4941
4942
4943
4944
            if not isinstance(ip_adapter_masks, List):
                # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width]
                ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1))
            if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)):
4945
                raise ValueError(
4946
4947
4948
                    f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match "
                    f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states "
                    f"({len(ip_hidden_states)})"
4949
                )
4950
4951
            else:
                for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)):
4952
4953
                    if mask is None:
                        continue
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
                    if not isinstance(mask, torch.Tensor) or mask.ndim != 4:
                        raise ValueError(
                            "Each element of the ip_adapter_masks array should be a tensor with shape "
                            "[1, num_images_for_ip_adapter, height, width]."
                            " Please use `IPAdapterMaskProcessor` to preprocess your mask"
                        )
                    if mask.shape[1] != ip_state.shape[1]:
                        raise ValueError(
                            f"Number of masks ({mask.shape[1]}) does not match "
                            f"number of ip images ({ip_state.shape[1]}) at index {index}"
                        )
                    if isinstance(scale, list) and not len(scale) == mask.shape[1]:
                        raise ValueError(
                            f"Number of masks ({mask.shape[1]}) does not match "
                            f"number of scales ({len(scale)}) at index {index}"
                        )
4970
4971
4972
        else:
            ip_adapter_masks = [None] * len(self.scale)

4973
        # for ip-adapter
4974
4975
        for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip(
            ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks
4976
        ):
Jenyuan-Huang's avatar
Jenyuan-Huang committed
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
            skip = False
            if isinstance(scale, list):
                if all(s == 0 for s in scale):
                    skip = True
            elif scale == 0:
                skip = True
            if not skip:
                if mask is not None:
                    if not isinstance(scale, list):
                        scale = [scale] * mask.shape[1]

                    current_num_images = mask.shape[1]
                    for i in range(current_num_images):
                        ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :])
                        ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :])

                        ip_key = attn.head_to_batch_dim(ip_key)
                        ip_value = attn.head_to_batch_dim(ip_value)

                        ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
                        _current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
                        _current_ip_hidden_states = attn.batch_to_head_dim(_current_ip_hidden_states)

                        mask_downsample = IPAdapterMaskProcessor.downsample(
                            mask[:, i, :, :],
                            batch_size,
                            _current_ip_hidden_states.shape[1],
                            _current_ip_hidden_states.shape[2],
                        )

                        mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device)
5008

Jenyuan-Huang's avatar
Jenyuan-Huang committed
5009
5010
5011
5012
                        hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample)
                else:
                    ip_key = to_k_ip(current_ip_hidden_states)
                    ip_value = to_v_ip(current_ip_hidden_states)
5013
5014
5015
5016
5017

                    ip_key = attn.head_to_batch_dim(ip_key)
                    ip_value = attn.head_to_batch_dim(ip_value)

                    ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
Jenyuan-Huang's avatar
Jenyuan-Huang committed
5018
5019
                    current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
                    current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states)
5020

Jenyuan-Huang's avatar
Jenyuan-Huang committed
5021
                    hidden_states = hidden_states + scale * current_ip_hidden_states
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class IPAdapterAttnProcessor2_0(torch.nn.Module):
    r"""
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
5041
    Attention processor for IP-Adapter for PyTorch 2.0.
5042
5043
5044
5045
5046
5047

    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`):
            The number of channels in the `encoder_hidden_states`.
5048
        num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`):
5049
            The context length of the image features.
5050
        scale (`float` or `List[float]`, defaults to 1.0):
5051
5052
5053
            the weight scale of image prompt.
    """

5054
    def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0):
5055
5056
5057
5058
5059
5060
5061
5062
5063
        super().__init__()

        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
5064
5065
5066

        if not isinstance(num_tokens, (tuple, list)):
            num_tokens = [num_tokens]
5067
        self.num_tokens = num_tokens
5068
5069
5070
5071
5072

        if not isinstance(scale, list):
            scale = [scale] * len(num_tokens)
        if len(scale) != len(num_tokens):
            raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.")
5073
5074
        self.scale = scale

5075
5076
5077
5078
5079
5080
        self.to_k_ip = nn.ModuleList(
            [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
        )
        self.to_v_ip = nn.ModuleList(
            [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
        )
5081
5082
5083

    def __call__(
        self,
5084
        attn: Attention,
5085
5086
5087
5088
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
5089
        scale: float = 1.0,
5090
        ip_adapter_masks: Optional[torch.Tensor] = None,
5091
5092
5093
    ):
        residual = hidden_states

5094
5095
5096
5097
5098
5099
        # separate ip_hidden_states from encoder_hidden_states
        if encoder_hidden_states is not None:
            if isinstance(encoder_hidden_states, tuple):
                encoder_hidden_states, ip_hidden_states = encoder_hidden_states
            else:
                deprecation_message = (
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
5100
5101
                    "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release."
                    " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning."
5102
5103
5104
5105
5106
5107
5108
5109
                )
                deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False)
                end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0]
                encoder_hidden_states, ip_hidden_states = (
                    encoder_hidden_states[:, :end_pos, :],
                    [encoder_hidden_states[:, end_pos:, :]],
                )

5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

5159
        if ip_adapter_masks is not None:
5160
5161
5162
5163
            if not isinstance(ip_adapter_masks, List):
                # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width]
                ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1))
            if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)):
5164
                raise ValueError(
5165
5166
5167
                    f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match "
                    f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states "
                    f"({len(ip_hidden_states)})"
5168
                )
5169
5170
            else:
                for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)):
5171
5172
                    if mask is None:
                        continue
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
                    if not isinstance(mask, torch.Tensor) or mask.ndim != 4:
                        raise ValueError(
                            "Each element of the ip_adapter_masks array should be a tensor with shape "
                            "[1, num_images_for_ip_adapter, height, width]."
                            " Please use `IPAdapterMaskProcessor` to preprocess your mask"
                        )
                    if mask.shape[1] != ip_state.shape[1]:
                        raise ValueError(
                            f"Number of masks ({mask.shape[1]}) does not match "
                            f"number of ip images ({ip_state.shape[1]}) at index {index}"
                        )
                    if isinstance(scale, list) and not len(scale) == mask.shape[1]:
                        raise ValueError(
                            f"Number of masks ({mask.shape[1]}) does not match "
                            f"number of scales ({len(scale)}) at index {index}"
                        )
5189
5190
5191
        else:
            ip_adapter_masks = [None] * len(self.scale)

5192
        # for ip-adapter
5193
5194
        for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip(
            ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks
5195
        ):
Jenyuan-Huang's avatar
Jenyuan-Huang committed
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
            skip = False
            if isinstance(scale, list):
                if all(s == 0 for s in scale):
                    skip = True
            elif scale == 0:
                skip = True
            if not skip:
                if mask is not None:
                    if not isinstance(scale, list):
                        scale = [scale] * mask.shape[1]

                    current_num_images = mask.shape[1]
                    for i in range(current_num_images):
                        ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :])
                        ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :])

                        ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
                        ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

                        # the output of sdp = (batch, num_heads, seq_len, head_dim)
                        # TODO: add support for attn.scale when we move to Torch 2.1
                        _current_ip_hidden_states = F.scaled_dot_product_attention(
                            query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
                        )

                        _current_ip_hidden_states = _current_ip_hidden_states.transpose(1, 2).reshape(
                            batch_size, -1, attn.heads * head_dim
                        )
                        _current_ip_hidden_states = _current_ip_hidden_states.to(query.dtype)
5225

Jenyuan-Huang's avatar
Jenyuan-Huang committed
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
                        mask_downsample = IPAdapterMaskProcessor.downsample(
                            mask[:, i, :, :],
                            batch_size,
                            _current_ip_hidden_states.shape[1],
                            _current_ip_hidden_states.shape[2],
                        )

                        mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device)
                        hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample)
                else:
                    ip_key = to_k_ip(current_ip_hidden_states)
                    ip_value = to_v_ip(current_ip_hidden_states)
5238

5239
5240
                    ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
                    ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
5241

5242
5243
                    # the output of sdp = (batch, num_heads, seq_len, head_dim)
                    # TODO: add support for attn.scale when we move to Torch 2.1
Jenyuan-Huang's avatar
Jenyuan-Huang committed
5244
                    current_ip_hidden_states = F.scaled_dot_product_attention(
5245
5246
                        query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
                    )
5247

Jenyuan-Huang's avatar
Jenyuan-Huang committed
5248
                    current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape(
5249
5250
                        batch_size, -1, attn.heads * head_dim
                    )
Jenyuan-Huang's avatar
Jenyuan-Huang committed
5251
                    current_ip_hidden_states = current_ip_hidden_states.to(query.dtype)
5252

Jenyuan-Huang's avatar
Jenyuan-Huang committed
5253
                    hidden_states = hidden_states + scale * current_ip_hidden_states
5254
5255
5256

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class IPAdapterXFormersAttnProcessor(torch.nn.Module):
    r"""
    Attention processor for IP-Adapter using xFormers.

    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`):
            The number of channels in the `encoder_hidden_states`.
        num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`):
            The context length of the image features.
        scale (`float` or `List[float]`, defaults to 1.0):
            the weight scale of image prompt.
        attention_op (`Callable`, *optional*, defaults to `None`):
            The base
            [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
            use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
            operator.
    """

    def __init__(
        self,
        hidden_size,
        cross_attention_dim=None,
        num_tokens=(4,),
        scale=1.0,
        attention_op: Optional[Callable] = None,
    ):
        super().__init__()

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.attention_op = attention_op

        if not isinstance(num_tokens, (tuple, list)):
            num_tokens = [num_tokens]
        self.num_tokens = num_tokens

        if not isinstance(scale, list):
            scale = [scale] * len(num_tokens)
        if len(scale) != len(num_tokens):
            raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.")
        self.scale = scale

        self.to_k_ip = nn.ModuleList(
            [nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) for _ in range(len(num_tokens))]
        )
        self.to_v_ip = nn.ModuleList(
            [nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) for _ in range(len(num_tokens))]
        )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
        scale: float = 1.0,
        ip_adapter_masks: Optional[torch.FloatTensor] = None,
    ):
        residual = hidden_states

        # separate ip_hidden_states from encoder_hidden_states
        if encoder_hidden_states is not None:
            if isinstance(encoder_hidden_states, tuple):
                encoder_hidden_states, ip_hidden_states = encoder_hidden_states
            else:
                deprecation_message = (
                    "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release."
                    " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning."
                )
                deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False)
                end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0]
                encoder_hidden_states, ip_hidden_states = (
                    encoder_hidden_states[:, :end_pos, :],
                    [encoder_hidden_states[:, end_pos:, :]],
                )

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # expand our mask's singleton query_tokens dimension:
            #   [batch*heads,            1, key_tokens] ->
            #   [batch*heads, query_tokens, key_tokens]
            # so that it can be added as a bias onto the attention scores that xformers computes:
            #   [batch*heads, query_tokens, key_tokens]
            # we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
            _, query_tokens, _ = hidden_states.shape
            attention_mask = attention_mask.expand(-1, query_tokens, -1)

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query).contiguous()
        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        if ip_hidden_states:
            if ip_adapter_masks is not None:
                if not isinstance(ip_adapter_masks, List):
                    # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width]
                    ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1))
                if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)):
                    raise ValueError(
                        f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match "
                        f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states "
                        f"({len(ip_hidden_states)})"
                    )
                else:
                    for index, (mask, scale, ip_state) in enumerate(
                        zip(ip_adapter_masks, self.scale, ip_hidden_states)
                    ):
                        if mask is None:
                            continue
                        if not isinstance(mask, torch.Tensor) or mask.ndim != 4:
                            raise ValueError(
                                "Each element of the ip_adapter_masks array should be a tensor with shape "
                                "[1, num_images_for_ip_adapter, height, width]."
                                " Please use `IPAdapterMaskProcessor` to preprocess your mask"
                            )
                        if mask.shape[1] != ip_state.shape[1]:
                            raise ValueError(
                                f"Number of masks ({mask.shape[1]}) does not match "
                                f"number of ip images ({ip_state.shape[1]}) at index {index}"
                            )
                        if isinstance(scale, list) and not len(scale) == mask.shape[1]:
                            raise ValueError(
                                f"Number of masks ({mask.shape[1]}) does not match "
                                f"number of scales ({len(scale)}) at index {index}"
                            )
            else:
                ip_adapter_masks = [None] * len(self.scale)

            # for ip-adapter
            for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip(
                ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks
            ):
                skip = False
                if isinstance(scale, list):
                    if all(s == 0 for s in scale):
                        skip = True
                elif scale == 0:
                    skip = True
                if not skip:
                    if mask is not None:
                        mask = mask.to(torch.float16)
                        if not isinstance(scale, list):
                            scale = [scale] * mask.shape[1]

                        current_num_images = mask.shape[1]
                        for i in range(current_num_images):
                            ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :])
                            ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :])

                            ip_key = attn.head_to_batch_dim(ip_key).contiguous()
                            ip_value = attn.head_to_batch_dim(ip_value).contiguous()

                            _current_ip_hidden_states = xformers.ops.memory_efficient_attention(
                                query, ip_key, ip_value, op=self.attention_op
                            )
                            _current_ip_hidden_states = _current_ip_hidden_states.to(query.dtype)
                            _current_ip_hidden_states = attn.batch_to_head_dim(_current_ip_hidden_states)

                            mask_downsample = IPAdapterMaskProcessor.downsample(
                                mask[:, i, :, :],
                                batch_size,
                                _current_ip_hidden_states.shape[1],
                                _current_ip_hidden_states.shape[2],
                            )

                            mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device)
                            hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample)
                    else:
                        ip_key = to_k_ip(current_ip_hidden_states)
                        ip_value = to_v_ip(current_ip_hidden_states)

                        ip_key = attn.head_to_batch_dim(ip_key).contiguous()
                        ip_value = attn.head_to_batch_dim(ip_value).contiguous()

                        current_ip_hidden_states = xformers.ops.memory_efficient_attention(
                            query, ip_key, ip_value, op=self.attention_op
                        )
                        current_ip_hidden_states = current_ip_hidden_states.to(query.dtype)
                        current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states)

                        hidden_states = hidden_states + scale * current_ip_hidden_states

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
class SD3IPAdapterJointAttnProcessor2_0(torch.nn.Module):
    """
    Attention processor for IP-Adapter used typically in processing the SD3-like self-attention projections, with
    additional image-based information and timestep embeddings.

    Args:
        hidden_size (`int`):
            The number of hidden channels.
        ip_hidden_states_dim (`int`):
            The image feature dimension.
        head_dim (`int`):
            The number of head channels.
        timesteps_emb_dim (`int`, defaults to 1280):
            The number of input channels for timestep embedding.
        scale (`float`, defaults to 0.5):
            IP-Adapter scale.
    """

    def __init__(
        self,
        hidden_size: int,
        ip_hidden_states_dim: int,
        head_dim: int,
        timesteps_emb_dim: int = 1280,
        scale: float = 0.5,
    ):
        super().__init__()

        # To prevent circular import
        from .normalization import AdaLayerNorm, RMSNorm

        self.norm_ip = AdaLayerNorm(timesteps_emb_dim, output_dim=ip_hidden_states_dim * 2, norm_eps=1e-6, chunk_dim=1)
        self.to_k_ip = nn.Linear(ip_hidden_states_dim, hidden_size, bias=False)
        self.to_v_ip = nn.Linear(ip_hidden_states_dim, hidden_size, bias=False)
        self.norm_q = RMSNorm(head_dim, 1e-6)
        self.norm_k = RMSNorm(head_dim, 1e-6)
        self.norm_ip_k = RMSNorm(head_dim, 1e-6)
        self.scale = scale

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        ip_hidden_states: torch.FloatTensor = None,
        temb: torch.FloatTensor = None,
    ) -> torch.FloatTensor:
        """
        Perform the attention computation, integrating image features (if provided) and timestep embeddings.

        If `ip_hidden_states` is `None`, this is equivalent to using JointAttnProcessor2_0.

        Args:
            attn (`Attention`):
                Attention instance.
            hidden_states (`torch.FloatTensor`):
                Input `hidden_states`.
            encoder_hidden_states (`torch.FloatTensor`, *optional*):
                The encoder hidden states.
            attention_mask (`torch.FloatTensor`, *optional*):
                Attention mask.
            ip_hidden_states (`torch.FloatTensor`, *optional*):
                Image embeddings.
            temb (`torch.FloatTensor`, *optional*):
                Timestep embeddings.

        Returns:
            `torch.FloatTensor`: Output hidden states.
        """
        residual = hidden_states

        batch_size = hidden_states.shape[0]

        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        img_query = query
        img_key = key
        img_value = value

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # `context` projections.
        if encoder_hidden_states is not None:
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)

            query = torch.cat([query, encoder_hidden_states_query_proj], dim=2)
            key = torch.cat([key, encoder_hidden_states_key_proj], dim=2)
            value = torch.cat([value, encoder_hidden_states_value_proj], dim=2)

        hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        if encoder_hidden_states is not None:
            # Split the attention outputs.
            hidden_states, encoder_hidden_states = (
                hidden_states[:, : residual.shape[1]],
                hidden_states[:, residual.shape[1] :],
            )
            if not attn.context_pre_only:
                encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

        # IP Adapter
        if self.scale != 0 and ip_hidden_states is not None:
            # Norm image features
            norm_ip_hidden_states = self.norm_ip(ip_hidden_states, temb=temb)

            # To k and v
            ip_key = self.to_k_ip(norm_ip_hidden_states)
            ip_value = self.to_v_ip(norm_ip_hidden_states)

            # Reshape
            ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

            # Norm
            query = self.norm_q(img_query)
            img_key = self.norm_k(img_key)
            ip_key = self.norm_ip_k(ip_key)

            # cat img
            key = torch.cat([img_key, ip_key], dim=2)
            value = torch.cat([img_value, ip_value], dim=2)

            ip_hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
            ip_hidden_states = ip_hidden_states.transpose(1, 2).view(batch_size, -1, attn.heads * head_dim)
            ip_hidden_states = ip_hidden_states.to(query.dtype)

            hidden_states = hidden_states + ip_hidden_states * self.scale

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if encoder_hidden_states is not None:
            return hidden_states, encoder_hidden_states
        else:
            return hidden_states


YiYi Xu's avatar
YiYi Xu committed
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
class PAGIdentitySelfAttnProcessor2_0:
    r"""
    Processor for implementing PAG using scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    PAG reference: https://arxiv.org/abs/2403.17377
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "PAGIdentitySelfAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
    ) -> torch.Tensor:
        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim
        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        # chunk
        hidden_states_org, hidden_states_ptb = hidden_states.chunk(2)

        # original path
        batch_size, sequence_length, _ = hidden_states_org.shape

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states_org)
        key = attn.to_k(hidden_states_org)
        value = attn.to_v(hidden_states_org)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states_org = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )
        hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states_org = hidden_states_org.to(query.dtype)

        # linear proj
        hidden_states_org = attn.to_out[0](hidden_states_org)
        # dropout
        hidden_states_org = attn.to_out[1](hidden_states_org)

        if input_ndim == 4:
            hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width)

        # perturbed path (identity attention)
        batch_size, sequence_length, _ = hidden_states_ptb.shape

        if attn.group_norm is not None:
            hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2)

        hidden_states_ptb = attn.to_v(hidden_states_ptb)
        hidden_states_ptb = hidden_states_ptb.to(query.dtype)

        # linear proj
        hidden_states_ptb = attn.to_out[0](hidden_states_ptb)
        # dropout
        hidden_states_ptb = attn.to_out[1](hidden_states_ptb)

        if input_ndim == 4:
            hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width)

        # cat
        hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class PAGCFGIdentitySelfAttnProcessor2_0:
    r"""
    Processor for implementing PAG using scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    PAG reference: https://arxiv.org/abs/2403.17377
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "PAGCFGIdentitySelfAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
    ) -> torch.Tensor:
        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim
        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        # chunk
        hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3)
        hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org])

        # original path
        batch_size, sequence_length, _ = hidden_states_org.shape

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states_org)
        key = attn.to_k(hidden_states_org)
        value = attn.to_v(hidden_states_org)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states_org = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states_org = hidden_states_org.to(query.dtype)

        # linear proj
        hidden_states_org = attn.to_out[0](hidden_states_org)
        # dropout
        hidden_states_org = attn.to_out[1](hidden_states_org)

        if input_ndim == 4:
            hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width)

        # perturbed path (identity attention)
        batch_size, sequence_length, _ = hidden_states_ptb.shape

        if attn.group_norm is not None:
            hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2)

        value = attn.to_v(hidden_states_ptb)
        hidden_states_ptb = value
        hidden_states_ptb = hidden_states_ptb.to(query.dtype)

        # linear proj
        hidden_states_ptb = attn.to_out[0](hidden_states_ptb)
        # dropout
        hidden_states_ptb = attn.to_out[1](hidden_states_ptb)

        if input_ndim == 4:
            hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width)

        # cat
        hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
class SanaMultiscaleAttnProcessor2_0:
    r"""
    Processor for implementing multiscale quadratic attention.
    """

    def __call__(self, attn: SanaMultiscaleLinearAttention, hidden_states: torch.Tensor) -> torch.Tensor:
        height, width = hidden_states.shape[-2:]
        if height * width > attn.attention_head_dim:
            use_linear_attention = True
        else:
            use_linear_attention = False

        residual = hidden_states

        batch_size, _, height, width = list(hidden_states.size())
        original_dtype = hidden_states.dtype

        hidden_states = hidden_states.movedim(1, -1)
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)
        hidden_states = torch.cat([query, key, value], dim=3)
        hidden_states = hidden_states.movedim(-1, 1)

        multi_scale_qkv = [hidden_states]
        for block in attn.to_qkv_multiscale:
            multi_scale_qkv.append(block(hidden_states))

        hidden_states = torch.cat(multi_scale_qkv, dim=1)

        if use_linear_attention:
            # for linear attention upcast hidden_states to float32
            hidden_states = hidden_states.to(dtype=torch.float32)

        hidden_states = hidden_states.reshape(batch_size, -1, 3 * attn.attention_head_dim, height * width)

        query, key, value = hidden_states.chunk(3, dim=2)
        query = attn.nonlinearity(query)
        key = attn.nonlinearity(key)

        if use_linear_attention:
            hidden_states = attn.apply_linear_attention(query, key, value)
            hidden_states = hidden_states.to(dtype=original_dtype)
        else:
            hidden_states = attn.apply_quadratic_attention(query, key, value)

        hidden_states = torch.reshape(hidden_states, (batch_size, -1, height, width))
        hidden_states = attn.to_out(hidden_states.movedim(1, -1)).movedim(-1, 1)

        if attn.norm_type == "rms_norm":
            hidden_states = attn.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
        else:
            hidden_states = attn.norm_out(hidden_states)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        return hidden_states


5936
class LoRAAttnProcessor:
5937
5938
5939
5940
    r"""
    Processor for implementing attention with LoRA.
    """

5941
5942
5943
5944
5945
    def __init__(self):
        pass


class LoRAAttnProcessor2_0:
5946
5947
5948
5949
    r"""
    Processor for implementing attention with LoRA (enabled by default if you're using PyTorch 2.0).
    """

5950
5951
5952
5953
5954
    def __init__(self):
        pass


class LoRAXFormersAttnProcessor:
5955
5956
5957
5958
    r"""
    Processor for implementing attention with LoRA using xFormers.
    """

5959
5960
5961
5962
5963
    def __init__(self):
        pass


class LoRAAttnAddedKVProcessor:
5964
5965
5966
5967
    r"""
    Processor for implementing attention with LoRA with extra learnable key and value matrices for the text encoder.
    """

5968
5969
5970
5971
    def __init__(self):
        pass


YiYi Xu's avatar
YiYi Xu committed
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
class FluxSingleAttnProcessor2_0(FluxAttnProcessor2_0):
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    """

    def __init__(self):
        deprecation_message = "`FluxSingleAttnProcessor2_0` is deprecated and will be removed in a future version. Please use `FluxAttnProcessor2_0` instead."
        deprecate("FluxSingleAttnProcessor2_0", "0.32.0", deprecation_message)
        super().__init__()


5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
class SanaLinearAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product linear attention.
    """

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        original_dtype = hidden_states.dtype

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states

        query = attn.to_q(hidden_states)
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = query.transpose(1, 2).unflatten(1, (attn.heads, -1))
        key = key.transpose(1, 2).unflatten(1, (attn.heads, -1)).transpose(2, 3)
        value = value.transpose(1, 2).unflatten(1, (attn.heads, -1))

        query = F.relu(query)
        key = F.relu(key)

        query, key, value = query.float(), key.float(), value.float()

        value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1.0)
        scores = torch.matmul(value, key)
        hidden_states = torch.matmul(scores, query)

        hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + 1e-15)
        hidden_states = hidden_states.flatten(1, 2).transpose(1, 2)
        hidden_states = hidden_states.to(original_dtype)

        hidden_states = attn.to_out[0](hidden_states)
        hidden_states = attn.to_out[1](hidden_states)

        if original_dtype == torch.float16:
            hidden_states = hidden_states.clip(-65504, 65504)

        return hidden_states


class PAGCFGSanaLinearAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product linear attention.
    """

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        original_dtype = hidden_states.dtype

        hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3)
        hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org])

        query = attn.to_q(hidden_states_org)
        key = attn.to_k(hidden_states_org)
        value = attn.to_v(hidden_states_org)

        query = query.transpose(1, 2).unflatten(1, (attn.heads, -1))
        key = key.transpose(1, 2).unflatten(1, (attn.heads, -1)).transpose(2, 3)
        value = value.transpose(1, 2).unflatten(1, (attn.heads, -1))

        query = F.relu(query)
        key = F.relu(key)

        query, key, value = query.float(), key.float(), value.float()

        value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1.0)
        scores = torch.matmul(value, key)
        hidden_states_org = torch.matmul(scores, query)

        hidden_states_org = hidden_states_org[:, :, :-1] / (hidden_states_org[:, :, -1:] + 1e-15)
        hidden_states_org = hidden_states_org.flatten(1, 2).transpose(1, 2)
        hidden_states_org = hidden_states_org.to(original_dtype)

        hidden_states_org = attn.to_out[0](hidden_states_org)
        hidden_states_org = attn.to_out[1](hidden_states_org)

        # perturbed path (identity attention)
        hidden_states_ptb = attn.to_v(hidden_states_ptb).to(original_dtype)

        hidden_states_ptb = attn.to_out[0](hidden_states_ptb)
        hidden_states_ptb = attn.to_out[1](hidden_states_ptb)

        hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])

        if original_dtype == torch.float16:
            hidden_states = hidden_states.clip(-65504, 65504)

        return hidden_states


class PAGIdentitySanaLinearAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product linear attention.
    """

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        original_dtype = hidden_states.dtype

        hidden_states_org, hidden_states_ptb = hidden_states.chunk(2)

        query = attn.to_q(hidden_states_org)
        key = attn.to_k(hidden_states_org)
        value = attn.to_v(hidden_states_org)

        query = query.transpose(1, 2).unflatten(1, (attn.heads, -1))
        key = key.transpose(1, 2).unflatten(1, (attn.heads, -1)).transpose(2, 3)
        value = value.transpose(1, 2).unflatten(1, (attn.heads, -1))

        query = F.relu(query)
        key = F.relu(key)

        query, key, value = query.float(), key.float(), value.float()

        value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1.0)
        scores = torch.matmul(value, key)
        hidden_states_org = torch.matmul(scores, query)

        if hidden_states_org.dtype in [torch.float16, torch.bfloat16]:
            hidden_states_org = hidden_states_org.float()

        hidden_states_org = hidden_states_org[:, :, :-1] / (hidden_states_org[:, :, -1:] + 1e-15)
        hidden_states_org = hidden_states_org.flatten(1, 2).transpose(1, 2)
        hidden_states_org = hidden_states_org.to(original_dtype)

        hidden_states_org = attn.to_out[0](hidden_states_org)
        hidden_states_org = attn.to_out[1](hidden_states_org)

        # perturbed path (identity attention)
        hidden_states_ptb = attn.to_v(hidden_states_ptb).to(original_dtype)

        hidden_states_ptb = attn.to_out[0](hidden_states_ptb)
        hidden_states_ptb = attn.to_out[1](hidden_states_ptb)

        hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])

        if original_dtype == torch.float16:
            hidden_states = hidden_states.clip(-65504, 65504)

        return hidden_states


6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
ADDED_KV_ATTENTION_PROCESSORS = (
    AttnAddedKVProcessor,
    SlicedAttnAddedKVProcessor,
    AttnAddedKVProcessor2_0,
    XFormersAttnAddedKVProcessor,
)

CROSS_ATTENTION_PROCESSORS = (
    AttnProcessor,
    AttnProcessor2_0,
    XFormersAttnProcessor,
    SlicedAttnProcessor,
6154
6155
    IPAdapterAttnProcessor,
    IPAdapterAttnProcessor2_0,
hlky's avatar
hlky committed
6156
    FluxIPAdapterJointAttnProcessor2_0,
6157
6158
)

6159
6160
AttentionProcessor = Union[
    AttnProcessor,
6161
    CustomDiffusionAttnProcessor,
6162
6163
    AttnAddedKVProcessor,
    AttnAddedKVProcessor2_0,
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
    JointAttnProcessor2_0,
    PAGJointAttnProcessor2_0,
    PAGCFGJointAttnProcessor2_0,
    FusedJointAttnProcessor2_0,
    AllegroAttnProcessor2_0,
    AuraFlowAttnProcessor2_0,
    FusedAuraFlowAttnProcessor2_0,
    FluxAttnProcessor2_0,
    FluxAttnProcessor2_0_NPU,
    FusedFluxAttnProcessor2_0,
    FusedFluxAttnProcessor2_0_NPU,
    CogVideoXAttnProcessor2_0,
    FusedCogVideoXAttnProcessor2_0,
6177
    XFormersAttnAddedKVProcessor,
6178
    XFormersAttnProcessor,
Juan Acevedo's avatar
Juan Acevedo committed
6179
    XLAFlashAttnProcessor2_0,
6180
6181
6182
    AttnProcessorNPU,
    AttnProcessor2_0,
    MochiVaeAttnProcessor2_0,
Dhruv Nair's avatar
Dhruv Nair committed
6183
    MochiAttnProcessor2_0,
6184
6185
6186
6187
6188
6189
6190
    StableAudioAttnProcessor2_0,
    HunyuanAttnProcessor2_0,
    FusedHunyuanAttnProcessor2_0,
    PAGHunyuanAttnProcessor2_0,
    PAGCFGHunyuanAttnProcessor2_0,
    LuminaAttnProcessor2_0,
    FusedAttnProcessor2_0,
6191
    CustomDiffusionXFormersAttnProcessor,
6192
    CustomDiffusionAttnProcessor2_0,
6193
6194
    SlicedAttnProcessor,
    SlicedAttnAddedKVProcessor,
6195
6196
6197
6198
6199
6200
    SanaLinearAttnProcessor2_0,
    PAGCFGSanaLinearAttnProcessor2_0,
    PAGIdentitySanaLinearAttnProcessor2_0,
    SanaMultiscaleLinearAttention,
    SanaMultiscaleAttnProcessor2_0,
    SanaMultiscaleAttentionProjection,
6201
6202
6203
    IPAdapterAttnProcessor,
    IPAdapterAttnProcessor2_0,
    IPAdapterXFormersAttnProcessor,
6204
    SD3IPAdapterJointAttnProcessor2_0,
YiYi Xu's avatar
YiYi Xu committed
6205
    PAGIdentitySelfAttnProcessor2_0,
6206
6207
6208
6209
6210
    PAGCFGIdentitySelfAttnProcessor2_0,
    LoRAAttnProcessor,
    LoRAAttnProcessor2_0,
    LoRAXFormersAttnProcessor,
    LoRAAttnAddedKVProcessor,
6211
]