attention_processor.py 110 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import inspect
15
from importlib import import_module
16
from typing import Callable, List, Optional, Union
Patrick von Platen's avatar
Patrick von Platen committed
17
18
19

import torch
import torch.nn.functional as F
20
from torch import nn
Patrick von Platen's avatar
Patrick von Platen committed
21

22
from ..image_processor import IPAdapterMaskProcessor
23
from ..utils import deprecate, logging
Patrick von Platen's avatar
Patrick von Platen committed
24
from ..utils.import_utils import is_xformers_available
Dhruv Nair's avatar
Dhruv Nair committed
25
from ..utils.torch_utils import maybe_allow_in_graph
26
from .lora import LoRALinearLayer
Patrick von Platen's avatar
Patrick von Platen committed
27
28
29
30
31
32
33
34
35
36
37
38


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None


39
@maybe_allow_in_graph
Patrick von Platen's avatar
Patrick von Platen committed
40
41
42
43
44
class Attention(nn.Module):
    r"""
    A cross attention layer.

    Parameters:
45
46
        query_dim (`int`):
            The number of channels in the query.
Patrick von Platen's avatar
Patrick von Platen committed
47
48
        cross_attention_dim (`int`, *optional*):
            The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
49
50
51
52
53
54
        heads (`int`,  *optional*, defaults to 8):
            The number of heads to use for multi-head attention.
        dim_head (`int`,  *optional*, defaults to 64):
            The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability to use.
Patrick von Platen's avatar
Patrick von Platen committed
55
56
        bias (`bool`, *optional*, defaults to False):
            Set to `True` for the query, key, and value linear layers to contain a bias parameter.
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        upcast_attention (`bool`, *optional*, defaults to False):
            Set to `True` to upcast the attention computation to `float32`.
        upcast_softmax (`bool`, *optional*, defaults to False):
            Set to `True` to upcast the softmax computation to `float32`.
        cross_attention_norm (`str`, *optional*, defaults to `None`):
            The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
        cross_attention_norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups to use for the group norm in the cross attention.
        added_kv_proj_dim (`int`, *optional*, defaults to `None`):
            The number of channels to use for the added key and value projections. If `None`, no projection is used.
        norm_num_groups (`int`, *optional*, defaults to `None`):
            The number of groups to use for the group norm in the attention.
        spatial_norm_dim (`int`, *optional*, defaults to `None`):
            The number of channels to use for the spatial normalization.
        out_bias (`bool`, *optional*, defaults to `True`):
            Set to `True` to use a bias in the output linear layer.
        scale_qk (`bool`, *optional*, defaults to `True`):
            Set to `True` to scale the query and key by `1 / sqrt(dim_head)`.
        only_cross_attention (`bool`, *optional*, defaults to `False`):
            Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if
            `added_kv_proj_dim` is not `None`.
        eps (`float`, *optional*, defaults to 1e-5):
            An additional value added to the denominator in group normalization that is used for numerical stability.
        rescale_output_factor (`float`, *optional*, defaults to 1.0):
            A factor to rescale the output by dividing it with this value.
        residual_connection (`bool`, *optional*, defaults to `False`):
            Set to `True` to add the residual connection to the output.
        _from_deprecated_attn_block (`bool`, *optional*, defaults to `False`):
            Set to `True` if the attention block is loaded from a deprecated state dict.
        processor (`AttnProcessor`, *optional*, defaults to `None`):
            The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and
            `AttnProcessor` otherwise.
Patrick von Platen's avatar
Patrick von Platen committed
89
90
91
92
93
94
95
96
97
    """

    def __init__(
        self,
        query_dim: int,
        cross_attention_dim: Optional[int] = None,
        heads: int = 8,
        dim_head: int = 64,
        dropout: float = 0.0,
98
        bias: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
99
100
        upcast_attention: bool = False,
        upcast_softmax: bool = False,
101
102
        cross_attention_norm: Optional[str] = None,
        cross_attention_norm_num_groups: int = 32,
Patrick von Platen's avatar
Patrick von Platen committed
103
104
        added_kv_proj_dim: Optional[int] = None,
        norm_num_groups: Optional[int] = None,
YiYi Xu's avatar
YiYi Xu committed
105
        spatial_norm_dim: Optional[int] = None,
Patrick von Platen's avatar
Patrick von Platen committed
106
107
        out_bias: bool = True,
        scale_qk: bool = True,
108
        only_cross_attention: bool = False,
109
110
111
        eps: float = 1e-5,
        rescale_output_factor: float = 1.0,
        residual_connection: bool = False,
112
        _from_deprecated_attn_block: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
113
        processor: Optional["AttnProcessor"] = None,
114
        out_dim: int = None,
Patrick von Platen's avatar
Patrick von Platen committed
115
116
    ):
        super().__init__()
117
        self.inner_dim = out_dim if out_dim is not None else dim_head * heads
118
        self.query_dim = query_dim
119
120
        self.use_bias = bias
        self.is_cross_attention = cross_attention_dim is not None
121
        self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
Patrick von Platen's avatar
Patrick von Platen committed
122
123
        self.upcast_attention = upcast_attention
        self.upcast_softmax = upcast_softmax
124
125
        self.rescale_output_factor = rescale_output_factor
        self.residual_connection = residual_connection
126
        self.dropout = dropout
127
        self.fused_projections = False
128
        self.out_dim = out_dim if out_dim is not None else query_dim
129
130
131
132

        # we make use of this private variable to know whether this class is loaded
        # with an deprecated state dict so that we can convert it on the fly
        self._from_deprecated_attn_block = _from_deprecated_attn_block
Patrick von Platen's avatar
Patrick von Platen committed
133

134
135
        self.scale_qk = scale_qk
        self.scale = dim_head**-0.5 if self.scale_qk else 1.0
Patrick von Platen's avatar
Patrick von Platen committed
136

137
        self.heads = out_dim // dim_head if out_dim is not None else heads
Patrick von Platen's avatar
Patrick von Platen committed
138
139
140
141
142
143
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self.sliceable_head_dim = heads

        self.added_kv_proj_dim = added_kv_proj_dim
144
145
146
147
148
149
        self.only_cross_attention = only_cross_attention

        if self.added_kv_proj_dim is None and self.only_cross_attention:
            raise ValueError(
                "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
            )
Patrick von Platen's avatar
Patrick von Platen committed
150
151

        if norm_num_groups is not None:
152
            self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
153
154
155
        else:
            self.group_norm = None

YiYi Xu's avatar
YiYi Xu committed
156
157
158
159
160
        if spatial_norm_dim is not None:
            self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim)
        else:
            self.spatial_norm = None

161
162
163
        if cross_attention_norm is None:
            self.norm_cross = None
        elif cross_attention_norm == "layer_norm":
164
            self.norm_cross = nn.LayerNorm(self.cross_attention_dim)
165
166
167
168
169
170
171
172
173
        elif cross_attention_norm == "group_norm":
            if self.added_kv_proj_dim is not None:
                # The given `encoder_hidden_states` are initially of shape
                # (batch_size, seq_len, added_kv_proj_dim) before being projected
                # to (batch_size, seq_len, cross_attention_dim). The norm is applied
                # before the projection, so we need to use `added_kv_proj_dim` as
                # the number of channels for the group norm.
                norm_cross_num_channels = added_kv_proj_dim
            else:
174
                norm_cross_num_channels = self.cross_attention_dim
175
176
177
178
179
180
181
182

            self.norm_cross = nn.GroupNorm(
                num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True
            )
        else:
            raise ValueError(
                f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'"
            )
Patrick von Platen's avatar
Patrick von Platen committed
183

184
        self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias)
185
186
187

        if not self.only_cross_attention:
            # only relevant for the `AddedKVProcessor` classes
188
189
            self.to_k = nn.Linear(self.cross_attention_dim, self.inner_dim, bias=bias)
            self.to_v = nn.Linear(self.cross_attention_dim, self.inner_dim, bias=bias)
190
191
192
        else:
            self.to_k = None
            self.to_v = None
Patrick von Platen's avatar
Patrick von Platen committed
193
194

        if self.added_kv_proj_dim is not None:
195
196
            self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_dim)
            self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_dim)
Patrick von Platen's avatar
Patrick von Platen committed
197
198

        self.to_out = nn.ModuleList([])
199
        self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias))
Patrick von Platen's avatar
Patrick von Platen committed
200
201
202
203
204
205
206
207
        self.to_out.append(nn.Dropout(dropout))

        # set attention processor
        # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
        # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
        # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
        if processor is None:
            processor = (
208
                AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
Patrick von Platen's avatar
Patrick von Platen committed
209
210
211
212
213
            )
        self.set_processor(processor)

    def set_use_memory_efficient_attention_xformers(
        self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
214
215
216
217
218
219
220
221
222
223
224
    ) -> None:
        r"""
        Set whether to use memory efficient attention from `xformers` or not.

        Args:
            use_memory_efficient_attention_xformers (`bool`):
                Whether to use memory efficient attention from `xformers` or not.
            attention_op (`Callable`, *optional*):
                The attention operation to use. Defaults to `None` which uses the default attention operation from
                `xformers`.
        """
Patrick von Platen's avatar
Patrick von Platen committed
225
        is_lora = hasattr(self, "processor") and isinstance(
226
            self.processor,
227
            LORA_ATTENTION_PROCESSORS,
Patrick von Platen's avatar
Patrick von Platen committed
228
        )
229
        is_custom_diffusion = hasattr(self, "processor") and isinstance(
230
231
            self.processor,
            (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0),
232
        )
233
234
235
236
237
238
239
240
241
242
        is_added_kv_processor = hasattr(self, "processor") and isinstance(
            self.processor,
            (
                AttnAddedKVProcessor,
                AttnAddedKVProcessor2_0,
                SlicedAttnAddedKVProcessor,
                XFormersAttnAddedKVProcessor,
                LoRAAttnAddedKVProcessor,
            ),
        )
Patrick von Platen's avatar
Patrick von Platen committed
243
244

        if use_memory_efficient_attention_xformers:
245
            if is_added_kv_processor and (is_lora or is_custom_diffusion):
Patrick von Platen's avatar
Patrick von Platen committed
246
                raise NotImplementedError(
Kashif Rasul's avatar
Kashif Rasul committed
247
                    f"Memory efficient attention is currently not supported for LoRA or custom diffusion for attention processor type {self.processor}"
Patrick von Platen's avatar
Patrick von Platen committed
248
                )
249
            if not is_xformers_available():
Patrick von Platen's avatar
Patrick von Platen committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
                raise ModuleNotFoundError(
                    (
                        "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                        " xformers"
                    ),
                    name="xformers",
                )
            elif not torch.cuda.is_available():
                raise ValueError(
                    "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
                    " only available for GPU "
                )
            else:
                try:
                    # Make sure we can run the memory efficient attention
                    _ = xformers.ops.memory_efficient_attention(
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                    )
                except Exception as e:
                    raise e

            if is_lora:
274
275
                # TODO (sayakpaul): should we throw a warning if someone wants to use the xformers
                # variant when using PT 2.0 now that we have LoRAAttnProcessor2_0?
Patrick von Platen's avatar
Patrick von Platen committed
276
277
278
279
280
281
282
283
                processor = LoRAXFormersAttnProcessor(
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    rank=self.processor.rank,
                    attention_op=attention_op,
                )
                processor.load_state_dict(self.processor.state_dict())
                processor.to(self.processor.to_q_lora.up.weight.device)
284
285
286
287
288
289
290
291
292
293
294
            elif is_custom_diffusion:
                processor = CustomDiffusionXFormersAttnProcessor(
                    train_kv=self.processor.train_kv,
                    train_q_out=self.processor.train_q_out,
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    attention_op=attention_op,
                )
                processor.load_state_dict(self.processor.state_dict())
                if hasattr(self.processor, "to_k_custom_diffusion"):
                    processor.to(self.processor.to_k_custom_diffusion.weight.device)
295
296
297
298
299
300
301
302
303
            elif is_added_kv_processor:
                # TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP
                # which uses this type of cross attention ONLY because the attention mask of format
                # [0, ..., -10.000, ..., 0, ...,] is not supported
                # throw warning
                logger.info(
                    "Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation."
                )
                processor = XFormersAttnAddedKVProcessor(attention_op=attention_op)
Patrick von Platen's avatar
Patrick von Platen committed
304
305
306
307
            else:
                processor = XFormersAttnProcessor(attention_op=attention_op)
        else:
            if is_lora:
308
309
310
311
                attn_processor_class = (
                    LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
                )
                processor = attn_processor_class(
Patrick von Platen's avatar
Patrick von Platen committed
312
313
314
315
316
317
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    rank=self.processor.rank,
                )
                processor.load_state_dict(self.processor.state_dict())
                processor.to(self.processor.to_q_lora.up.weight.device)
318
            elif is_custom_diffusion:
319
320
321
322
323
324
                attn_processor_class = (
                    CustomDiffusionAttnProcessor2_0
                    if hasattr(F, "scaled_dot_product_attention")
                    else CustomDiffusionAttnProcessor
                )
                processor = attn_processor_class(
325
326
327
328
329
330
331
332
                    train_kv=self.processor.train_kv,
                    train_q_out=self.processor.train_q_out,
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                )
                processor.load_state_dict(self.processor.state_dict())
                if hasattr(self.processor, "to_k_custom_diffusion"):
                    processor.to(self.processor.to_k_custom_diffusion.weight.device)
Patrick von Platen's avatar
Patrick von Platen committed
333
            else:
334
335
336
337
338
339
340
341
342
                # set attention processor
                # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
                # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
                # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
                processor = (
                    AttnProcessor2_0()
                    if hasattr(F, "scaled_dot_product_attention") and self.scale_qk
                    else AttnProcessor()
                )
Patrick von Platen's avatar
Patrick von Platen committed
343
344
345

        self.set_processor(processor)

346
347
348
349
350
351
352
353
    def set_attention_slice(self, slice_size: int) -> None:
        r"""
        Set the slice size for attention computation.

        Args:
            slice_size (`int`):
                The slice size for attention computation.
        """
Patrick von Platen's avatar
Patrick von Platen committed
354
355
356
357
358
359
360
361
362
363
        if slice_size is not None and slice_size > self.sliceable_head_dim:
            raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")

        if slice_size is not None and self.added_kv_proj_dim is not None:
            processor = SlicedAttnAddedKVProcessor(slice_size)
        elif slice_size is not None:
            processor = SlicedAttnProcessor(slice_size)
        elif self.added_kv_proj_dim is not None:
            processor = AttnAddedKVProcessor()
        else:
364
365
366
367
368
369
370
            # set attention processor
            # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
            # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
            # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
            processor = (
                AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
            )
Patrick von Platen's avatar
Patrick von Platen committed
371
372
373

        self.set_processor(processor)

374
    def set_processor(self, processor: "AttnProcessor") -> None:
375
376
377
378
379
380
381
        r"""
        Set the attention processor to use.

        Args:
            processor (`AttnProcessor`):
                The attention processor to use.
        """
Patrick von Platen's avatar
Patrick von Platen committed
382
383
384
385
386
387
388
389
390
391
392
393
        # if current processor is in `self._modules` and if passed `processor` is not, we need to
        # pop `processor` from `self._modules`
        if (
            hasattr(self, "processor")
            and isinstance(self.processor, torch.nn.Module)
            and not isinstance(processor, torch.nn.Module)
        ):
            logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
            self._modules.pop("processor")

        self.processor = processor

394
    def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor":
395
396
397
398
399
400
401
402
403
404
        r"""
        Get the attention processor in use.

        Args:
            return_deprecated_lora (`bool`, *optional*, defaults to `False`):
                Set to `True` to return the deprecated LoRA attention processor.

        Returns:
            "AttentionProcessor": The attention processor in use.
        """
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        if not return_deprecated_lora:
            return self.processor

        # TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible
        # serialization format for LoRA Attention Processors. It should be deleted once the integration
        # with PEFT is completed.
        is_lora_activated = {
            name: module.lora_layer is not None
            for name, module in self.named_modules()
            if hasattr(module, "lora_layer")
        }

        # 1. if no layer has a LoRA activated we can return the processor as usual
        if not any(is_lora_activated.values()):
            return self.processor

        # If doesn't apply LoRA do `add_k_proj` or `add_v_proj`
        is_lora_activated.pop("add_k_proj", None)
        is_lora_activated.pop("add_v_proj", None)
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
424
        # 2. else it is not possible that only some layers have LoRA activated
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
        if not all(is_lora_activated.values()):
            raise ValueError(
                f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}"
            )

        # 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor
        non_lora_processor_cls_name = self.processor.__class__.__name__
        lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name)

        hidden_size = self.inner_dim

        # now create a LoRA attention processor from the LoRA layers
        if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]:
            kwargs = {
                "cross_attention_dim": self.cross_attention_dim,
                "rank": self.to_q.lora_layer.rank,
                "network_alpha": self.to_q.lora_layer.network_alpha,
                "q_rank": self.to_q.lora_layer.rank,
                "q_hidden_size": self.to_q.lora_layer.out_features,
                "k_rank": self.to_k.lora_layer.rank,
                "k_hidden_size": self.to_k.lora_layer.out_features,
                "v_rank": self.to_v.lora_layer.rank,
                "v_hidden_size": self.to_v.lora_layer.out_features,
                "out_rank": self.to_out[0].lora_layer.rank,
                "out_hidden_size": self.to_out[0].lora_layer.out_features,
            }

            if hasattr(self.processor, "attention_op"):
453
                kwargs["attention_op"] = self.processor.attention_op
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483

            lora_processor = lora_processor_cls(hidden_size, **kwargs)
            lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
            lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
            lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
            lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
        elif lora_processor_cls == LoRAAttnAddedKVProcessor:
            lora_processor = lora_processor_cls(
                hidden_size,
                cross_attention_dim=self.add_k_proj.weight.shape[0],
                rank=self.to_q.lora_layer.rank,
                network_alpha=self.to_q.lora_layer.network_alpha,
            )
            lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
            lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
            lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
            lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())

            # only save if used
            if self.add_k_proj.lora_layer is not None:
                lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict())
                lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict())
            else:
                lora_processor.add_k_proj_lora = None
                lora_processor.add_v_proj_lora = None
        else:
            raise ValueError(f"{lora_processor_cls} does not exist.")

        return lora_processor

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        **cross_attention_kwargs,
    ) -> torch.Tensor:
        r"""
        The forward method of the `Attention` class.

        Args:
            hidden_states (`torch.Tensor`):
                The hidden states of the query.
            encoder_hidden_states (`torch.Tensor`, *optional*):
                The hidden states of the encoder.
            attention_mask (`torch.Tensor`, *optional*):
                The attention mask to use. If `None`, no mask is applied.
            **cross_attention_kwargs:
                Additional keyword arguments to pass along to the cross attention.

        Returns:
            `torch.Tensor`: The output of the attention layer.
        """
Patrick von Platen's avatar
Patrick von Platen committed
507
508
509
        # The `Attention` class can call different attention processors / attention functions
        # here we simply pass along all tensors to the selected processor class
        # For standard processors that are defined here, `**cross_attention_kwargs` is empty
510
511
512
513
514
515
516
517
518

        attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
        unused_kwargs = [k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters]
        if len(unused_kwargs) > 0:
            logger.warning(
                f"cross_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
            )
        cross_attention_kwargs = {k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters}

Patrick von Platen's avatar
Patrick von Platen committed
519
520
521
522
523
524
525
526
        return self.processor(
            self,
            hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )

527
528
529
530
531
532
533
534
535
536
537
    def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor:
        r"""
        Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads`
        is the number of heads initialized while constructing the `Attention` class.

        Args:
            tensor (`torch.Tensor`): The tensor to reshape.

        Returns:
            `torch.Tensor`: The reshaped tensor.
        """
Patrick von Platen's avatar
Patrick von Platen committed
538
539
540
541
542
543
        head_size = self.heads
        batch_size, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

544
545
546
547
548
549
550
551
552
553
554
555
556
    def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor:
        r"""
        Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is
        the number of heads initialized while constructing the `Attention` class.

        Args:
            tensor (`torch.Tensor`): The tensor to reshape.
            out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is
                reshaped to `[batch_size * heads, seq_len, dim // heads]`.

        Returns:
            `torch.Tensor`: The reshaped tensor.
        """
Patrick von Platen's avatar
Patrick von Platen committed
557
        head_size = self.heads
558
559
560
561
562
563
        if tensor.ndim == 3:
            batch_size, seq_len, dim = tensor.shape
            extra_dim = 1
        else:
            batch_size, extra_dim, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size, seq_len * extra_dim, head_size, dim // head_size)
564
565
566
        tensor = tensor.permute(0, 2, 1, 3)

        if out_dim == 3:
567
            tensor = tensor.reshape(batch_size * head_size, seq_len * extra_dim, dim // head_size)
568

Patrick von Platen's avatar
Patrick von Platen committed
569
570
        return tensor

571
572
573
574
575
576
577
578
579
580
581
582
583
584
    def get_attention_scores(
        self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None
    ) -> torch.Tensor:
        r"""
        Compute the attention scores.

        Args:
            query (`torch.Tensor`): The query tensor.
            key (`torch.Tensor`): The key tensor.
            attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.

        Returns:
            `torch.Tensor`: The attention probabilities/scores.
        """
Patrick von Platen's avatar
Patrick von Platen committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
        dtype = query.dtype
        if self.upcast_attention:
            query = query.float()
            key = key.float()

        if attention_mask is None:
            baddbmm_input = torch.empty(
                query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
            )
            beta = 0
        else:
            baddbmm_input = attention_mask
            beta = 1

        attention_scores = torch.baddbmm(
            baddbmm_input,
            query,
            key.transpose(-1, -2),
            beta=beta,
            alpha=self.scale,
        )
606
        del baddbmm_input
Patrick von Platen's avatar
Patrick von Platen committed
607
608
609
610
611

        if self.upcast_softmax:
            attention_scores = attention_scores.float()

        attention_probs = attention_scores.softmax(dim=-1)
612
613
        del attention_scores

Patrick von Platen's avatar
Patrick von Platen committed
614
615
616
617
        attention_probs = attention_probs.to(dtype)

        return attention_probs

618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
    def prepare_attention_mask(
        self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3
    ) -> torch.Tensor:
        r"""
        Prepare the attention mask for the attention computation.

        Args:
            attention_mask (`torch.Tensor`):
                The attention mask to prepare.
            target_length (`int`):
                The target length of the attention mask. This is the length of the attention mask after padding.
            batch_size (`int`):
                The batch size, which is used to repeat the attention mask.
            out_dim (`int`, *optional*, defaults to `3`):
                The output dimension of the attention mask. Can be either `3` or `4`.

        Returns:
            `torch.Tensor`: The prepared attention mask.
        """
Patrick von Platen's avatar
Patrick von Platen committed
637
638
639
640
        head_size = self.heads
        if attention_mask is None:
            return attention_mask

641
        current_length: int = attention_mask.shape[-1]
642
        if current_length != target_length:
Patrick von Platen's avatar
Patrick von Platen committed
643
644
645
646
647
648
649
            if attention_mask.device.type == "mps":
                # HACK: MPS: Does not support padding by greater than dimension of input tensor.
                # Instead, we can manually construct the padding tensor.
                padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length)
                padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device)
                attention_mask = torch.cat([attention_mask, padding], dim=2)
            else:
650
651
652
653
                # TODO: for pipelines such as stable-diffusion, padding cross-attn mask:
                #       we want to instead pad by (0, remaining_length), where remaining_length is:
                #       remaining_length: int = target_length - current_length
                # TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding
Patrick von Platen's avatar
Patrick von Platen committed
654
655
                attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)

656
657
658
659
660
661
662
        if out_dim == 3:
            if attention_mask.shape[0] < batch_size * head_size:
                attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
        elif out_dim == 4:
            attention_mask = attention_mask.unsqueeze(1)
            attention_mask = attention_mask.repeat_interleave(head_size, dim=1)

Patrick von Platen's avatar
Patrick von Platen committed
663
664
        return attention_mask

665
666
667
668
669
670
671
672
673
674
675
    def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
        r"""
        Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the
        `Attention` class.

        Args:
            encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder.

        Returns:
            `torch.Tensor`: The normalized encoder hidden states.
        """
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
        assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states"

        if isinstance(self.norm_cross, nn.LayerNorm):
            encoder_hidden_states = self.norm_cross(encoder_hidden_states)
        elif isinstance(self.norm_cross, nn.GroupNorm):
            # Group norm norms along the channels dimension and expects
            # input to be in the shape of (N, C, *). In this case, we want
            # to norm along the hidden dimension, so we need to move
            # (batch_size, sequence_length, hidden_size) ->
            # (batch_size, hidden_size, sequence_length)
            encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
            encoder_hidden_states = self.norm_cross(encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
        else:
            assert False

        return encoder_hidden_states

694
695
696
697
698
    @torch.no_grad()
    def fuse_projections(self, fuse=True):
        device = self.to_q.weight.data.device
        dtype = self.to_q.weight.data.dtype

699
        if not self.is_cross_attention:
700
701
702
703
704
705
            # fetch weight matrices.
            concatenated_weights = torch.cat([self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data])
            in_features = concatenated_weights.shape[1]
            out_features = concatenated_weights.shape[0]

            # create a new single projection layer and copy over the weights.
706
            self.to_qkv = nn.Linear(in_features, out_features, bias=self.use_bias, device=device, dtype=dtype)
707
            self.to_qkv.weight.copy_(concatenated_weights)
708
709
710
            if self.use_bias:
                concatenated_bias = torch.cat([self.to_q.bias.data, self.to_k.bias.data, self.to_v.bias.data])
                self.to_qkv.bias.copy_(concatenated_bias)
711
712
713
714
715
716

        else:
            concatenated_weights = torch.cat([self.to_k.weight.data, self.to_v.weight.data])
            in_features = concatenated_weights.shape[1]
            out_features = concatenated_weights.shape[0]

717
            self.to_kv = nn.Linear(in_features, out_features, bias=self.use_bias, device=device, dtype=dtype)
718
            self.to_kv.weight.copy_(concatenated_weights)
719
720
721
            if self.use_bias:
                concatenated_bias = torch.cat([self.to_k.bias.data, self.to_v.bias.data])
                self.to_kv.bias.copy_(concatenated_bias)
722
723
724

        self.fused_projections = fuse

Patrick von Platen's avatar
Patrick von Platen committed
725
726

class AttnProcessor:
727
728
729
730
    r"""
    Default processor for performing attention-related computations.
    """

Patrick von Platen's avatar
Patrick von Platen committed
731
732
733
    def __call__(
        self,
        attn: Attention,
734
735
736
737
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
738
739
        *args,
        **kwargs,
740
    ) -> torch.Tensor:
741
742
743
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)
744

745
        residual = hidden_states
746

YiYi Xu's avatar
YiYi Xu committed
747
748
749
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

750
751
752
753
754
755
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

Patrick von Platen's avatar
Patrick von Platen committed
756
757
758
759
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
760
761
762
763

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

764
        query = attn.to_q(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
765
766
767

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
768
769
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
770

771
772
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
773

Patrick von Platen's avatar
Patrick von Platen committed
774
775
776
777
778
779
780
781
782
        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
783
        hidden_states = attn.to_out[0](hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
784
785
786
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

787
788
789
790
791
792
793
794
        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

Patrick von Platen's avatar
Patrick von Platen committed
795
796
797
        return hidden_states


798
class CustomDiffusionAttnProcessor(nn.Module):
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
    r"""
    Processor for implementing attention for the Custom Diffusion method.

    Args:
        train_kv (`bool`, defaults to `True`):
            Whether to newly train the key and value matrices corresponding to the text features.
        train_q_out (`bool`, defaults to `True`):
            Whether to newly train query matrices corresponding to the latent image features.
        hidden_size (`int`, *optional*, defaults to `None`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`, *optional*, defaults to `None`):
            The number of channels in the `encoder_hidden_states`.
        out_bias (`bool`, defaults to `True`):
            Whether to include the bias parameter in `train_q_out`.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability to use.
    """

817
818
    def __init__(
        self,
819
820
821
822
823
824
        train_kv: bool = True,
        train_q_out: bool = True,
        hidden_size: Optional[int] = None,
        cross_attention_dim: Optional[int] = None,
        out_bias: bool = True,
        dropout: float = 0.0,
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
    ):
        super().__init__()
        self.train_kv = train_kv
        self.train_q_out = train_q_out

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim

        # `_custom_diffusion` id for easy serialization and loading.
        if self.train_kv:
            self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
            self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
        if self.train_q_out:
            self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
            self.to_out_custom_diffusion = nn.ModuleList([])
            self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
            self.to_out_custom_diffusion.append(nn.Dropout(dropout))

843
844
845
846
847
848
849
    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.Tensor:
850
851
852
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        if self.train_q_out:
853
            query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype)
854
        else:
855
            query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype))
856
857
858
859
860
861
862
863
864
865

        if encoder_hidden_states is None:
            crossattn = False
            encoder_hidden_states = hidden_states
        else:
            crossattn = True
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if self.train_kv:
866
867
868
869
            key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype))
            value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype))
            key = key.to(attn.to_q.weight.dtype)
            value = value.to(attn.to_q.weight.dtype)
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
        else:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)

        if crossattn:
            detach = torch.ones_like(key)
            detach[:, :1, :] = detach[:, :1, :] * 0.0
            key = detach * key + (1 - detach) * key.detach()
            value = detach * value + (1 - detach) * value.detach()

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        if self.train_q_out:
            # linear proj
            hidden_states = self.to_out_custom_diffusion[0](hidden_states)
            # dropout
            hidden_states = self.to_out_custom_diffusion[1](hidden_states)
        else:
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
902
class AttnAddedKVProcessor:
903
904
905
906
907
    r"""
    Processor for performing attention-related computations with extra learnable key and value matrices for the text
    encoder.
    """

908
909
910
911
912
913
    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
914
915
        *args,
        **kwargs,
916
    ) -> torch.Tensor:
917
918
919
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)
920

921
        residual = hidden_states
922

Patrick von Platen's avatar
Patrick von Platen committed
923
924
925
926
927
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

928
929
930
931
932
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

Patrick von Platen's avatar
Patrick von Platen committed
933
934
        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

935
        query = attn.to_q(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
936
937
        query = attn.head_to_batch_dim(query)

938
939
        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
940
941
942
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

943
        if not attn.only_cross_attention:
944
945
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
946
947
948
949
950
951
952
            key = attn.head_to_batch_dim(key)
            value = attn.head_to_batch_dim(value)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj
Patrick von Platen's avatar
Patrick von Platen committed
953
954
955
956
957
958

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
959
        hidden_states = attn.to_out[0](hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
960
961
962
963
964
965
966
967
968
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


969
class AttnAddedKVProcessor2_0:
970
971
972
973
974
    r"""
    Processor for performing scaled dot-product attention (enabled by default if you're using PyTorch 2.0), with extra
    learnable key and value matrices for the text encoder.
    """

975
976
977
978
979
980
    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "AttnAddedKVProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

981
982
983
984
985
986
    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
987
988
        *args,
        **kwargs,
989
    ) -> torch.Tensor:
990
991
992
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)
993

994
        residual = hidden_states
995

996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, out_dim=4)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

1008
        query = attn.to_q(hidden_states)
1009
1010
1011
1012
1013
1014
1015
1016
        query = attn.head_to_batch_dim(query, out_dim=4)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj, out_dim=4)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj, out_dim=4)

        if not attn.only_cross_attention:
1017
1018
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
            key = attn.head_to_batch_dim(key, out_dim=4)
            value = attn.head_to_batch_dim(value, out_dim=4)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, residual.shape[1])

        # linear proj
1035
        hidden_states = attn.to_out[0](hidden_states)
Will Berman's avatar
Will Berman committed
1036
1037
1038
1039
1040
1041
1042
1043
1044
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
class XFormersAttnAddedKVProcessor:
    r"""
    Processor for implementing memory efficient attention using xFormers.

    Args:
        attention_op (`Callable`, *optional*, defaults to `None`):
            The base
            [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
            use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
            operator.
    """

    def __init__(self, attention_op: Optional[Callable] = None):
        self.attention_op = attention_op

1060
1061
1062
1063
1064
1065
1066
    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.Tensor:
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
        residual = hidden_states
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)
        query = attn.head_to_batch_dim(query)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

        if not attn.only_cross_attention:
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
            key = attn.head_to_batch_dim(key)
            value = attn.head_to_batch_dim(value)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1116
class XFormersAttnProcessor:
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
    r"""
    Processor for implementing memory efficient attention using xFormers.

    Args:
        attention_op (`Callable`, *optional*, defaults to `None`):
            The base
            [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
            use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
            operator.
    """

Patrick von Platen's avatar
Patrick von Platen committed
1128
1129
1130
    def __init__(self, attention_op: Optional[Callable] = None):
        self.attention_op = attention_op

1131
1132
1133
1134
1135
1136
    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
1137
        temb: Optional[torch.FloatTensor] = None,
1138
1139
        *args,
        **kwargs,
1140
    ) -> torch.FloatTensor:
1141
1142
1143
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)
1144

1145
        residual = hidden_states
1146

1147
1148
1149
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

1150
1151
1152
1153
1154
1155
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

1156
        batch_size, key_tokens, _ = (
Patrick von Platen's avatar
Patrick von Platen committed
1157
1158
1159
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
        attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size)
        if attention_mask is not None:
            # expand our mask's singleton query_tokens dimension:
            #   [batch*heads,            1, key_tokens] ->
            #   [batch*heads, query_tokens, key_tokens]
            # so that it can be added as a bias onto the attention scores that xformers computes:
            #   [batch*heads, query_tokens, key_tokens]
            # we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
            _, query_tokens, _ = hidden_states.shape
            attention_mask = attention_mask.expand(-1, query_tokens, -1)
Patrick von Platen's avatar
Patrick von Platen committed
1170

1171
1172
1173
        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

1174
        query = attn.to_q(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1175
1176
1177

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
1178
1179
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1180

1181
1182
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194

        query = attn.head_to_batch_dim(query).contiguous()
        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
1195
        hidden_states = attn.to_out[0](hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1196
1197
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
1198
1199
1200
1201
1202
1203
1204
1205
1206

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

Patrick von Platen's avatar
Patrick von Platen committed
1207
1208
1209
1210
        return hidden_states


class AttnProcessor2_0:
1211
1212
1213
1214
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    """

Patrick von Platen's avatar
Patrick von Platen committed
1215
1216
1217
1218
    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

YiYi Xu's avatar
YiYi Xu committed
1219
1220
1221
    def __call__(
        self,
        attn: Attention,
1222
1223
1224
1225
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
1226
1227
        *args,
        **kwargs,
1228
    ) -> torch.FloatTensor:
1229
1230
1231
1232
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)

1233
        residual = hidden_states
YiYi Xu's avatar
YiYi Xu committed
1234
1235
1236
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

1237
1238
1239
1240
1241
1242
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

Patrick von Platen's avatar
Patrick von Platen committed
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

1253
1254
1255
        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

1256
        query = attn.to_q(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1257
1258
1259

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
1260
1261
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1262

1263
1264
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1265

1266
        inner_dim = key.shape[-1]
Patrick von Platen's avatar
Patrick von Platen committed
1267
        head_dim = inner_dim // attn.heads
1268

Patrick von Platen's avatar
Patrick von Platen committed
1269
        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
1270

Patrick von Platen's avatar
Patrick von Platen committed
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
1284
        hidden_states = attn.to_out[0](hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1285
1286
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
1287
1288
1289
1290
1291
1292
1293
1294
1295

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

Patrick von Platen's avatar
Patrick von Platen committed
1296
1297
1298
        return hidden_states


1299
1300
class FusedAttnProcessor2_0:
    r"""
1301
1302
1303
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). It uses
    fused projection layers. For self-attention modules, all projection matrices (i.e., query, key, value) are fused.
    For cross-attention modules, key and value projection matrices are fused.
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324

    <Tip warning={true}>

    This API is currently 🧪 experimental in nature and can change in future.

    </Tip>
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "FusedAttnProcessor2_0 requires at least PyTorch 2.0, to use it. Please upgrade PyTorch to > 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
1325
1326
        *args,
        **kwargs,
1327
    ) -> torch.FloatTensor:
1328
1329
1330
1331
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        if encoder_hidden_states is None:
1356
            qkv = attn.to_qkv(hidden_states)
1357
1358
1359
1360
1361
            split_size = qkv.shape[-1] // 3
            query, key, value = torch.split(qkv, split_size, dim=-1)
        else:
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
1362
            query = attn.to_q(hidden_states)
1363

1364
            kv = attn.to_kv(encoder_hidden_states)
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
            split_size = kv.shape[-1] // 2
            key, value = torch.split(kv, split_size, dim=-1)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
1385
        hidden_states = attn.to_out[0](hidden_states)
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


1400
class CustomDiffusionXFormersAttnProcessor(nn.Module):
1401
    r"""
1402
    Processor for implementing memory efficient attention using xFormers for the Custom Diffusion method.
1403
1404

    Args:
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
    train_kv (`bool`, defaults to `True`):
        Whether to newly train the key and value matrices corresponding to the text features.
    train_q_out (`bool`, defaults to `True`):
        Whether to newly train query matrices corresponding to the latent image features.
    hidden_size (`int`, *optional*, defaults to `None`):
        The hidden size of the attention layer.
    cross_attention_dim (`int`, *optional*, defaults to `None`):
        The number of channels in the `encoder_hidden_states`.
    out_bias (`bool`, defaults to `True`):
        Whether to include the bias parameter in `train_q_out`.
    dropout (`float`, *optional*, defaults to 0.0):
        The dropout probability to use.
    attention_op (`Callable`, *optional*, defaults to `None`):
        The base
        [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use
        as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator.
1421
1422
    """

1423
    def __init__(
1424
        self,
1425
1426
1427
1428
1429
1430
        train_kv: bool = True,
        train_q_out: bool = False,
        hidden_size: Optional[int] = None,
        cross_attention_dim: Optional[int] = None,
        out_bias: bool = True,
        dropout: float = 0.0,
1431
        attention_op: Optional[Callable] = None,
1432
    ):
Patrick von Platen's avatar
Patrick von Platen committed
1433
        super().__init__()
1434
1435
        self.train_kv = train_kv
        self.train_q_out = train_q_out
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.attention_op = attention_op

        # `_custom_diffusion` id for easy serialization and loading.
        if self.train_kv:
            self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
            self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
        if self.train_q_out:
            self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
            self.to_out_custom_diffusion = nn.ModuleList([])
            self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
            self.to_out_custom_diffusion.append(nn.Dropout(dropout))

1451
1452
1453
1454
1455
1456
1457
    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
1458
1459
1460
1461
1462
1463
1464
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if self.train_q_out:
1465
            query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype)
1466
        else:
1467
            query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype))
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477

        if encoder_hidden_states is None:
            crossattn = False
            encoder_hidden_states = hidden_states
        else:
            crossattn = True
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if self.train_kv:
1478
1479
1480
1481
            key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype))
            value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype))
            key = key.to(attn.to_q.weight.dtype)
            value = value.to(attn.to_q.weight.dtype)
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
        else:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)

        if crossattn:
            detach = torch.ones_like(key)
            detach[:, :1, :] = detach[:, :1, :] * 0.0
            key = detach * key + (1 - detach) * key.detach()
            value = detach * value + (1 - detach) * value.detach()

        query = attn.head_to_batch_dim(query).contiguous()
        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        if self.train_q_out:
            # linear proj
            hidden_states = self.to_out_custom_diffusion[0](hidden_states)
            # dropout
            hidden_states = self.to_out_custom_diffusion[1](hidden_states)
        else:
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
1512

1513
1514
1515
        return hidden_states


1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
class CustomDiffusionAttnProcessor2_0(nn.Module):
    r"""
    Processor for implementing attention for the Custom Diffusion method using PyTorch 2.0’s memory-efficient scaled
    dot-product attention.

    Args:
        train_kv (`bool`, defaults to `True`):
            Whether to newly train the key and value matrices corresponding to the text features.
        train_q_out (`bool`, defaults to `True`):
            Whether to newly train query matrices corresponding to the latent image features.
        hidden_size (`int`, *optional*, defaults to `None`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`, *optional*, defaults to `None`):
            The number of channels in the `encoder_hidden_states`.
        out_bias (`bool`, defaults to `True`):
            Whether to include the bias parameter in `train_q_out`.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability to use.
    """

    def __init__(
        self,
1538
1539
1540
1541
1542
1543
        train_kv: bool = True,
        train_q_out: bool = True,
        hidden_size: Optional[int] = None,
        cross_attention_dim: Optional[int] = None,
        out_bias: bool = True,
        dropout: float = 0.0,
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
    ):
        super().__init__()
        self.train_kv = train_kv
        self.train_q_out = train_q_out

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim

        # `_custom_diffusion` id for easy serialization and loading.
        if self.train_kv:
            self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
            self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
        if self.train_q_out:
            self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
            self.to_out_custom_diffusion = nn.ModuleList([])
            self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
            self.to_out_custom_diffusion.append(nn.Dropout(dropout))

1562
1563
1564
1565
1566
1567
1568
    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        if self.train_q_out:
            query = self.to_q_custom_diffusion(hidden_states)
        else:
            query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            crossattn = False
            encoder_hidden_states = hidden_states
        else:
            crossattn = True
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if self.train_kv:
1585
1586
1587
1588
1589
            key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype))
            value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype))
            key = key.to(attn.to_q.weight.dtype)
            value = value.to(attn.to_q.weight.dtype)

1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
        else:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)

        if crossattn:
            detach = torch.ones_like(key)
            detach[:, :1, :] = detach[:, :1, :] * 0.0
            key = detach * key + (1 - detach) * key.detach()
            value = detach * value + (1 - detach) * value.detach()

        inner_dim = hidden_states.shape[-1]

        head_dim = inner_dim // attn.heads
        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        if self.train_q_out:
            # linear proj
            hidden_states = self.to_out_custom_diffusion[0](hidden_states)
            # dropout
            hidden_states = self.to_out_custom_diffusion[1](hidden_states)
        else:
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1630
class SlicedAttnProcessor:
1631
1632
1633
1634
1635
1636
1637
1638
1639
    r"""
    Processor for implementing sliced attention.

    Args:
        slice_size (`int`, *optional*):
            The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
            `attention_head_dim` must be a multiple of the `slice_size`.
    """

1640
    def __init__(self, slice_size: int):
Patrick von Platen's avatar
Patrick von Platen committed
1641
1642
        self.slice_size = slice_size

1643
1644
1645
1646
1647
1648
1649
    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
1650
1651
1652
1653
1654
1655
1656
1657
        residual = hidden_states

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

Patrick von Platen's avatar
Patrick von Platen committed
1658
1659
1660
1661
1662
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

1663
1664
1665
        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

Patrick von Platen's avatar
Patrick von Platen committed
1666
1667
1668
1669
1670
1671
        query = attn.to_q(hidden_states)
        dim = query.shape[-1]
        query = attn.head_to_batch_dim(query)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
1672
1673
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        batch_size_attention, query_tokens, _ = query.shape
        hidden_states = torch.zeros(
            (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
        )

        for i in range(batch_size_attention // self.slice_size):
            start_idx = i * self.slice_size
            end_idx = (i + 1) * self.slice_size

            query_slice = query[start_idx:end_idx]
            key_slice = key[start_idx:end_idx]
            attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None

            attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)

            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])

            hidden_states[start_idx:end_idx] = attn_slice

        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

1706
1707
1708
1709
1710
1711
1712
1713
        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

Patrick von Platen's avatar
Patrick von Platen committed
1714
1715
1716
1717
        return hidden_states


class SlicedAttnAddedKVProcessor:
1718
1719
1720
1721
1722
1723
1724
1725
1726
    r"""
    Processor for implementing sliced attention with extra learnable key and value matrices for the text encoder.

    Args:
        slice_size (`int`, *optional*):
            The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
            `attention_head_dim` must be a multiple of the `slice_size`.
    """

Patrick von Platen's avatar
Patrick von Platen committed
1727
1728
1729
    def __init__(self, slice_size):
        self.slice_size = slice_size

1730
1731
1732
1733
1734
1735
1736
1737
    def __call__(
        self,
        attn: "Attention",
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
Patrick von Platen's avatar
Patrick von Platen committed
1738
        residual = hidden_states
1739
1740
1741
1742

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

Patrick von Platen's avatar
Patrick von Platen committed
1743
1744
1745
1746
1747
1748
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)

        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

1749
1750
1751
1752
1753
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

Patrick von Platen's avatar
Patrick von Platen committed
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)
        dim = query.shape[-1]
        query = attn.head_to_batch_dim(query)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
        if not attn.only_cross_attention:
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
            key = attn.head_to_batch_dim(key)
            value = attn.head_to_batch_dim(value)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj
Patrick von Platen's avatar
Patrick von Platen committed
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808

        batch_size_attention, query_tokens, _ = query.shape
        hidden_states = torch.zeros(
            (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
        )

        for i in range(batch_size_attention // self.slice_size):
            start_idx = i * self.slice_size
            end_idx = (i + 1) * self.slice_size

            query_slice = query[start_idx:end_idx]
            key_slice = key[start_idx:end_idx]
            attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None

            attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)

            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])

            hidden_states[start_idx:end_idx] = attn_slice

        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


YiYi Xu's avatar
YiYi Xu committed
1809
1810
class SpatialNorm(nn.Module):
    """
1811
1812
1813
1814
1815
1816
1817
    Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002.

    Args:
        f_channels (`int`):
            The number of channels for input to group normalization layer, and output of the spatial norm layer.
        zq_channels (`int`):
            The number of channels for the quantized vector as described in the paper.
YiYi Xu's avatar
YiYi Xu committed
1818
1819
1820
1821
    """

    def __init__(
        self,
1822
1823
        f_channels: int,
        zq_channels: int,
YiYi Xu's avatar
YiYi Xu committed
1824
1825
1826
1827
1828
1829
    ):
        super().__init__()
        self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=32, eps=1e-6, affine=True)
        self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)
        self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)

1830
    def forward(self, f: torch.FloatTensor, zq: torch.FloatTensor) -> torch.FloatTensor:
YiYi Xu's avatar
YiYi Xu committed
1831
1832
1833
1834
1835
        f_size = f.shape[-2:]
        zq = F.interpolate(zq, size=f_size, mode="nearest")
        norm_f = self.norm_layer(f)
        new_f = norm_f * self.conv_y(zq) + self.conv_b(zq)
        return new_f
1836
1837
1838


class LoRAAttnProcessor(nn.Module):
1839
1840
1841
1842
1843
1844
1845
1846
    def __init__(
        self,
        hidden_size: int,
        cross_attention_dim: Optional[int] = None,
        rank: int = 4,
        network_alpha: Optional[int] = None,
        **kwargs,
    ):
1847
1848
1849
        deprecation_message = "Using LoRAAttnProcessor is deprecated. Please use the PEFT backend for all things LoRA. You can install PEFT by running `pip install peft`."
        deprecate("LoRAAttnProcessor", "0.30.0", deprecation_message, standard_warn=False)

1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
        super().__init__()

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.rank = rank

        q_rank = kwargs.pop("q_rank", None)
        q_hidden_size = kwargs.pop("q_hidden_size", None)
        q_rank = q_rank if q_rank is not None else rank
        q_hidden_size = q_hidden_size if q_hidden_size is not None else hidden_size

        v_rank = kwargs.pop("v_rank", None)
        v_hidden_size = kwargs.pop("v_hidden_size", None)
        v_rank = v_rank if v_rank is not None else rank
        v_hidden_size = v_hidden_size if v_hidden_size is not None else hidden_size

        out_rank = kwargs.pop("out_rank", None)
        out_hidden_size = kwargs.pop("out_hidden_size", None)
        out_rank = out_rank if out_rank is not None else rank
        out_hidden_size = out_hidden_size if out_hidden_size is not None else hidden_size

        self.to_q_lora = LoRALinearLayer(q_hidden_size, q_hidden_size, q_rank, network_alpha)
        self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
        self.to_v_lora = LoRALinearLayer(cross_attention_dim or v_hidden_size, v_hidden_size, v_rank, network_alpha)
        self.to_out_lora = LoRALinearLayer(out_hidden_size, out_hidden_size, out_rank, network_alpha)

1876
    def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, **kwargs) -> torch.FloatTensor:
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
        self_cls_name = self.__class__.__name__
        deprecate(
            self_cls_name,
            "0.26.0",
            (
                f"Make sure use {self_cls_name[4:]} instead by setting"
                "LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
                " `LoraLoaderMixin.load_lora_weights`"
            ),
        )
        attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
        attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
        attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
        attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)

        attn._modules.pop("processor")
        attn.processor = AttnProcessor()
1894
        return attn.processor(attn, hidden_states, **kwargs)
1895
1896
1897


class LoRAAttnProcessor2_0(nn.Module):
1898
1899
1900
1901
1902
1903
1904
1905
    def __init__(
        self,
        hidden_size: int,
        cross_attention_dim: Optional[int] = None,
        rank: int = 4,
        network_alpha: Optional[int] = None,
        **kwargs,
    ):
1906
1907
1908
        deprecation_message = "Using LoRAAttnProcessor is deprecated. Please use the PEFT backend for all things LoRA. You can install PEFT by running `pip install peft`."
        deprecate("LoRAAttnProcessor2_0", "0.30.0", deprecation_message, standard_warn=False)

1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
        super().__init__()
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.rank = rank

        q_rank = kwargs.pop("q_rank", None)
        q_hidden_size = kwargs.pop("q_hidden_size", None)
        q_rank = q_rank if q_rank is not None else rank
        q_hidden_size = q_hidden_size if q_hidden_size is not None else hidden_size

        v_rank = kwargs.pop("v_rank", None)
        v_hidden_size = kwargs.pop("v_hidden_size", None)
        v_rank = v_rank if v_rank is not None else rank
        v_hidden_size = v_hidden_size if v_hidden_size is not None else hidden_size

        out_rank = kwargs.pop("out_rank", None)
        out_hidden_size = kwargs.pop("out_hidden_size", None)
        out_rank = out_rank if out_rank is not None else rank
        out_hidden_size = out_hidden_size if out_hidden_size is not None else hidden_size

        self.to_q_lora = LoRALinearLayer(q_hidden_size, q_hidden_size, q_rank, network_alpha)
        self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
        self.to_v_lora = LoRALinearLayer(cross_attention_dim or v_hidden_size, v_hidden_size, v_rank, network_alpha)
        self.to_out_lora = LoRALinearLayer(out_hidden_size, out_hidden_size, out_rank, network_alpha)

1937
    def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, **kwargs) -> torch.FloatTensor:
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
        self_cls_name = self.__class__.__name__
        deprecate(
            self_cls_name,
            "0.26.0",
            (
                f"Make sure use {self_cls_name[4:]} instead by setting"
                "LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
                " `LoraLoaderMixin.load_lora_weights`"
            ),
        )
        attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
        attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
        attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
        attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)

        attn._modules.pop("processor")
        attn.processor = AttnProcessor2_0()
1955
        return attn.processor(attn, hidden_states, **kwargs)
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975


class LoRAXFormersAttnProcessor(nn.Module):
    r"""
    Processor for implementing the LoRA attention mechanism with memory efficient attention using xFormers.

    Args:
        hidden_size (`int`, *optional*):
            The hidden size of the attention layer.
        cross_attention_dim (`int`, *optional*):
            The number of channels in the `encoder_hidden_states`.
        rank (`int`, defaults to 4):
            The dimension of the LoRA update matrices.
        attention_op (`Callable`, *optional*, defaults to `None`):
            The base
            [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
            use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
            operator.
        network_alpha (`int`, *optional*):
            Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs.
1976
1977
        kwargs (`dict`):
            Additional keyword arguments to pass to the `LoRALinearLayer` layers.
1978
1979
1980
1981
    """

    def __init__(
        self,
1982
1983
1984
        hidden_size: int,
        cross_attention_dim: int,
        rank: int = 4,
1985
        attention_op: Optional[Callable] = None,
1986
        network_alpha: Optional[int] = None,
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
        **kwargs,
    ):
        super().__init__()

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.rank = rank
        self.attention_op = attention_op

        q_rank = kwargs.pop("q_rank", None)
        q_hidden_size = kwargs.pop("q_hidden_size", None)
        q_rank = q_rank if q_rank is not None else rank
        q_hidden_size = q_hidden_size if q_hidden_size is not None else hidden_size

        v_rank = kwargs.pop("v_rank", None)
        v_hidden_size = kwargs.pop("v_hidden_size", None)
        v_rank = v_rank if v_rank is not None else rank
        v_hidden_size = v_hidden_size if v_hidden_size is not None else hidden_size

        out_rank = kwargs.pop("out_rank", None)
        out_hidden_size = kwargs.pop("out_hidden_size", None)
        out_rank = out_rank if out_rank is not None else rank
        out_hidden_size = out_hidden_size if out_hidden_size is not None else hidden_size

        self.to_q_lora = LoRALinearLayer(q_hidden_size, q_hidden_size, q_rank, network_alpha)
        self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
        self.to_v_lora = LoRALinearLayer(cross_attention_dim or v_hidden_size, v_hidden_size, v_rank, network_alpha)
        self.to_out_lora = LoRALinearLayer(out_hidden_size, out_hidden_size, out_rank, network_alpha)

2016
    def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, **kwargs) -> torch.FloatTensor:
2017
2018
2019
2020
2021
2022
        self_cls_name = self.__class__.__name__
        deprecate(
            self_cls_name,
            "0.26.0",
            (
                f"Make sure use {self_cls_name[4:]} instead by setting"
2023
                "LoRA layers to `self.{to_q,to_k,to_v,add_k_proj,add_v_proj,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
                " `LoraLoaderMixin.load_lora_weights`"
            ),
        )
        attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
        attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
        attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
        attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)

        attn._modules.pop("processor")
        attn.processor = XFormersAttnProcessor()
2034
        return attn.processor(attn, hidden_states, **kwargs)
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048


class LoRAAttnAddedKVProcessor(nn.Module):
    r"""
    Processor for implementing the LoRA attention mechanism with extra learnable key and value matrices for the text
    encoder.

    Args:
        hidden_size (`int`, *optional*):
            The hidden size of the attention layer.
        cross_attention_dim (`int`, *optional*, defaults to `None`):
            The number of channels in the `encoder_hidden_states`.
        rank (`int`, defaults to 4):
            The dimension of the LoRA update matrices.
2049
2050
2051
2052
        network_alpha (`int`, *optional*):
            Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs.
        kwargs (`dict`):
            Additional keyword arguments to pass to the `LoRALinearLayer` layers.
2053
2054
    """

2055
2056
2057
2058
2059
2060
2061
    def __init__(
        self,
        hidden_size: int,
        cross_attention_dim: Optional[int] = None,
        rank: int = 4,
        network_alpha: Optional[int] = None,
    ):
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
        super().__init__()

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.rank = rank

        self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
        self.add_k_proj_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
        self.add_v_proj_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
        self.to_k_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
        self.to_v_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
        self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)

2075
    def __call__(self, attn: Attention, hidden_states: torch.FloatTensor, **kwargs) -> torch.FloatTensor:
2076
2077
2078
2079
2080
2081
        self_cls_name = self.__class__.__name__
        deprecate(
            self_cls_name,
            "0.26.0",
            (
                f"Make sure use {self_cls_name[4:]} instead by setting"
2082
                "LoRA layers to `self.{to_q,to_k,to_v,add_k_proj,add_v_proj,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
                " `LoraLoaderMixin.load_lora_weights`"
            ),
        )
        attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
        attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
        attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
        attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)

        attn._modules.pop("processor")
        attn.processor = AttnAddedKVProcessor()
2093
        return attn.processor(attn, hidden_states, **kwargs)
2094
2095


2096
2097
class IPAdapterAttnProcessor(nn.Module):
    r"""
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2098
    Attention processor for Multiple IP-Adapters.
2099
2100
2101
2102
2103
2104

    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`):
            The number of channels in the `encoder_hidden_states`.
2105
        num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`):
2106
            The context length of the image features.
2107
        scale (`float` or List[`float`], defaults to 1.0):
2108
2109
2110
            the weight scale of image prompt.
    """

2111
    def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0):
2112
2113
2114
2115
        super().__init__()

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
2116
2117
2118

        if not isinstance(num_tokens, (tuple, list)):
            num_tokens = [num_tokens]
2119
        self.num_tokens = num_tokens
2120
2121
2122
2123
2124

        if not isinstance(scale, list):
            scale = [scale] * len(num_tokens)
        if len(scale) != len(num_tokens):
            raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.")
2125
2126
        self.scale = scale

2127
2128
2129
2130
2131
2132
        self.to_k_ip = nn.ModuleList(
            [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
        )
        self.to_v_ip = nn.ModuleList(
            [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
        )
2133
2134
2135

    def __call__(
        self,
2136
2137
2138
2139
2140
2141
2142
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
        scale: float = 1.0,
        ip_adapter_masks: Optional[torch.FloatTensor] = None,
2143
2144
2145
    ):
        residual = hidden_states

2146
2147
2148
2149
2150
2151
        # separate ip_hidden_states from encoder_hidden_states
        if encoder_hidden_states is not None:
            if isinstance(encoder_hidden_states, tuple):
                encoder_hidden_states, ip_hidden_states = encoder_hidden_states
            else:
                deprecation_message = (
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2152
2153
                    "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release."
                    " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning."
2154
2155
2156
2157
2158
2159
2160
2161
                )
                deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False)
                end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0]
                encoder_hidden_states, ip_hidden_states = (
                    encoder_hidden_states[:, :end_pos, :],
                    [encoder_hidden_states[:, end_pos:, :]],
                )

2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

2197
        if ip_adapter_masks is not None:
2198
2199
2200
2201
            if not isinstance(ip_adapter_masks, List):
                # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width]
                ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1))
            if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)):
2202
                raise ValueError(
2203
2204
2205
                    f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match "
                    f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states "
                    f"({len(ip_hidden_states)})"
2206
                )
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
            else:
                for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)):
                    if not isinstance(mask, torch.Tensor) or mask.ndim != 4:
                        raise ValueError(
                            "Each element of the ip_adapter_masks array should be a tensor with shape "
                            "[1, num_images_for_ip_adapter, height, width]."
                            " Please use `IPAdapterMaskProcessor` to preprocess your mask"
                        )
                    if mask.shape[1] != ip_state.shape[1]:
                        raise ValueError(
                            f"Number of masks ({mask.shape[1]}) does not match "
                            f"number of ip images ({ip_state.shape[1]}) at index {index}"
                        )
                    if isinstance(scale, list) and not len(scale) == mask.shape[1]:
                        raise ValueError(
                            f"Number of masks ({mask.shape[1]}) does not match "
                            f"number of scales ({len(scale)}) at index {index}"
                        )
2225
2226
2227
        else:
            ip_adapter_masks = [None] * len(self.scale)

2228
        # for ip-adapter
2229
2230
        for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip(
            ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks
2231
        ):
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
            if mask is not None:
                if not isinstance(scale, list):
                    scale = [scale]

                current_num_images = mask.shape[1]
                for i in range(current_num_images):
                    ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :])
                    ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :])

                    ip_key = attn.head_to_batch_dim(ip_key)
                    ip_value = attn.head_to_batch_dim(ip_value)

                    ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
                    _current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
                    _current_ip_hidden_states = attn.batch_to_head_dim(_current_ip_hidden_states)

                    mask_downsample = IPAdapterMaskProcessor.downsample(
                        mask[:, i, :, :],
                        batch_size,
                        _current_ip_hidden_states.shape[1],
                        _current_ip_hidden_states.shape[2],
                    )
2254

2255
                    mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device)
2256

2257
2258
2259
2260
                    hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample)
            else:
                ip_key = to_k_ip(current_ip_hidden_states)
                ip_value = to_v_ip(current_ip_hidden_states)
2261

2262
2263
                ip_key = attn.head_to_batch_dim(ip_key)
                ip_value = attn.head_to_batch_dim(ip_value)
2264

2265
2266
2267
                ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
                current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
                current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states)
2268

2269
                hidden_states = hidden_states + scale * current_ip_hidden_states
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class IPAdapterAttnProcessor2_0(torch.nn.Module):
    r"""
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2289
    Attention processor for IP-Adapter for PyTorch 2.0.
2290
2291
2292
2293
2294
2295

    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`):
            The number of channels in the `encoder_hidden_states`.
2296
        num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`):
2297
            The context length of the image features.
2298
        scale (`float` or `List[float]`, defaults to 1.0):
2299
2300
2301
            the weight scale of image prompt.
    """

2302
    def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0):
2303
2304
2305
2306
2307
2308
2309
2310
2311
        super().__init__()

        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
2312
2313
2314

        if not isinstance(num_tokens, (tuple, list)):
            num_tokens = [num_tokens]
2315
        self.num_tokens = num_tokens
2316
2317
2318
2319
2320

        if not isinstance(scale, list):
            scale = [scale] * len(num_tokens)
        if len(scale) != len(num_tokens):
            raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.")
2321
2322
        self.scale = scale

2323
2324
2325
2326
2327
2328
        self.to_k_ip = nn.ModuleList(
            [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
        )
        self.to_v_ip = nn.ModuleList(
            [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
        )
2329
2330
2331

    def __call__(
        self,
2332
2333
2334
2335
2336
2337
2338
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
        scale: float = 1.0,
        ip_adapter_masks: Optional[torch.FloatTensor] = None,
2339
2340
2341
    ):
        residual = hidden_states

2342
2343
2344
2345
2346
2347
        # separate ip_hidden_states from encoder_hidden_states
        if encoder_hidden_states is not None:
            if isinstance(encoder_hidden_states, tuple):
                encoder_hidden_states, ip_hidden_states = encoder_hidden_states
            else:
                deprecation_message = (
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
2348
2349
                    "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release."
                    " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning."
2350
2351
2352
2353
2354
2355
2356
2357
                )
                deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False)
                end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0]
                encoder_hidden_states, ip_hidden_states = (
                    encoder_hidden_states[:, :end_pos, :],
                    [encoder_hidden_states[:, end_pos:, :]],
                )

2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

2407
        if ip_adapter_masks is not None:
2408
2409
2410
2411
            if not isinstance(ip_adapter_masks, List):
                # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width]
                ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1))
            if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)):
2412
                raise ValueError(
2413
2414
2415
                    f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match "
                    f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states "
                    f"({len(ip_hidden_states)})"
2416
                )
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
            else:
                for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)):
                    if not isinstance(mask, torch.Tensor) or mask.ndim != 4:
                        raise ValueError(
                            "Each element of the ip_adapter_masks array should be a tensor with shape "
                            "[1, num_images_for_ip_adapter, height, width]."
                            " Please use `IPAdapterMaskProcessor` to preprocess your mask"
                        )
                    if mask.shape[1] != ip_state.shape[1]:
                        raise ValueError(
                            f"Number of masks ({mask.shape[1]}) does not match "
                            f"number of ip images ({ip_state.shape[1]}) at index {index}"
                        )
                    if isinstance(scale, list) and not len(scale) == mask.shape[1]:
                        raise ValueError(
                            f"Number of masks ({mask.shape[1]}) does not match "
                            f"number of scales ({len(scale)}) at index {index}"
                        )
2435
2436
2437
        else:
            ip_adapter_masks = [None] * len(self.scale)

2438
        # for ip-adapter
2439
2440
        for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip(
            ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks
2441
        ):
2442
2443
2444
            if mask is not None:
                if not isinstance(scale, list):
                    scale = [scale]
2445

2446
2447
2448
2449
                current_num_images = mask.shape[1]
                for i in range(current_num_images):
                    ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :])
                    ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :])
2450

2451
2452
                    ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
                    ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
2453

2454
2455
2456
2457
2458
                    # the output of sdp = (batch, num_heads, seq_len, head_dim)
                    # TODO: add support for attn.scale when we move to Torch 2.1
                    _current_ip_hidden_states = F.scaled_dot_product_attention(
                        query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
                    )
2459

2460
2461
2462
2463
                    _current_ip_hidden_states = _current_ip_hidden_states.transpose(1, 2).reshape(
                        batch_size, -1, attn.heads * head_dim
                    )
                    _current_ip_hidden_states = _current_ip_hidden_states.to(query.dtype)
2464

2465
2466
2467
2468
2469
2470
                    mask_downsample = IPAdapterMaskProcessor.downsample(
                        mask[:, i, :, :],
                        batch_size,
                        _current_ip_hidden_states.shape[1],
                        _current_ip_hidden_states.shape[2],
                    )
2471

2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
                    mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device)
                    hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample)
            else:
                ip_key = to_k_ip(current_ip_hidden_states)
                ip_value = to_v_ip(current_ip_hidden_states)

                ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
                ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

                # the output of sdp = (batch, num_heads, seq_len, head_dim)
                # TODO: add support for attn.scale when we move to Torch 2.1
                current_ip_hidden_states = F.scaled_dot_product_attention(
                    query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
                )

                current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape(
                    batch_size, -1, attn.heads * head_dim
                )
                current_ip_hidden_states = current_ip_hidden_states.to(query.dtype)
2491

2492
                hidden_states = hidden_states + scale * current_ip_hidden_states
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


2510
2511
2512
2513
2514
2515
2516
LORA_ATTENTION_PROCESSORS = (
    LoRAAttnProcessor,
    LoRAAttnProcessor2_0,
    LoRAXFormersAttnProcessor,
    LoRAAttnAddedKVProcessor,
)

2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
ADDED_KV_ATTENTION_PROCESSORS = (
    AttnAddedKVProcessor,
    SlicedAttnAddedKVProcessor,
    AttnAddedKVProcessor2_0,
    XFormersAttnAddedKVProcessor,
    LoRAAttnAddedKVProcessor,
)

CROSS_ATTENTION_PROCESSORS = (
    AttnProcessor,
    AttnProcessor2_0,
    XFormersAttnProcessor,
    SlicedAttnProcessor,
    LoRAAttnProcessor,
    LoRAAttnProcessor2_0,
    LoRAXFormersAttnProcessor,
2533
2534
    IPAdapterAttnProcessor,
    IPAdapterAttnProcessor2_0,
2535
2536
)

2537
2538
2539
AttentionProcessor = Union[
    AttnProcessor,
    AttnProcessor2_0,
2540
    FusedAttnProcessor2_0,
2541
2542
2543
2544
2545
2546
2547
2548
    XFormersAttnProcessor,
    SlicedAttnProcessor,
    AttnAddedKVProcessor,
    SlicedAttnAddedKVProcessor,
    AttnAddedKVProcessor2_0,
    XFormersAttnAddedKVProcessor,
    CustomDiffusionAttnProcessor,
    CustomDiffusionXFormersAttnProcessor,
2549
    CustomDiffusionAttnProcessor2_0,
2550
    # deprecated
2551
2552
2553
2554
2555
    LoRAAttnProcessor,
    LoRAAttnProcessor2_0,
    LoRAXFormersAttnProcessor,
    LoRAAttnAddedKVProcessor,
]