attention_processor.py 212 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import inspect
15
import math
16
from typing import Callable, List, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
17
18
19

import torch
import torch.nn.functional as F
20
from torch import nn
Patrick von Platen's avatar
Patrick von Platen committed
21

22
from ..image_processor import IPAdapterMaskProcessor
23
from ..utils import deprecate, logging
24
from ..utils.import_utils import is_torch_npu_available, is_xformers_available
Sayak Paul's avatar
Sayak Paul committed
25
from ..utils.torch_utils import is_torch_version, maybe_allow_in_graph
Patrick von Platen's avatar
Patrick von Platen committed
26
27
28
29


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

30
31
if is_torch_npu_available():
    import torch_npu
Patrick von Platen's avatar
Patrick von Platen committed
32
33
34
35
36
37
38
39

if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None


40
@maybe_allow_in_graph
Patrick von Platen's avatar
Patrick von Platen committed
41
42
43
44
45
class Attention(nn.Module):
    r"""
    A cross attention layer.

    Parameters:
46
47
        query_dim (`int`):
            The number of channels in the query.
Patrick von Platen's avatar
Patrick von Platen committed
48
49
        cross_attention_dim (`int`, *optional*):
            The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
50
51
        heads (`int`,  *optional*, defaults to 8):
            The number of heads to use for multi-head attention.
52
53
54
55
        kv_heads (`int`,  *optional*, defaults to `None`):
            The number of key and value heads to use for multi-head attention. Defaults to `heads`. If
            `kv_heads=heads`, the model will use Multi Head Attention (MHA), if `kv_heads=1` the model will use Multi
            Query Attention (MQA) otherwise GQA is used.
56
57
58
59
        dim_head (`int`,  *optional*, defaults to 64):
            The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability to use.
Patrick von Platen's avatar
Patrick von Platen committed
60
61
        bias (`bool`, *optional*, defaults to False):
            Set to `True` for the query, key, and value linear layers to contain a bias parameter.
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        upcast_attention (`bool`, *optional*, defaults to False):
            Set to `True` to upcast the attention computation to `float32`.
        upcast_softmax (`bool`, *optional*, defaults to False):
            Set to `True` to upcast the softmax computation to `float32`.
        cross_attention_norm (`str`, *optional*, defaults to `None`):
            The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
        cross_attention_norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups to use for the group norm in the cross attention.
        added_kv_proj_dim (`int`, *optional*, defaults to `None`):
            The number of channels to use for the added key and value projections. If `None`, no projection is used.
        norm_num_groups (`int`, *optional*, defaults to `None`):
            The number of groups to use for the group norm in the attention.
        spatial_norm_dim (`int`, *optional*, defaults to `None`):
            The number of channels to use for the spatial normalization.
        out_bias (`bool`, *optional*, defaults to `True`):
            Set to `True` to use a bias in the output linear layer.
        scale_qk (`bool`, *optional*, defaults to `True`):
            Set to `True` to scale the query and key by `1 / sqrt(dim_head)`.
        only_cross_attention (`bool`, *optional*, defaults to `False`):
            Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if
            `added_kv_proj_dim` is not `None`.
        eps (`float`, *optional*, defaults to 1e-5):
            An additional value added to the denominator in group normalization that is used for numerical stability.
        rescale_output_factor (`float`, *optional*, defaults to 1.0):
            A factor to rescale the output by dividing it with this value.
        residual_connection (`bool`, *optional*, defaults to `False`):
            Set to `True` to add the residual connection to the output.
        _from_deprecated_attn_block (`bool`, *optional*, defaults to `False`):
            Set to `True` if the attention block is loaded from a deprecated state dict.
        processor (`AttnProcessor`, *optional*, defaults to `None`):
            The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and
            `AttnProcessor` otherwise.
Patrick von Platen's avatar
Patrick von Platen committed
94
95
96
97
98
99
100
    """

    def __init__(
        self,
        query_dim: int,
        cross_attention_dim: Optional[int] = None,
        heads: int = 8,
101
        kv_heads: Optional[int] = None,
Patrick von Platen's avatar
Patrick von Platen committed
102
103
        dim_head: int = 64,
        dropout: float = 0.0,
104
        bias: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
105
106
        upcast_attention: bool = False,
        upcast_softmax: bool = False,
107
108
        cross_attention_norm: Optional[str] = None,
        cross_attention_norm_num_groups: int = 32,
109
        qk_norm: Optional[str] = None,
Patrick von Platen's avatar
Patrick von Platen committed
110
        added_kv_proj_dim: Optional[int] = None,
Sayak Paul's avatar
Sayak Paul committed
111
        added_proj_bias: Optional[bool] = True,
Patrick von Platen's avatar
Patrick von Platen committed
112
        norm_num_groups: Optional[int] = None,
YiYi Xu's avatar
YiYi Xu committed
113
        spatial_norm_dim: Optional[int] = None,
Patrick von Platen's avatar
Patrick von Platen committed
114
115
        out_bias: bool = True,
        scale_qk: bool = True,
116
        only_cross_attention: bool = False,
117
118
119
        eps: float = 1e-5,
        rescale_output_factor: float = 1.0,
        residual_connection: bool = False,
120
        _from_deprecated_attn_block: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
121
        processor: Optional["AttnProcessor"] = None,
122
        out_dim: int = None,
Aryan's avatar
Aryan committed
123
        out_context_dim: int = None,
Dhruv Nair's avatar
Dhruv Nair committed
124
        context_pre_only=None,
Sayak Paul's avatar
Sayak Paul committed
125
        pre_only=False,
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
126
        elementwise_affine: bool = True,
Aryan's avatar
Aryan committed
127
        is_causal: bool = False,
Patrick von Platen's avatar
Patrick von Platen committed
128
129
    ):
        super().__init__()
Sayak Paul's avatar
Sayak Paul committed
130
131

        # To prevent circular import.
Aryan's avatar
Aryan committed
132
        from .normalization import FP32LayerNorm, LpNorm, RMSNorm
Sayak Paul's avatar
Sayak Paul committed
133

134
        self.inner_dim = out_dim if out_dim is not None else dim_head * heads
135
        self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads
136
        self.query_dim = query_dim
137
138
        self.use_bias = bias
        self.is_cross_attention = cross_attention_dim is not None
139
        self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
Patrick von Platen's avatar
Patrick von Platen committed
140
141
        self.upcast_attention = upcast_attention
        self.upcast_softmax = upcast_softmax
142
143
        self.rescale_output_factor = rescale_output_factor
        self.residual_connection = residual_connection
144
        self.dropout = dropout
145
        self.fused_projections = False
146
        self.out_dim = out_dim if out_dim is not None else query_dim
Aryan's avatar
Aryan committed
147
        self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim
Dhruv Nair's avatar
Dhruv Nair committed
148
        self.context_pre_only = context_pre_only
Sayak Paul's avatar
Sayak Paul committed
149
        self.pre_only = pre_only
Aryan's avatar
Aryan committed
150
        self.is_causal = is_causal
151
152
153
154

        # we make use of this private variable to know whether this class is loaded
        # with an deprecated state dict so that we can convert it on the fly
        self._from_deprecated_attn_block = _from_deprecated_attn_block
Patrick von Platen's avatar
Patrick von Platen committed
155

156
157
        self.scale_qk = scale_qk
        self.scale = dim_head**-0.5 if self.scale_qk else 1.0
Patrick von Platen's avatar
Patrick von Platen committed
158

159
        self.heads = out_dim // dim_head if out_dim is not None else heads
Patrick von Platen's avatar
Patrick von Platen committed
160
161
162
163
164
165
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self.sliceable_head_dim = heads

        self.added_kv_proj_dim = added_kv_proj_dim
166
167
168
169
170
171
        self.only_cross_attention = only_cross_attention

        if self.added_kv_proj_dim is None and self.only_cross_attention:
            raise ValueError(
                "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
            )
Patrick von Platen's avatar
Patrick von Platen committed
172
173

        if norm_num_groups is not None:
174
            self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True)
Patrick von Platen's avatar
Patrick von Platen committed
175
176
177
        else:
            self.group_norm = None

YiYi Xu's avatar
YiYi Xu committed
178
179
180
181
182
        if spatial_norm_dim is not None:
            self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim)
        else:
            self.spatial_norm = None

183
184
185
186
        if qk_norm is None:
            self.norm_q = None
            self.norm_k = None
        elif qk_norm == "layer_norm":
Yuxuan.Zhang's avatar
Yuxuan.Zhang committed
187
188
            self.norm_q = nn.LayerNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
            self.norm_k = nn.LayerNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
Sayak Paul's avatar
Sayak Paul committed
189
190
191
        elif qk_norm == "fp32_layer_norm":
            self.norm_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
            self.norm_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
192
193
194
195
        elif qk_norm == "layer_norm_across_heads":
            # Lumina applys qk norm across all heads
            self.norm_q = nn.LayerNorm(dim_head * heads, eps=eps)
            self.norm_k = nn.LayerNorm(dim_head * kv_heads, eps=eps)
Sayak Paul's avatar
Sayak Paul committed
196
197
198
        elif qk_norm == "rms_norm":
            self.norm_q = RMSNorm(dim_head, eps=eps)
            self.norm_k = RMSNorm(dim_head, eps=eps)
Aryan's avatar
Aryan committed
199
200
201
        elif qk_norm == "l2":
            self.norm_q = LpNorm(p=2, dim=-1, eps=eps)
            self.norm_k = LpNorm(p=2, dim=-1, eps=eps)
202
        else:
YiYi Xu's avatar
YiYi Xu committed
203
            raise ValueError(f"unknown qk_norm: {qk_norm}. Should be None,'layer_norm','fp32_layer_norm','rms_norm'")
204

205
206
207
        if cross_attention_norm is None:
            self.norm_cross = None
        elif cross_attention_norm == "layer_norm":
208
            self.norm_cross = nn.LayerNorm(self.cross_attention_dim)
209
210
211
212
213
214
215
216
217
        elif cross_attention_norm == "group_norm":
            if self.added_kv_proj_dim is not None:
                # The given `encoder_hidden_states` are initially of shape
                # (batch_size, seq_len, added_kv_proj_dim) before being projected
                # to (batch_size, seq_len, cross_attention_dim). The norm is applied
                # before the projection, so we need to use `added_kv_proj_dim` as
                # the number of channels for the group norm.
                norm_cross_num_channels = added_kv_proj_dim
            else:
218
                norm_cross_num_channels = self.cross_attention_dim
219
220
221
222
223
224
225
226

            self.norm_cross = nn.GroupNorm(
                num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True
            )
        else:
            raise ValueError(
                f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'"
            )
Patrick von Platen's avatar
Patrick von Platen committed
227

228
        self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias)
229
230
231

        if not self.only_cross_attention:
            # only relevant for the `AddedKVProcessor` classes
232
233
            self.to_k = nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias)
            self.to_v = nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias)
234
235
236
        else:
            self.to_k = None
            self.to_v = None
Patrick von Platen's avatar
Patrick von Platen committed
237

238
        self.added_proj_bias = added_proj_bias
Patrick von Platen's avatar
Patrick von Platen committed
239
        if self.added_kv_proj_dim is not None:
Sayak Paul's avatar
Sayak Paul committed
240
241
            self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias)
            self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias)
Dhruv Nair's avatar
Dhruv Nair committed
242
            if self.context_pre_only is not None:
Sayak Paul's avatar
Sayak Paul committed
243
                self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
Patrick von Platen's avatar
Patrick von Platen committed
244

Sayak Paul's avatar
Sayak Paul committed
245
246
247
248
        if not self.pre_only:
            self.to_out = nn.ModuleList([])
            self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias))
            self.to_out.append(nn.Dropout(dropout))
Patrick von Platen's avatar
Patrick von Platen committed
249

Dhruv Nair's avatar
Dhruv Nair committed
250
        if self.context_pre_only is not None and not self.context_pre_only:
Aryan's avatar
Aryan committed
251
            self.to_add_out = nn.Linear(self.inner_dim, self.out_context_dim, bias=out_bias)
Dhruv Nair's avatar
Dhruv Nair committed
252

Sayak Paul's avatar
Sayak Paul committed
253
254
255
256
        if qk_norm is not None and added_kv_proj_dim is not None:
            if qk_norm == "fp32_layer_norm":
                self.norm_added_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
                self.norm_added_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps)
Sayak Paul's avatar
Sayak Paul committed
257
258
259
            elif qk_norm == "rms_norm":
                self.norm_added_q = RMSNorm(dim_head, eps=eps)
                self.norm_added_k = RMSNorm(dim_head, eps=eps)
YiYi Xu's avatar
YiYi Xu committed
260
261
262
263
            else:
                raise ValueError(
                    f"unknown qk_norm: {qk_norm}. Should be one of `None,'layer_norm','fp32_layer_norm','rms_norm'`"
                )
Sayak Paul's avatar
Sayak Paul committed
264
265
266
267
        else:
            self.norm_added_q = None
            self.norm_added_k = None

Patrick von Platen's avatar
Patrick von Platen committed
268
269
270
271
272
273
        # set attention processor
        # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
        # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
        # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
        if processor is None:
            processor = (
274
                AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
Patrick von Platen's avatar
Patrick von Platen committed
275
276
277
            )
        self.set_processor(processor)

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    def set_use_npu_flash_attention(self, use_npu_flash_attention: bool) -> None:
        r"""
        Set whether to use npu flash attention from `torch_npu` or not.

        """
        if use_npu_flash_attention:
            processor = AttnProcessorNPU()
        else:
            # set attention processor
            # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
            # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
            # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
            processor = (
                AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
            )
        self.set_processor(processor)

Patrick von Platen's avatar
Patrick von Platen committed
295
296
    def set_use_memory_efficient_attention_xformers(
        self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
297
298
299
300
301
302
303
304
305
306
307
    ) -> None:
        r"""
        Set whether to use memory efficient attention from `xformers` or not.

        Args:
            use_memory_efficient_attention_xformers (`bool`):
                Whether to use memory efficient attention from `xformers` or not.
            attention_op (`Callable`, *optional*):
                The attention operation to use. Defaults to `None` which uses the default attention operation from
                `xformers`.
        """
308
        is_custom_diffusion = hasattr(self, "processor") and isinstance(
309
310
            self.processor,
            (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0),
311
        )
312
313
314
315
316
317
318
319
320
        is_added_kv_processor = hasattr(self, "processor") and isinstance(
            self.processor,
            (
                AttnAddedKVProcessor,
                AttnAddedKVProcessor2_0,
                SlicedAttnAddedKVProcessor,
                XFormersAttnAddedKVProcessor,
            ),
        )
321
322
323
324
        is_ip_adapter = hasattr(self, "processor") and isinstance(
            self.processor,
            (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, IPAdapterXFormersAttnProcessor),
        )
Patrick von Platen's avatar
Patrick von Platen committed
325
        if use_memory_efficient_attention_xformers:
326
            if is_added_kv_processor and is_custom_diffusion:
Patrick von Platen's avatar
Patrick von Platen committed
327
                raise NotImplementedError(
328
                    f"Memory efficient attention is currently not supported for custom diffusion for attention processor type {self.processor}"
Patrick von Platen's avatar
Patrick von Platen committed
329
                )
330
            if not is_xformers_available():
Patrick von Platen's avatar
Patrick von Platen committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
                raise ModuleNotFoundError(
                    (
                        "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                        " xformers"
                    ),
                    name="xformers",
                )
            elif not torch.cuda.is_available():
                raise ValueError(
                    "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
                    " only available for GPU "
                )
            else:
                try:
                    # Make sure we can run the memory efficient attention
                    _ = xformers.ops.memory_efficient_attention(
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                        torch.randn((1, 2, 40), device="cuda"),
                    )
                except Exception as e:
                    raise e

354
            if is_custom_diffusion:
355
356
357
358
359
360
361
362
363
364
                processor = CustomDiffusionXFormersAttnProcessor(
                    train_kv=self.processor.train_kv,
                    train_q_out=self.processor.train_q_out,
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    attention_op=attention_op,
                )
                processor.load_state_dict(self.processor.state_dict())
                if hasattr(self.processor, "to_k_custom_diffusion"):
                    processor.to(self.processor.to_k_custom_diffusion.weight.device)
365
366
367
368
369
370
371
372
373
            elif is_added_kv_processor:
                # TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP
                # which uses this type of cross attention ONLY because the attention mask of format
                # [0, ..., -10.000, ..., 0, ...,] is not supported
                # throw warning
                logger.info(
                    "Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation."
                )
                processor = XFormersAttnAddedKVProcessor(attention_op=attention_op)
374
375
376
377
378
379
380
381
382
383
384
385
386
            elif is_ip_adapter:
                processor = IPAdapterXFormersAttnProcessor(
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    num_tokens=self.processor.num_tokens,
                    scale=self.processor.scale,
                    attention_op=attention_op,
                )
                processor.load_state_dict(self.processor.state_dict())
                if hasattr(self.processor, "to_k_ip"):
                    processor.to(
                        device=self.processor.to_k_ip[0].weight.device, dtype=self.processor.to_k_ip[0].weight.dtype
                    )
Patrick von Platen's avatar
Patrick von Platen committed
387
388
389
            else:
                processor = XFormersAttnProcessor(attention_op=attention_op)
        else:
390
            if is_custom_diffusion:
391
392
393
394
395
396
                attn_processor_class = (
                    CustomDiffusionAttnProcessor2_0
                    if hasattr(F, "scaled_dot_product_attention")
                    else CustomDiffusionAttnProcessor
                )
                processor = attn_processor_class(
397
398
399
400
401
402
403
404
                    train_kv=self.processor.train_kv,
                    train_q_out=self.processor.train_q_out,
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                )
                processor.load_state_dict(self.processor.state_dict())
                if hasattr(self.processor, "to_k_custom_diffusion"):
                    processor.to(self.processor.to_k_custom_diffusion.weight.device)
405
406
407
408
409
410
411
412
413
414
415
416
            elif is_ip_adapter:
                processor = IPAdapterAttnProcessor2_0(
                    hidden_size=self.processor.hidden_size,
                    cross_attention_dim=self.processor.cross_attention_dim,
                    num_tokens=self.processor.num_tokens,
                    scale=self.processor.scale,
                )
                processor.load_state_dict(self.processor.state_dict())
                if hasattr(self.processor, "to_k_ip"):
                    processor.to(
                        device=self.processor.to_k_ip[0].weight.device, dtype=self.processor.to_k_ip[0].weight.dtype
                    )
Patrick von Platen's avatar
Patrick von Platen committed
417
            else:
418
419
420
421
422
423
424
425
426
                # set attention processor
                # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
                # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
                # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
                processor = (
                    AttnProcessor2_0()
                    if hasattr(F, "scaled_dot_product_attention") and self.scale_qk
                    else AttnProcessor()
                )
Patrick von Platen's avatar
Patrick von Platen committed
427
428
429

        self.set_processor(processor)

430
431
432
433
434
435
436
437
    def set_attention_slice(self, slice_size: int) -> None:
        r"""
        Set the slice size for attention computation.

        Args:
            slice_size (`int`):
                The slice size for attention computation.
        """
Patrick von Platen's avatar
Patrick von Platen committed
438
439
440
441
442
443
444
445
446
447
        if slice_size is not None and slice_size > self.sliceable_head_dim:
            raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")

        if slice_size is not None and self.added_kv_proj_dim is not None:
            processor = SlicedAttnAddedKVProcessor(slice_size)
        elif slice_size is not None:
            processor = SlicedAttnProcessor(slice_size)
        elif self.added_kv_proj_dim is not None:
            processor = AttnAddedKVProcessor()
        else:
448
449
450
451
452
453
454
            # set attention processor
            # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
            # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
            # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
            processor = (
                AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
            )
Patrick von Platen's avatar
Patrick von Platen committed
455
456
457

        self.set_processor(processor)

458
    def set_processor(self, processor: "AttnProcessor") -> None:
459
460
461
462
463
464
465
        r"""
        Set the attention processor to use.

        Args:
            processor (`AttnProcessor`):
                The attention processor to use.
        """
Patrick von Platen's avatar
Patrick von Platen committed
466
467
468
469
470
471
472
473
474
475
476
477
        # if current processor is in `self._modules` and if passed `processor` is not, we need to
        # pop `processor` from `self._modules`
        if (
            hasattr(self, "processor")
            and isinstance(self.processor, torch.nn.Module)
            and not isinstance(processor, torch.nn.Module)
        ):
            logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
            self._modules.pop("processor")

        self.processor = processor

478
    def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor":
479
480
481
482
483
484
485
486
487
488
        r"""
        Get the attention processor in use.

        Args:
            return_deprecated_lora (`bool`, *optional*, defaults to `False`):
                Set to `True` to return the deprecated LoRA attention processor.

        Returns:
            "AttentionProcessor": The attention processor in use.
        """
489
490
491
        if not return_deprecated_lora:
            return self.processor

492
493
    def forward(
        self,
494
495
496
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
        **cross_attention_kwargs,
    ) -> torch.Tensor:
        r"""
        The forward method of the `Attention` class.

        Args:
            hidden_states (`torch.Tensor`):
                The hidden states of the query.
            encoder_hidden_states (`torch.Tensor`, *optional*):
                The hidden states of the encoder.
            attention_mask (`torch.Tensor`, *optional*):
                The attention mask to use. If `None`, no mask is applied.
            **cross_attention_kwargs:
                Additional keyword arguments to pass along to the cross attention.

        Returns:
            `torch.Tensor`: The output of the attention layer.
        """
Patrick von Platen's avatar
Patrick von Platen committed
515
516
517
        # The `Attention` class can call different attention processors / attention functions
        # here we simply pass along all tensors to the selected processor class
        # For standard processors that are defined here, `**cross_attention_kwargs` is empty
518
519

        attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
520
521
522
523
        quiet_attn_parameters = {"ip_adapter_masks"}
        unused_kwargs = [
            k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters and k not in quiet_attn_parameters
        ]
524
525
526
527
528
529
        if len(unused_kwargs) > 0:
            logger.warning(
                f"cross_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
            )
        cross_attention_kwargs = {k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters}

Patrick von Platen's avatar
Patrick von Platen committed
530
531
532
533
534
535
536
537
        return self.processor(
            self,
            hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )

538
539
540
541
542
543
544
545
546
547
548
    def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor:
        r"""
        Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads`
        is the number of heads initialized while constructing the `Attention` class.

        Args:
            tensor (`torch.Tensor`): The tensor to reshape.

        Returns:
            `torch.Tensor`: The reshaped tensor.
        """
Patrick von Platen's avatar
Patrick von Platen committed
549
550
551
552
553
554
        head_size = self.heads
        batch_size, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

555
556
557
558
559
560
561
562
563
564
565
566
567
    def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor:
        r"""
        Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is
        the number of heads initialized while constructing the `Attention` class.

        Args:
            tensor (`torch.Tensor`): The tensor to reshape.
            out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is
                reshaped to `[batch_size * heads, seq_len, dim // heads]`.

        Returns:
            `torch.Tensor`: The reshaped tensor.
        """
Patrick von Platen's avatar
Patrick von Platen committed
568
        head_size = self.heads
569
570
571
572
573
574
        if tensor.ndim == 3:
            batch_size, seq_len, dim = tensor.shape
            extra_dim = 1
        else:
            batch_size, extra_dim, seq_len, dim = tensor.shape
        tensor = tensor.reshape(batch_size, seq_len * extra_dim, head_size, dim // head_size)
575
576
577
        tensor = tensor.permute(0, 2, 1, 3)

        if out_dim == 3:
578
            tensor = tensor.reshape(batch_size * head_size, seq_len * extra_dim, dim // head_size)
579

Patrick von Platen's avatar
Patrick von Platen committed
580
581
        return tensor

582
    def get_attention_scores(
583
        self, query: torch.Tensor, key: torch.Tensor, attention_mask: Optional[torch.Tensor] = None
584
585
586
587
588
589
590
591
592
593
594
595
    ) -> torch.Tensor:
        r"""
        Compute the attention scores.

        Args:
            query (`torch.Tensor`): The query tensor.
            key (`torch.Tensor`): The key tensor.
            attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.

        Returns:
            `torch.Tensor`: The attention probabilities/scores.
        """
Patrick von Platen's avatar
Patrick von Platen committed
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
        dtype = query.dtype
        if self.upcast_attention:
            query = query.float()
            key = key.float()

        if attention_mask is None:
            baddbmm_input = torch.empty(
                query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
            )
            beta = 0
        else:
            baddbmm_input = attention_mask
            beta = 1

        attention_scores = torch.baddbmm(
            baddbmm_input,
            query,
            key.transpose(-1, -2),
            beta=beta,
            alpha=self.scale,
        )
617
        del baddbmm_input
Patrick von Platen's avatar
Patrick von Platen committed
618
619
620
621
622

        if self.upcast_softmax:
            attention_scores = attention_scores.float()

        attention_probs = attention_scores.softmax(dim=-1)
623
624
        del attention_scores

Patrick von Platen's avatar
Patrick von Platen committed
625
626
627
628
        attention_probs = attention_probs.to(dtype)

        return attention_probs

629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
    def prepare_attention_mask(
        self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3
    ) -> torch.Tensor:
        r"""
        Prepare the attention mask for the attention computation.

        Args:
            attention_mask (`torch.Tensor`):
                The attention mask to prepare.
            target_length (`int`):
                The target length of the attention mask. This is the length of the attention mask after padding.
            batch_size (`int`):
                The batch size, which is used to repeat the attention mask.
            out_dim (`int`, *optional*, defaults to `3`):
                The output dimension of the attention mask. Can be either `3` or `4`.

        Returns:
            `torch.Tensor`: The prepared attention mask.
        """
Patrick von Platen's avatar
Patrick von Platen committed
648
649
650
651
        head_size = self.heads
        if attention_mask is None:
            return attention_mask

652
        current_length: int = attention_mask.shape[-1]
653
        if current_length != target_length:
Patrick von Platen's avatar
Patrick von Platen committed
654
655
656
657
658
659
660
            if attention_mask.device.type == "mps":
                # HACK: MPS: Does not support padding by greater than dimension of input tensor.
                # Instead, we can manually construct the padding tensor.
                padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length)
                padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device)
                attention_mask = torch.cat([attention_mask, padding], dim=2)
            else:
661
662
663
664
                # TODO: for pipelines such as stable-diffusion, padding cross-attn mask:
                #       we want to instead pad by (0, remaining_length), where remaining_length is:
                #       remaining_length: int = target_length - current_length
                # TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding
Patrick von Platen's avatar
Patrick von Platen committed
665
666
                attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)

667
668
669
670
671
672
673
        if out_dim == 3:
            if attention_mask.shape[0] < batch_size * head_size:
                attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
        elif out_dim == 4:
            attention_mask = attention_mask.unsqueeze(1)
            attention_mask = attention_mask.repeat_interleave(head_size, dim=1)

Patrick von Platen's avatar
Patrick von Platen committed
674
675
        return attention_mask

676
677
678
679
680
681
682
683
684
685
686
    def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
        r"""
        Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the
        `Attention` class.

        Args:
            encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder.

        Returns:
            `torch.Tensor`: The normalized encoder hidden states.
        """
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
        assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states"

        if isinstance(self.norm_cross, nn.LayerNorm):
            encoder_hidden_states = self.norm_cross(encoder_hidden_states)
        elif isinstance(self.norm_cross, nn.GroupNorm):
            # Group norm norms along the channels dimension and expects
            # input to be in the shape of (N, C, *). In this case, we want
            # to norm along the hidden dimension, so we need to move
            # (batch_size, sequence_length, hidden_size) ->
            # (batch_size, hidden_size, sequence_length)
            encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
            encoder_hidden_states = self.norm_cross(encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
        else:
            assert False

        return encoder_hidden_states

705
706
707
708
709
    @torch.no_grad()
    def fuse_projections(self, fuse=True):
        device = self.to_q.weight.data.device
        dtype = self.to_q.weight.data.dtype

710
        if not self.is_cross_attention:
711
712
713
714
715
716
            # fetch weight matrices.
            concatenated_weights = torch.cat([self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data])
            in_features = concatenated_weights.shape[1]
            out_features = concatenated_weights.shape[0]

            # create a new single projection layer and copy over the weights.
717
            self.to_qkv = nn.Linear(in_features, out_features, bias=self.use_bias, device=device, dtype=dtype)
718
            self.to_qkv.weight.copy_(concatenated_weights)
719
720
721
            if self.use_bias:
                concatenated_bias = torch.cat([self.to_q.bias.data, self.to_k.bias.data, self.to_v.bias.data])
                self.to_qkv.bias.copy_(concatenated_bias)
722
723
724
725
726
727

        else:
            concatenated_weights = torch.cat([self.to_k.weight.data, self.to_v.weight.data])
            in_features = concatenated_weights.shape[1]
            out_features = concatenated_weights.shape[0]

728
            self.to_kv = nn.Linear(in_features, out_features, bias=self.use_bias, device=device, dtype=dtype)
729
            self.to_kv.weight.copy_(concatenated_weights)
730
731
732
            if self.use_bias:
                concatenated_bias = torch.cat([self.to_k.bias.data, self.to_v.bias.data])
                self.to_kv.bias.copy_(concatenated_bias)
733

734
735
736
737
738
739
740
741
        # handle added projections for SD3 and others.
        if hasattr(self, "add_q_proj") and hasattr(self, "add_k_proj") and hasattr(self, "add_v_proj"):
            concatenated_weights = torch.cat(
                [self.add_q_proj.weight.data, self.add_k_proj.weight.data, self.add_v_proj.weight.data]
            )
            in_features = concatenated_weights.shape[1]
            out_features = concatenated_weights.shape[0]

742
743
            self.to_added_qkv = nn.Linear(
                in_features, out_features, bias=self.added_proj_bias, device=device, dtype=dtype
744
            )
745
746
747
748
749
750
            self.to_added_qkv.weight.copy_(concatenated_weights)
            if self.added_proj_bias:
                concatenated_bias = torch.cat(
                    [self.add_q_proj.bias.data, self.add_k_proj.bias.data, self.add_v_proj.bias.data]
                )
                self.to_added_qkv.bias.copy_(concatenated_bias)
751

752
753
        self.fused_projections = fuse

Patrick von Platen's avatar
Patrick von Platen committed
754
755

class AttnProcessor:
756
757
758
759
    r"""
    Default processor for performing attention-related computations.
    """

Patrick von Platen's avatar
Patrick von Platen committed
760
761
762
    def __call__(
        self,
        attn: Attention,
763
764
765
766
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
767
768
        *args,
        **kwargs,
769
    ) -> torch.Tensor:
770
771
772
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)
773

774
        residual = hidden_states
775

YiYi Xu's avatar
YiYi Xu committed
776
777
778
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

779
780
781
782
783
784
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

Patrick von Platen's avatar
Patrick von Platen committed
785
786
787
788
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
789
790
791
792

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

793
        query = attn.to_q(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
794
795
796

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
797
798
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
799

800
801
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
802

Patrick von Platen's avatar
Patrick von Platen committed
803
804
805
806
807
808
809
810
811
        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
812
        hidden_states = attn.to_out[0](hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
813
814
815
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

816
817
818
819
820
821
822
823
        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

Patrick von Platen's avatar
Patrick von Platen committed
824
825
826
        return hidden_states


827
class CustomDiffusionAttnProcessor(nn.Module):
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
    r"""
    Processor for implementing attention for the Custom Diffusion method.

    Args:
        train_kv (`bool`, defaults to `True`):
            Whether to newly train the key and value matrices corresponding to the text features.
        train_q_out (`bool`, defaults to `True`):
            Whether to newly train query matrices corresponding to the latent image features.
        hidden_size (`int`, *optional*, defaults to `None`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`, *optional*, defaults to `None`):
            The number of channels in the `encoder_hidden_states`.
        out_bias (`bool`, defaults to `True`):
            Whether to include the bias parameter in `train_q_out`.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability to use.
    """

846
847
    def __init__(
        self,
848
849
850
851
852
853
        train_kv: bool = True,
        train_q_out: bool = True,
        hidden_size: Optional[int] = None,
        cross_attention_dim: Optional[int] = None,
        out_bias: bool = True,
        dropout: float = 0.0,
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
    ):
        super().__init__()
        self.train_kv = train_kv
        self.train_q_out = train_q_out

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim

        # `_custom_diffusion` id for easy serialization and loading.
        if self.train_kv:
            self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
            self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
        if self.train_q_out:
            self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
            self.to_out_custom_diffusion = nn.ModuleList([])
            self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
            self.to_out_custom_diffusion.append(nn.Dropout(dropout))

872
873
874
    def __call__(
        self,
        attn: Attention,
875
876
877
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
878
    ) -> torch.Tensor:
879
880
881
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        if self.train_q_out:
882
            query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype)
883
        else:
884
            query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype))
885
886
887
888
889
890
891
892
893
894

        if encoder_hidden_states is None:
            crossattn = False
            encoder_hidden_states = hidden_states
        else:
            crossattn = True
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if self.train_kv:
895
896
897
898
            key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype))
            value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype))
            key = key.to(attn.to_q.weight.dtype)
            value = value.to(attn.to_q.weight.dtype)
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
        else:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)

        if crossattn:
            detach = torch.ones_like(key)
            detach[:, :1, :] = detach[:, :1, :] * 0.0
            key = detach * key + (1 - detach) * key.detach()
            value = detach * value + (1 - detach) * value.detach()

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        if self.train_q_out:
            # linear proj
            hidden_states = self.to_out_custom_diffusion[0](hidden_states)
            # dropout
            hidden_states = self.to_out_custom_diffusion[1](hidden_states)
        else:
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
931
class AttnAddedKVProcessor:
932
933
934
935
936
    r"""
    Processor for performing attention-related computations with extra learnable key and value matrices for the text
    encoder.
    """

937
938
939
    def __call__(
        self,
        attn: Attention,
940
941
942
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
943
944
        *args,
        **kwargs,
945
    ) -> torch.Tensor:
946
947
948
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)
949

950
        residual = hidden_states
951

Patrick von Platen's avatar
Patrick von Platen committed
952
953
954
955
956
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

957
958
959
960
961
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

Patrick von Platen's avatar
Patrick von Platen committed
962
963
        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

964
        query = attn.to_q(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
965
966
        query = attn.head_to_batch_dim(query)

967
968
        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
969
970
971
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

972
        if not attn.only_cross_attention:
973
974
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
975
976
977
978
979
980
981
            key = attn.head_to_batch_dim(key)
            value = attn.head_to_batch_dim(value)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj
Patrick von Platen's avatar
Patrick von Platen committed
982
983
984
985
986
987

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
988
        hidden_states = attn.to_out[0](hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
989
990
991
992
993
994
995
996
997
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


998
class AttnAddedKVProcessor2_0:
999
1000
1001
1002
1003
    r"""
    Processor for performing scaled dot-product attention (enabled by default if you're using PyTorch 2.0), with extra
    learnable key and value matrices for the text encoder.
    """

1004
1005
1006
1007
1008
1009
    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "AttnAddedKVProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

1010
1011
1012
    def __call__(
        self,
        attn: Attention,
1013
1014
1015
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
1016
1017
        *args,
        **kwargs,
1018
    ) -> torch.Tensor:
1019
1020
1021
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)
1022

1023
        residual = hidden_states
1024

1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, out_dim=4)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

1037
        query = attn.to_q(hidden_states)
1038
1039
1040
1041
1042
1043
1044
1045
        query = attn.head_to_batch_dim(query, out_dim=4)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj, out_dim=4)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj, out_dim=4)

        if not attn.only_cross_attention:
1046
1047
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
            key = attn.head_to_batch_dim(key, out_dim=4)
            value = attn.head_to_batch_dim(value, out_dim=4)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, residual.shape[1])

        # linear proj
1064
        hidden_states = attn.to_out[0](hidden_states)
Will Berman's avatar
Will Berman committed
1065
1066
1067
1068
1069
1070
1071
1072
1073
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


Dhruv Nair's avatar
Dhruv Nair committed
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
class JointAttnProcessor2_0:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        *args,
        **kwargs,
    ) -> torch.FloatTensor:
        residual = hidden_states

YiYi Xu's avatar
YiYi Xu committed
1092
        batch_size = hidden_states.shape[0]
Dhruv Nair's avatar
Dhruv Nair committed
1093
1094
1095
1096
1097
1098
1099
1100

        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads
YiYi Xu's avatar
YiYi Xu committed
1101

Dhruv Nair's avatar
Dhruv Nair committed
1102
1103
1104
1105
        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

YiYi Xu's avatar
YiYi Xu committed
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # `context` projections.
        if encoder_hidden_states is not None:
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)

            query = torch.cat([query, encoder_hidden_states_query_proj], dim=2)
            key = torch.cat([key, encoder_hidden_states_key_proj], dim=2)
            value = torch.cat([value, encoder_hidden_states_value_proj], dim=2)

1136
        hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
Dhruv Nair's avatar
Dhruv Nair committed
1137
1138
1139
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

YiYi Xu's avatar
YiYi Xu committed
1140
1141
1142
1143
1144
1145
1146
1147
        if encoder_hidden_states is not None:
            # Split the attention outputs.
            hidden_states, encoder_hidden_states = (
                hidden_states[:, : residual.shape[1]],
                hidden_states[:, residual.shape[1] :],
            )
            if not attn.context_pre_only:
                encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
Dhruv Nair's avatar
Dhruv Nair committed
1148
1149
1150
1151
1152
1153

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

YiYi Xu's avatar
YiYi Xu committed
1154
1155
1156
1157
        if encoder_hidden_states is not None:
            return hidden_states, encoder_hidden_states
        else:
            return hidden_states
Dhruv Nair's avatar
Dhruv Nair committed
1158
1159


1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
class PAGJointAttnProcessor2_0:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "PAGJointAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
    ) -> torch.FloatTensor:
        residual = hidden_states

        input_ndim = hidden_states.ndim
        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
        context_input_ndim = encoder_hidden_states.ndim
        if context_input_ndim == 4:
            batch_size, channel, height, width = encoder_hidden_states.shape
            encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        # store the length of image patch sequences to create a mask that prevents interaction between patches
        # similar to making the self-attention map an identity matrix
        identity_block_size = hidden_states.shape[1]

        # chunk
        hidden_states_org, hidden_states_ptb = hidden_states.chunk(2)
        encoder_hidden_states_org, encoder_hidden_states_ptb = encoder_hidden_states.chunk(2)

        ################## original path ##################
        batch_size = encoder_hidden_states_org.shape[0]

        # `sample` projections.
        query_org = attn.to_q(hidden_states_org)
        key_org = attn.to_k(hidden_states_org)
        value_org = attn.to_v(hidden_states_org)

        # `context` projections.
        encoder_hidden_states_org_query_proj = attn.add_q_proj(encoder_hidden_states_org)
        encoder_hidden_states_org_key_proj = attn.add_k_proj(encoder_hidden_states_org)
        encoder_hidden_states_org_value_proj = attn.add_v_proj(encoder_hidden_states_org)

        # attention
        query_org = torch.cat([query_org, encoder_hidden_states_org_query_proj], dim=1)
        key_org = torch.cat([key_org, encoder_hidden_states_org_key_proj], dim=1)
        value_org = torch.cat([value_org, encoder_hidden_states_org_value_proj], dim=1)

        inner_dim = key_org.shape[-1]
        head_dim = inner_dim // attn.heads
        query_org = query_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key_org = key_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value_org = value_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        hidden_states_org = F.scaled_dot_product_attention(
            query_org, key_org, value_org, dropout_p=0.0, is_causal=False
        )
        hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states_org = hidden_states_org.to(query_org.dtype)

        # Split the attention outputs.
        hidden_states_org, encoder_hidden_states_org = (
            hidden_states_org[:, : residual.shape[1]],
            hidden_states_org[:, residual.shape[1] :],
        )

        # linear proj
        hidden_states_org = attn.to_out[0](hidden_states_org)
        # dropout
        hidden_states_org = attn.to_out[1](hidden_states_org)
        if not attn.context_pre_only:
            encoder_hidden_states_org = attn.to_add_out(encoder_hidden_states_org)

        if input_ndim == 4:
            hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width)
        if context_input_ndim == 4:
            encoder_hidden_states_org = encoder_hidden_states_org.transpose(-1, -2).reshape(
                batch_size, channel, height, width
            )

        ################## perturbed path ##################

        batch_size = encoder_hidden_states_ptb.shape[0]

        # `sample` projections.
        query_ptb = attn.to_q(hidden_states_ptb)
        key_ptb = attn.to_k(hidden_states_ptb)
        value_ptb = attn.to_v(hidden_states_ptb)

        # `context` projections.
        encoder_hidden_states_ptb_query_proj = attn.add_q_proj(encoder_hidden_states_ptb)
        encoder_hidden_states_ptb_key_proj = attn.add_k_proj(encoder_hidden_states_ptb)
        encoder_hidden_states_ptb_value_proj = attn.add_v_proj(encoder_hidden_states_ptb)

        # attention
        query_ptb = torch.cat([query_ptb, encoder_hidden_states_ptb_query_proj], dim=1)
        key_ptb = torch.cat([key_ptb, encoder_hidden_states_ptb_key_proj], dim=1)
        value_ptb = torch.cat([value_ptb, encoder_hidden_states_ptb_value_proj], dim=1)

        inner_dim = key_ptb.shape[-1]
        head_dim = inner_dim // attn.heads
        query_ptb = query_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key_ptb = key_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value_ptb = value_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # create a full mask with all entries set to 0
        seq_len = query_ptb.size(2)
        full_mask = torch.zeros((seq_len, seq_len), device=query_ptb.device, dtype=query_ptb.dtype)

        # set the attention value between image patches to -inf
        full_mask[:identity_block_size, :identity_block_size] = float("-inf")

        # set the diagonal of the attention value between image patches to 0
        full_mask[:identity_block_size, :identity_block_size].fill_diagonal_(0)

        # expand the mask to match the attention weights shape
        full_mask = full_mask.unsqueeze(0).unsqueeze(0)  # Add batch and num_heads dimensions

        hidden_states_ptb = F.scaled_dot_product_attention(
            query_ptb, key_ptb, value_ptb, attn_mask=full_mask, dropout_p=0.0, is_causal=False
        )
        hidden_states_ptb = hidden_states_ptb.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states_ptb = hidden_states_ptb.to(query_ptb.dtype)

        # split the attention outputs.
        hidden_states_ptb, encoder_hidden_states_ptb = (
            hidden_states_ptb[:, : residual.shape[1]],
            hidden_states_ptb[:, residual.shape[1] :],
        )

        # linear proj
        hidden_states_ptb = attn.to_out[0](hidden_states_ptb)
        # dropout
        hidden_states_ptb = attn.to_out[1](hidden_states_ptb)
        if not attn.context_pre_only:
            encoder_hidden_states_ptb = attn.to_add_out(encoder_hidden_states_ptb)

        if input_ndim == 4:
            hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width)
        if context_input_ndim == 4:
            encoder_hidden_states_ptb = encoder_hidden_states_ptb.transpose(-1, -2).reshape(
                batch_size, channel, height, width
            )

        ################ concat ###############
        hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])
        encoder_hidden_states = torch.cat([encoder_hidden_states_org, encoder_hidden_states_ptb])

        return hidden_states, encoder_hidden_states


class PAGCFGJointAttnProcessor2_0:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "PAGCFGJointAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        *args,
        **kwargs,
    ) -> torch.FloatTensor:
        residual = hidden_states

        input_ndim = hidden_states.ndim
        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
        context_input_ndim = encoder_hidden_states.ndim
        if context_input_ndim == 4:
            batch_size, channel, height, width = encoder_hidden_states.shape
            encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        identity_block_size = hidden_states.shape[
            1
        ]  # patch embeddings width * height (correspond to self-attention map width or height)

        # chunk
        hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3)
        hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org])

        (
            encoder_hidden_states_uncond,
            encoder_hidden_states_org,
            encoder_hidden_states_ptb,
        ) = encoder_hidden_states.chunk(3)
        encoder_hidden_states_org = torch.cat([encoder_hidden_states_uncond, encoder_hidden_states_org])

        ################## original path ##################
        batch_size = encoder_hidden_states_org.shape[0]

        # `sample` projections.
        query_org = attn.to_q(hidden_states_org)
        key_org = attn.to_k(hidden_states_org)
        value_org = attn.to_v(hidden_states_org)

        # `context` projections.
        encoder_hidden_states_org_query_proj = attn.add_q_proj(encoder_hidden_states_org)
        encoder_hidden_states_org_key_proj = attn.add_k_proj(encoder_hidden_states_org)
        encoder_hidden_states_org_value_proj = attn.add_v_proj(encoder_hidden_states_org)

        # attention
        query_org = torch.cat([query_org, encoder_hidden_states_org_query_proj], dim=1)
        key_org = torch.cat([key_org, encoder_hidden_states_org_key_proj], dim=1)
        value_org = torch.cat([value_org, encoder_hidden_states_org_value_proj], dim=1)

        inner_dim = key_org.shape[-1]
        head_dim = inner_dim // attn.heads
        query_org = query_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key_org = key_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value_org = value_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        hidden_states_org = F.scaled_dot_product_attention(
            query_org, key_org, value_org, dropout_p=0.0, is_causal=False
        )
        hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states_org = hidden_states_org.to(query_org.dtype)

        # Split the attention outputs.
        hidden_states_org, encoder_hidden_states_org = (
            hidden_states_org[:, : residual.shape[1]],
            hidden_states_org[:, residual.shape[1] :],
        )

        # linear proj
        hidden_states_org = attn.to_out[0](hidden_states_org)
        # dropout
        hidden_states_org = attn.to_out[1](hidden_states_org)
        if not attn.context_pre_only:
            encoder_hidden_states_org = attn.to_add_out(encoder_hidden_states_org)

        if input_ndim == 4:
            hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width)
        if context_input_ndim == 4:
            encoder_hidden_states_org = encoder_hidden_states_org.transpose(-1, -2).reshape(
                batch_size, channel, height, width
            )

        ################## perturbed path ##################

        batch_size = encoder_hidden_states_ptb.shape[0]

        # `sample` projections.
        query_ptb = attn.to_q(hidden_states_ptb)
        key_ptb = attn.to_k(hidden_states_ptb)
        value_ptb = attn.to_v(hidden_states_ptb)

        # `context` projections.
        encoder_hidden_states_ptb_query_proj = attn.add_q_proj(encoder_hidden_states_ptb)
        encoder_hidden_states_ptb_key_proj = attn.add_k_proj(encoder_hidden_states_ptb)
        encoder_hidden_states_ptb_value_proj = attn.add_v_proj(encoder_hidden_states_ptb)

        # attention
        query_ptb = torch.cat([query_ptb, encoder_hidden_states_ptb_query_proj], dim=1)
        key_ptb = torch.cat([key_ptb, encoder_hidden_states_ptb_key_proj], dim=1)
        value_ptb = torch.cat([value_ptb, encoder_hidden_states_ptb_value_proj], dim=1)

        inner_dim = key_ptb.shape[-1]
        head_dim = inner_dim // attn.heads
        query_ptb = query_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key_ptb = key_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value_ptb = value_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # create a full mask with all entries set to 0
        seq_len = query_ptb.size(2)
        full_mask = torch.zeros((seq_len, seq_len), device=query_ptb.device, dtype=query_ptb.dtype)

        # set the attention value between image patches to -inf
        full_mask[:identity_block_size, :identity_block_size] = float("-inf")

        # set the diagonal of the attention value between image patches to 0
        full_mask[:identity_block_size, :identity_block_size].fill_diagonal_(0)

        # expand the mask to match the attention weights shape
        full_mask = full_mask.unsqueeze(0).unsqueeze(0)  # Add batch and num_heads dimensions

        hidden_states_ptb = F.scaled_dot_product_attention(
            query_ptb, key_ptb, value_ptb, attn_mask=full_mask, dropout_p=0.0, is_causal=False
        )
        hidden_states_ptb = hidden_states_ptb.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states_ptb = hidden_states_ptb.to(query_ptb.dtype)

        # split the attention outputs.
        hidden_states_ptb, encoder_hidden_states_ptb = (
            hidden_states_ptb[:, : residual.shape[1]],
            hidden_states_ptb[:, residual.shape[1] :],
        )

        # linear proj
        hidden_states_ptb = attn.to_out[0](hidden_states_ptb)
        # dropout
        hidden_states_ptb = attn.to_out[1](hidden_states_ptb)
        if not attn.context_pre_only:
            encoder_hidden_states_ptb = attn.to_add_out(encoder_hidden_states_ptb)

        if input_ndim == 4:
            hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width)
        if context_input_ndim == 4:
            encoder_hidden_states_ptb = encoder_hidden_states_ptb.transpose(-1, -2).reshape(
                batch_size, channel, height, width
            )

        ################ concat ###############
        hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])
        encoder_hidden_states = torch.cat([encoder_hidden_states_org, encoder_hidden_states_ptb])

        return hidden_states, encoder_hidden_states


Dhruv Nair's avatar
Dhruv Nair committed
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
class FusedJointAttnProcessor2_0:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        *args,
        **kwargs,
    ) -> torch.FloatTensor:
        residual = hidden_states

        input_ndim = hidden_states.ndim
        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
        context_input_ndim = encoder_hidden_states.ndim
        if context_input_ndim == 4:
            batch_size, channel, height, width = encoder_hidden_states.shape
            encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size = encoder_hidden_states.shape[0]

        # `sample` projections.
        qkv = attn.to_qkv(hidden_states)
        split_size = qkv.shape[-1] // 3
        query, key, value = torch.split(qkv, split_size, dim=-1)

        # `context` projections.
        encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
        split_size = encoder_qkv.shape[-1] // 3
        (
            encoder_hidden_states_query_proj,
            encoder_hidden_states_key_proj,
            encoder_hidden_states_value_proj,
        ) = torch.split(encoder_qkv, split_size, dim=-1)

        # attention
        query = torch.cat([query, encoder_hidden_states_query_proj], dim=1)
        key = torch.cat([key, encoder_hidden_states_key_proj], dim=1)
        value = torch.cat([value, encoder_hidden_states_value_proj], dim=1)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads
        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

1534
        hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
Dhruv Nair's avatar
Dhruv Nair committed
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # Split the attention outputs.
        hidden_states, encoder_hidden_states = (
            hidden_states[:, : residual.shape[1]],
            hidden_states[:, residual.shape[1] :],
        )

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
        if not attn.context_pre_only:
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
        if context_input_ndim == 4:
            encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        return hidden_states, encoder_hidden_states


Aryan's avatar
Aryan committed
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
class AllegroAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
    used in the Allegro model. It applies a normalization layer and rotary embedding on the query and key vector.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "AllegroAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # Apply RoPE if needed
        if image_rotary_emb is not None and not attn.is_cross_attention:
            from .embeddings import apply_rotary_emb_allegro

            query = apply_rotary_emb_allegro(query, image_rotary_emb[0], image_rotary_emb[1])
            key = apply_rotary_emb_allegro(key, image_rotary_emb[0], image_rotary_emb[1])

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


Sayak Paul's avatar
Sayak Paul committed
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
class AuraFlowAttnProcessor2_0:
    """Attention processor used typically in processing Aura Flow."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention") and is_torch_version("<", "2.1"):
            raise ImportError(
                "AuraFlowAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to at least 2.1 or above as we use `scale` in `F.scaled_dot_product_attention()`. "
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        *args,
        **kwargs,
    ) -> torch.FloatTensor:
        batch_size = hidden_states.shape[0]

        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        # `context` projections.
        if encoder_hidden_states is not None:
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

        # Reshape.
        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads
        query = query.view(batch_size, -1, attn.heads, head_dim)
        key = key.view(batch_size, -1, attn.heads, head_dim)
        value = value.view(batch_size, -1, attn.heads, head_dim)
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785

        # Apply QK norm.
        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Concatenate the projections.
        if encoder_hidden_states is not None:
            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            )
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            )

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_q(encoder_hidden_states_key_proj)

            query = torch.cat([encoder_hidden_states_query_proj, query], dim=1)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)

        query = query.transpose(1, 2)
        key = key.transpose(1, 2)
        value = value.transpose(1, 2)

        # Attention.
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, dropout_p=0.0, scale=attn.scale, is_causal=False
        )
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # Split the attention outputs.
        if encoder_hidden_states is not None:
            hidden_states, encoder_hidden_states = (
                hidden_states[:, encoder_hidden_states.shape[1] :],
                hidden_states[:, : encoder_hidden_states.shape[1]],
            )

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
        if encoder_hidden_states is not None:
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

        if encoder_hidden_states is not None:
            return hidden_states, encoder_hidden_states
        else:
            return hidden_states


class FusedAuraFlowAttnProcessor2_0:
    """Attention processor used typically in processing Aura Flow with fused projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention") and is_torch_version("<", "2.1"):
            raise ImportError(
                "FusedAuraFlowAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to at least 2.1 or above as we use `scale` in `F.scaled_dot_product_attention()`. "
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        *args,
        **kwargs,
    ) -> torch.FloatTensor:
        batch_size = hidden_states.shape[0]

        # `sample` projections.
        qkv = attn.to_qkv(hidden_states)
        split_size = qkv.shape[-1] // 3
        query, key, value = torch.split(qkv, split_size, dim=-1)

        # `context` projections.
        if encoder_hidden_states is not None:
            encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
            split_size = encoder_qkv.shape[-1] // 3
            (
                encoder_hidden_states_query_proj,
                encoder_hidden_states_key_proj,
                encoder_hidden_states_value_proj,
            ) = torch.split(encoder_qkv, split_size, dim=-1)

        # Reshape.
        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads
        query = query.view(batch_size, -1, attn.heads, head_dim)
        key = key.view(batch_size, -1, attn.heads, head_dim)
        value = value.view(batch_size, -1, attn.heads, head_dim)
Sayak Paul's avatar
Sayak Paul committed
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842

        # Apply QK norm.
        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Concatenate the projections.
        if encoder_hidden_states is not None:
            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            )
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            )

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_q(encoder_hidden_states_key_proj)

            query = torch.cat([encoder_hidden_states_query_proj, query], dim=1)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)

        query = query.transpose(1, 2)
        key = key.transpose(1, 2)
        value = value.transpose(1, 2)

        # Attention.
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, dropout_p=0.0, scale=attn.scale, is_causal=False
        )
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # Split the attention outputs.
        if encoder_hidden_states is not None:
            hidden_states, encoder_hidden_states = (
                hidden_states[:, encoder_hidden_states.shape[1] :],
                hidden_states[:, : encoder_hidden_states.shape[1]],
            )

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
        if encoder_hidden_states is not None:
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

        if encoder_hidden_states is not None:
            return hidden_states, encoder_hidden_states
        else:
            return hidden_states


Sayak Paul's avatar
Sayak Paul committed
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
class FluxAttnProcessor2_0:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
YiYi Xu's avatar
YiYi Xu committed
1858
        batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
Sayak Paul's avatar
Sayak Paul committed
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876

        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

YiYi Xu's avatar
YiYi Xu committed
1877
1878
1879
1880
1881
1882
        # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
        if encoder_hidden_states is not None:
            # `context` projections.
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
Sayak Paul's avatar
Sayak Paul committed
1883

1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)

            # attention
            query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)

        if image_rotary_emb is not None:
            from .embeddings import apply_rotary_emb

            query = apply_rotary_emb(query, image_rotary_emb)
            key = apply_rotary_emb(key, image_rotary_emb)

        hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        if encoder_hidden_states is not None:
            encoder_hidden_states, hidden_states = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[:, encoder_hidden_states.shape[1] :],
            )

            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
Aryan's avatar
Aryan committed
1924

1925
1926
1927
1928
1929
1930
1931
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

            return hidden_states, encoder_hidden_states
        else:
            return hidden_states


Leo Jiang's avatar
Leo Jiang committed
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
class FluxAttnProcessor2_0_NPU:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "FluxAttnProcessor2_0_NPU requires PyTorch 2.0 and torch NPU, to use it, please upgrade PyTorch to 2.0 and install torch NPU"
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
        batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape

        # `sample` projections.
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
        if encoder_hidden_states is not None:
            # `context` projections.
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)

            # attention
            query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)

        if image_rotary_emb is not None:
            from .embeddings import apply_rotary_emb

            query = apply_rotary_emb(query, image_rotary_emb)
            key = apply_rotary_emb(key, image_rotary_emb)

        if query.dtype in (torch.float16, torch.bfloat16):
            hidden_states = torch_npu.npu_fusion_attention(
                query,
                key,
                value,
                attn.heads,
                input_layout="BNSD",
                pse=None,
                scale=1.0 / math.sqrt(query.shape[-1]),
                pre_tockens=65536,
                next_tockens=65536,
                keep_prob=1.0,
                sync=False,
                inner_precise=0,
            )[0]
        else:
            hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        if encoder_hidden_states is not None:
            encoder_hidden_states, hidden_states = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[:, encoder_hidden_states.shape[1] :],
            )

            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

            return hidden_states, encoder_hidden_states
        else:
            return hidden_states


2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
class FusedFluxAttnProcessor2_0:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "FusedFluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
        batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape

        # `sample` projections.
        qkv = attn.to_qkv(hidden_states)
        split_size = qkv.shape[-1] // 3
        query, key, value = torch.split(qkv, split_size, dim=-1)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
        # `context` projections.
        if encoder_hidden_states is not None:
            encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
            split_size = encoder_qkv.shape[-1] // 3
            (
                encoder_hidden_states_query_proj,
                encoder_hidden_states_key_proj,
                encoder_hidden_states_value_proj,
            ) = torch.split(encoder_qkv, split_size, dim=-1)

YiYi Xu's avatar
YiYi Xu committed
2085
2086
2087
2088
2089
2090
2091
2092
2093
            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
Sayak Paul's avatar
Sayak Paul committed
2094

YiYi Xu's avatar
YiYi Xu committed
2095
2096
2097
2098
2099
2100
2101
2102
2103
            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)

            # attention
            query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
Sayak Paul's avatar
Sayak Paul committed
2104
2105

        if image_rotary_emb is not None:
YiYi Xu's avatar
YiYi Xu committed
2106
2107
2108
2109
            from .embeddings import apply_rotary_emb

            query = apply_rotary_emb(query, image_rotary_emb)
            key = apply_rotary_emb(key, image_rotary_emb)
Sayak Paul's avatar
Sayak Paul committed
2110
2111
2112
2113

        hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)
Leo Jiang's avatar
Leo Jiang committed
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224

        if encoder_hidden_states is not None:
            encoder_hidden_states, hidden_states = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[:, encoder_hidden_states.shape[1] :],
            )

            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

            return hidden_states, encoder_hidden_states
        else:
            return hidden_states


class FusedFluxAttnProcessor2_0_NPU:
    """Attention processor used typically in processing the SD3-like self-attention projections."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "FluxAttnProcessor2_0_NPU requires PyTorch 2.0 and torch NPU, to use it, please upgrade PyTorch to 2.0, and install torch NPU"
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.FloatTensor:
        batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape

        # `sample` projections.
        qkv = attn.to_qkv(hidden_states)
        split_size = qkv.shape[-1] // 3
        query, key, value = torch.split(qkv, split_size, dim=-1)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
        # `context` projections.
        if encoder_hidden_states is not None:
            encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
            split_size = encoder_qkv.shape[-1] // 3
            (
                encoder_hidden_states_query_proj,
                encoder_hidden_states_key_proj,
                encoder_hidden_states_value_proj,
            ) = torch.split(encoder_qkv, split_size, dim=-1)

            encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)
            encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
                batch_size, -1, attn.heads, head_dim
            ).transpose(1, 2)

            if attn.norm_added_q is not None:
                encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
            if attn.norm_added_k is not None:
                encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)

            # attention
            query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)

        if image_rotary_emb is not None:
            from .embeddings import apply_rotary_emb

            query = apply_rotary_emb(query, image_rotary_emb)
            key = apply_rotary_emb(key, image_rotary_emb)

        if query.dtype in (torch.float16, torch.bfloat16):
            hidden_states = torch_npu.npu_fusion_attention(
                query,
                key,
                value,
                attn.heads,
                input_layout="BNSD",
                pse=None,
                scale=1.0 / math.sqrt(query.shape[-1]),
                pre_tockens=65536,
                next_tockens=65536,
                keep_prob=1.0,
                sync=False,
                inner_precise=0,
            )[0]
        else:
            hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)
Sayak Paul's avatar
Sayak Paul committed
2225

YiYi Xu's avatar
YiYi Xu committed
2226
2227
2228
2229
2230
        if encoder_hidden_states is not None:
            encoder_hidden_states, hidden_states = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[:, encoder_hidden_states.shape[1] :],
            )
Sayak Paul's avatar
Sayak Paul committed
2231

YiYi Xu's avatar
YiYi Xu committed
2232
2233
2234
2235
2236
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
Sayak Paul's avatar
Sayak Paul committed
2237

YiYi Xu's avatar
YiYi Xu committed
2238
2239
2240
            return hidden_states, encoder_hidden_states
        else:
            return hidden_states
Sayak Paul's avatar
Sayak Paul committed
2241
2242


zR's avatar
zR committed
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
class CogVideoXAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on
    query and key vectors, but does not include spatial normalization.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        text_seq_length = encoder_hidden_states.size(1)

        hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE if needed
        if image_rotary_emb is not None:
            from .embeddings import apply_rotary_emb

            query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb)
            if not attn.is_cross_attention:
                key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb)

        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        encoder_hidden_states, hidden_states = hidden_states.split(
            [text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
        )
        return hidden_states, encoder_hidden_states


class FusedCogVideoXAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on
    query and key vectors, but does not include spatial normalization.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        text_seq_length = encoder_hidden_states.size(1)

        hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        qkv = attn.to_qkv(hidden_states)
        split_size = qkv.shape[-1] // 3
        query, key, value = torch.split(qkv, split_size, dim=-1)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE if needed
        if image_rotary_emb is not None:
            from .embeddings import apply_rotary_emb

            query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb)
            if not attn.is_cross_attention:
                key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb)

        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        encoder_hidden_states, hidden_states = hidden_states.split(
            [text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
        )
        return hidden_states, encoder_hidden_states


2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
class XFormersAttnAddedKVProcessor:
    r"""
    Processor for implementing memory efficient attention using xFormers.

    Args:
        attention_op (`Callable`, *optional*, defaults to `None`):
            The base
            [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
            use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
            operator.
    """

    def __init__(self, attention_op: Optional[Callable] = None):
        self.attention_op = attention_op

2400
2401
2402
    def __call__(
        self,
        attn: Attention,
2403
2404
2405
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
2406
    ) -> torch.Tensor:
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
        residual = hidden_states
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)
        query = attn.head_to_batch_dim(query)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

        if not attn.only_cross_attention:
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
            key = attn.head_to_batch_dim(key)
            value = attn.head_to_batch_dim(value)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
2456
class XFormersAttnProcessor:
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
    r"""
    Processor for implementing memory efficient attention using xFormers.

    Args:
        attention_op (`Callable`, *optional*, defaults to `None`):
            The base
            [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
            use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
            operator.
    """

Patrick von Platen's avatar
Patrick von Platen committed
2468
2469
2470
    def __init__(self, attention_op: Optional[Callable] = None):
        self.attention_op = attention_op

2471
2472
2473
    def __call__(
        self,
        attn: Attention,
2474
2475
2476
2477
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
2478
2479
        *args,
        **kwargs,
2480
    ) -> torch.Tensor:
2481
2482
2483
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)
2484

2485
        residual = hidden_states
2486

2487
2488
2489
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

2490
2491
2492
2493
2494
2495
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

2496
        batch_size, key_tokens, _ = (
Patrick von Platen's avatar
Patrick von Platen committed
2497
2498
2499
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
        attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size)
        if attention_mask is not None:
            # expand our mask's singleton query_tokens dimension:
            #   [batch*heads,            1, key_tokens] ->
            #   [batch*heads, query_tokens, key_tokens]
            # so that it can be added as a bias onto the attention scores that xformers computes:
            #   [batch*heads, query_tokens, key_tokens]
            # we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
            _, query_tokens, _ = hidden_states.shape
            attention_mask = attention_mask.expand(-1, query_tokens, -1)
Patrick von Platen's avatar
Patrick von Platen committed
2510

2511
2512
2513
        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

2514
        query = attn.to_q(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
2515
2516
2517

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
2518
2519
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
2520

2521
2522
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534

        query = attn.head_to_batch_dim(query).contiguous()
        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
2535
        hidden_states = attn.to_out[0](hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
2536
2537
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class AttnProcessorNPU:
    r"""
    Processor for implementing flash attention using torch_npu. Torch_npu supports only fp16 and bf16 data types. If
    fp32 is used, F.scaled_dot_product_attention will be used for computation, but the acceleration effect on NPU is
    not significant.

    """

    def __init__(self):
        if not is_torch_npu_available():
            raise ImportError("AttnProcessorNPU requires torch_npu extensions and is supported only on npu devices.")

    def __call__(
        self,
        attn: Attention,
2565
2566
2567
2568
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
2569
2570
        *args,
        **kwargs,
2571
    ) -> torch.Tensor:
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)

        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        if query.dtype in (torch.float16, torch.bfloat16):
            hidden_states = torch_npu.npu_fusion_attention(
                query,
                key,
                value,
                attn.heads,
                input_layout="BNSD",
                pse=None,
                atten_mask=attention_mask,
                scale=1.0 / math.sqrt(query.shape[-1]),
                pre_tockens=65536,
                next_tockens=65536,
                keep_prob=1.0,
                sync=False,
                inner_precise=0,
            )[0]
        else:
            # TODO: add support for attn.scale when we move to Torch 2.1
            hidden_states = F.scaled_dot_product_attention(
                query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
            )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
2647
2648
2649
2650
2651
2652
2653
2654
2655

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

Patrick von Platen's avatar
Patrick von Platen committed
2656
2657
2658
2659
        return hidden_states


class AttnProcessor2_0:
2660
2661
2662
2663
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    """

Patrick von Platen's avatar
Patrick von Platen committed
2664
2665
2666
2667
    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

YiYi Xu's avatar
YiYi Xu committed
2668
2669
2670
    def __call__(
        self,
        attn: Attention,
2671
2672
2673
2674
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
2675
2676
        *args,
        **kwargs,
2677
    ) -> torch.Tensor:
2678
2679
2680
2681
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)

2682
        residual = hidden_states
YiYi Xu's avatar
YiYi Xu committed
2683
2684
2685
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

2686
2687
2688
2689
2690
2691
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

Patrick von Platen's avatar
Patrick von Platen committed
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

2702
2703
2704
        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

2705
        query = attn.to_q(hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
2706
2707
2708

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
2709
2710
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
2711

2712
2713
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
2714

2715
        inner_dim = key.shape[-1]
Patrick von Platen's avatar
Patrick von Platen committed
2716
        head_dim = inner_dim // attn.heads
2717

Patrick von Platen's avatar
Patrick von Platen committed
2718
        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
2719

Patrick von Platen's avatar
Patrick von Platen committed
2720
2721
2722
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

2723
2724
2725
2726
2727
        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

Patrick von Platen's avatar
Patrick von Platen committed
2728
2729
2730
2731
2732
2733
2734
2735
        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


Aryan's avatar
Aryan committed
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
class MochiVaeAttnProcessor2_0:
    r"""
    Attention processor used in Mochi VAE.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        residual = hidden_states
        is_single_frame = hidden_states.shape[1] == 1

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if is_single_frame:
            hidden_states = attn.to_v(hidden_states)

            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)

            if attn.residual_connection:
                hidden_states = hidden_states + residual

            hidden_states = hidden_states / attn.rescale_output_factor
            return hidden_states

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=attn.is_causal
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
class StableAudioAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
    used in the Stable Audio model. It applies rotary embedding on query and key vector, and allows MHA, GQA or MQA.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "StableAudioAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def apply_partial_rotary_emb(
        self,
        x: torch.Tensor,
        freqs_cis: Tuple[torch.Tensor],
    ) -> torch.Tensor:
        from .embeddings import apply_rotary_emb

        rot_dim = freqs_cis[0].shape[-1]
        x_to_rotate, x_unrotated = x[..., :rot_dim], x[..., rot_dim:]

        x_rotated = apply_rotary_emb(x_to_rotate, freqs_cis, use_real=True, use_real_unbind_dim=-2)

        out = torch.cat((x_rotated, x_unrotated), dim=-1)
        return out

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        from .embeddings import apply_rotary_emb

        residual = hidden_states

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        head_dim = query.shape[-1] // attn.heads
        kv_heads = key.shape[-1] // head_dim

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2)

        if kv_heads != attn.heads:
            # if GQA or MQA, repeat the key/value heads to reach the number of query heads.
            heads_per_kv_head = attn.heads // kv_heads
            key = torch.repeat_interleave(key, heads_per_kv_head, dim=1)
            value = torch.repeat_interleave(value, heads_per_kv_head, dim=1)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE if needed
        if rotary_emb is not None:
            query_dtype = query.dtype
            key_dtype = key.dtype
            query = query.to(torch.float32)
            key = key.to(torch.float32)

            rot_dim = rotary_emb[0].shape[-1]
            query_to_rotate, query_unrotated = query[..., :rot_dim], query[..., rot_dim:]
            query_rotated = apply_rotary_emb(query_to_rotate, rotary_emb, use_real=True, use_real_unbind_dim=-2)

            query = torch.cat((query_rotated, query_unrotated), dim=-1)

            if not attn.is_cross_attention:
                key_to_rotate, key_unrotated = key[..., :rot_dim], key[..., rot_dim:]
                key_rotated = apply_rotary_emb(key_to_rotate, rotary_emb, use_real=True, use_real_unbind_dim=-2)

                key = torch.cat((key_rotated, key_unrotated), dim=-1)

            query = query.to(query_dtype)
            key = key.to(key_dtype)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)
Patrick von Platen's avatar
Patrick von Platen committed
2952
2953

        # linear proj
2954
        hidden_states = attn.to_out[0](hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
2955
2956
        # dropout
        hidden_states = attn.to_out[1](hidden_states)
2957
2958
2959
2960
2961

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class HunyuanAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
    used in the HunyuanDiT model. It applies a s normalization layer and rotary embedding on query and key vector.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        from .embeddings import apply_rotary_emb

        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE if needed
        if image_rotary_emb is not None:
            query = apply_rotary_emb(query, image_rotary_emb)
            if not attn.is_cross_attention:
                key = apply_rotary_emb(key, image_rotary_emb)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class FusedHunyuanAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0) with fused
    projection layers. This is used in the HunyuanDiT model. It applies a s normalization layer and rotary embedding on
    query and key vector.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "FusedHunyuanAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        from .embeddings import apply_rotary_emb

        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        if encoder_hidden_states is None:
            qkv = attn.to_qkv(hidden_states)
            split_size = qkv.shape[-1] // 3
            query, key, value = torch.split(qkv, split_size, dim=-1)
        else:
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
            query = attn.to_q(hidden_states)

            kv = attn.to_kv(encoder_hidden_states)
            split_size = kv.shape[-1] // 2
            key, value = torch.split(kv, split_size, dim=-1)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE if needed
        if image_rotary_emb is not None:
            query = apply_rotary_emb(query, image_rotary_emb)
            if not attn.is_cross_attention:
                key = apply_rotary_emb(key, image_rotary_emb)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
3163
3164
3165
3166
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

Patrick von Platen's avatar
Patrick von Platen committed
3167
3168
3169
        return hidden_states


3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
class PAGHunyuanAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
    used in the HunyuanDiT model. It applies a normalization layer and rotary embedding on query and key vector. This
    variant of the processor employs [Pertubed Attention Guidance](https://arxiv.org/abs/2403.17377).
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "PAGHunyuanAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        from .embeddings import apply_rotary_emb

        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        # chunk
        hidden_states_org, hidden_states_ptb = hidden_states.chunk(2)

        # 1. Original Path
        batch_size, sequence_length, _ = (
            hidden_states_org.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states_org)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states_org
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE if needed
        if image_rotary_emb is not None:
            query = apply_rotary_emb(query, image_rotary_emb)
            if not attn.is_cross_attention:
                key = apply_rotary_emb(key, image_rotary_emb)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states_org = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states_org = hidden_states_org.to(query.dtype)

        # linear proj
        hidden_states_org = attn.to_out[0](hidden_states_org)
        # dropout
        hidden_states_org = attn.to_out[1](hidden_states_org)

        if input_ndim == 4:
            hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width)

        # 2. Perturbed Path
        if attn.group_norm is not None:
            hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2)

        hidden_states_ptb = attn.to_v(hidden_states_ptb)
        hidden_states_ptb = hidden_states_ptb.to(query.dtype)

        # linear proj
        hidden_states_ptb = attn.to_out[0](hidden_states_ptb)
        # dropout
        hidden_states_ptb = attn.to_out[1](hidden_states_ptb)

        if input_ndim == 4:
            hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width)

        # cat
        hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class PAGCFGHunyuanAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
    used in the HunyuanDiT model. It applies a normalization layer and rotary embedding on query and key vector. This
    variant of the processor employs [Pertubed Attention Guidance](https://arxiv.org/abs/2403.17377).
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "PAGCFGHunyuanAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        from .embeddings import apply_rotary_emb

        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        # chunk
        hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3)
        hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org])

        # 1. Original Path
        batch_size, sequence_length, _ = (
            hidden_states_org.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states_org)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states_org
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        # Apply RoPE if needed
        if image_rotary_emb is not None:
            query = apply_rotary_emb(query, image_rotary_emb)
            if not attn.is_cross_attention:
                key = apply_rotary_emb(key, image_rotary_emb)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states_org = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states_org = hidden_states_org.to(query.dtype)

        # linear proj
        hidden_states_org = attn.to_out[0](hidden_states_org)
        # dropout
        hidden_states_org = attn.to_out[1](hidden_states_org)

        if input_ndim == 4:
            hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width)

        # 2. Perturbed Path
        if attn.group_norm is not None:
            hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2)

        hidden_states_ptb = attn.to_v(hidden_states_ptb)
        hidden_states_ptb = hidden_states_ptb.to(query.dtype)

        # linear proj
        hidden_states_ptb = attn.to_out[0](hidden_states_ptb)
        # dropout
        hidden_states_ptb = attn.to_out[1](hidden_states_ptb)

        if input_ndim == 4:
            hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width)

        # cat
        hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
class LuminaAttnProcessor2_0:
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
    used in the LuminaNextDiT model. It applies a s normalization layer and rotary embedding on query and key vector.
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        query_rotary_emb: Optional[torch.Tensor] = None,
        key_rotary_emb: Optional[torch.Tensor] = None,
        base_sequence_length: Optional[int] = None,
    ) -> torch.Tensor:
        from .embeddings import apply_rotary_emb

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = hidden_states.shape

        # Get Query-Key-Value Pair
        query = attn.to_q(hidden_states)
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query_dim = query.shape[-1]
        inner_dim = key.shape[-1]
        head_dim = query_dim // attn.heads
        dtype = query.dtype

        # Get key-value heads
        kv_heads = inner_dim // head_dim

        # Apply Query-Key Norm if needed
        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        query = query.view(batch_size, -1, attn.heads, head_dim)

        key = key.view(batch_size, -1, kv_heads, head_dim)
        value = value.view(batch_size, -1, kv_heads, head_dim)

        # Apply RoPE if needed
        if query_rotary_emb is not None:
            query = apply_rotary_emb(query, query_rotary_emb, use_real=False)
        if key_rotary_emb is not None:
            key = apply_rotary_emb(key, key_rotary_emb, use_real=False)

        query, key = query.to(dtype), key.to(dtype)

        # Apply proportional attention if true
        if key_rotary_emb is None:
            softmax_scale = None
        else:
            if base_sequence_length is not None:
                softmax_scale = math.sqrt(math.log(sequence_length, base_sequence_length)) * attn.scale
            else:
                softmax_scale = attn.scale

        # perform Grouped-qurey Attention (GQA)
        n_rep = attn.heads // kv_heads
        if n_rep >= 1:
            key = key.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
            value = value.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)

        # scaled_dot_product_attention expects attention_mask shape to be
        # (batch, heads, source_length, target_length)
        attention_mask = attention_mask.bool().view(batch_size, 1, 1, -1)
        attention_mask = attention_mask.expand(-1, attn.heads, sequence_length, -1)

        query = query.transpose(1, 2)
        key = key.transpose(1, 2)
        value = value.transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, scale=softmax_scale
        )
        hidden_states = hidden_states.transpose(1, 2).to(dtype)

        return hidden_states


Aryan's avatar
Aryan committed
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
class MochiAttnProcessor2_0:
    """Attention processor used in Mochi."""

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("MochiAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)

        query = query.unflatten(2, (attn.heads, -1))
        key = key.unflatten(2, (attn.heads, -1))
        value = value.unflatten(2, (attn.heads, -1))

        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

        encoder_query = attn.add_q_proj(encoder_hidden_states)
        encoder_key = attn.add_k_proj(encoder_hidden_states)
        encoder_value = attn.add_v_proj(encoder_hidden_states)

        encoder_query = encoder_query.unflatten(2, (attn.heads, -1))
        encoder_key = encoder_key.unflatten(2, (attn.heads, -1))
        encoder_value = encoder_value.unflatten(2, (attn.heads, -1))

        if attn.norm_added_q is not None:
            encoder_query = attn.norm_added_q(encoder_query)
        if attn.norm_added_k is not None:
            encoder_key = attn.norm_added_k(encoder_key)

        if image_rotary_emb is not None:

            def apply_rotary_emb(x, freqs_cos, freqs_sin):
                x_even = x[..., 0::2].float()
                x_odd = x[..., 1::2].float()

                cos = (x_even * freqs_cos - x_odd * freqs_sin).to(x.dtype)
                sin = (x_even * freqs_sin + x_odd * freqs_cos).to(x.dtype)

                return torch.stack([cos, sin], dim=-1).flatten(-2)

            query = apply_rotary_emb(query, *image_rotary_emb)
            key = apply_rotary_emb(key, *image_rotary_emb)

        query, key, value = query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2)
        encoder_query, encoder_key, encoder_value = (
            encoder_query.transpose(1, 2),
            encoder_key.transpose(1, 2),
            encoder_value.transpose(1, 2),
        )

        sequence_length = query.size(2)
        encoder_sequence_length = encoder_query.size(2)

        query = torch.cat([query, encoder_query], dim=2)
        key = torch.cat([key, encoder_key], dim=2)
        value = torch.cat([value, encoder_value], dim=2)

        hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
        hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
        hidden_states = hidden_states.to(query.dtype)

        hidden_states, encoder_hidden_states = hidden_states.split_with_sizes(
            (sequence_length, encoder_sequence_length), dim=1
        )

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if hasattr(attn, "to_add_out"):
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

        return hidden_states, encoder_hidden_states


3601
3602
class FusedAttnProcessor2_0:
    r"""
3603
3604
3605
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). It uses
    fused projection layers. For self-attention modules, all projection matrices (i.e., query, key, value) are fused.
    For cross-attention modules, key and value projection matrices are fused.
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622

    <Tip warning={true}>

    This API is currently 🧪 experimental in nature and can change in future.

    </Tip>
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "FusedAttnProcessor2_0 requires at least PyTorch 2.0, to use it. Please upgrade PyTorch to > 2.0."
            )

    def __call__(
        self,
        attn: Attention,
3623
3624
3625
3626
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
3627
3628
        *args,
        **kwargs,
3629
    ) -> torch.Tensor:
3630
3631
3632
3633
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)

3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        if encoder_hidden_states is None:
3658
            qkv = attn.to_qkv(hidden_states)
3659
3660
3661
3662
3663
            split_size = qkv.shape[-1] // 3
            query, key, value = torch.split(qkv, split_size, dim=-1)
        else:
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
3664
            query = attn.to_q(hidden_states)
3665

3666
            kv = attn.to_kv(encoder_hidden_states)
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
            split_size = kv.shape[-1] // 2
            key, value = torch.split(kv, split_size, dim=-1)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

3677
3678
3679
3680
3681
        if attn.norm_q is not None:
            query = attn.norm_q(query)
        if attn.norm_k is not None:
            key = attn.norm_k(key)

3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
3692
        hidden_states = attn.to_out[0](hidden_states)
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


3707
class CustomDiffusionXFormersAttnProcessor(nn.Module):
3708
    r"""
3709
    Processor for implementing memory efficient attention using xFormers for the Custom Diffusion method.
3710
3711

    Args:
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
    train_kv (`bool`, defaults to `True`):
        Whether to newly train the key and value matrices corresponding to the text features.
    train_q_out (`bool`, defaults to `True`):
        Whether to newly train query matrices corresponding to the latent image features.
    hidden_size (`int`, *optional*, defaults to `None`):
        The hidden size of the attention layer.
    cross_attention_dim (`int`, *optional*, defaults to `None`):
        The number of channels in the `encoder_hidden_states`.
    out_bias (`bool`, defaults to `True`):
        Whether to include the bias parameter in `train_q_out`.
    dropout (`float`, *optional*, defaults to 0.0):
        The dropout probability to use.
    attention_op (`Callable`, *optional*, defaults to `None`):
        The base
        [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use
        as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator.
3728
3729
    """

3730
    def __init__(
3731
        self,
3732
3733
3734
3735
3736
3737
        train_kv: bool = True,
        train_q_out: bool = False,
        hidden_size: Optional[int] = None,
        cross_attention_dim: Optional[int] = None,
        out_bias: bool = True,
        dropout: float = 0.0,
3738
        attention_op: Optional[Callable] = None,
3739
    ):
Patrick von Platen's avatar
Patrick von Platen committed
3740
        super().__init__()
3741
3742
        self.train_kv = train_kv
        self.train_q_out = train_q_out
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.attention_op = attention_op

        # `_custom_diffusion` id for easy serialization and loading.
        if self.train_kv:
            self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
            self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
        if self.train_q_out:
            self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
            self.to_out_custom_diffusion = nn.ModuleList([])
            self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
            self.to_out_custom_diffusion.append(nn.Dropout(dropout))

3758
3759
3760
    def __call__(
        self,
        attn: Attention,
3761
3762
3763
3764
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
3765
3766
3767
3768
3769
3770
3771
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if self.train_q_out:
3772
            query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype)
3773
        else:
3774
            query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype))
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784

        if encoder_hidden_states is None:
            crossattn = False
            encoder_hidden_states = hidden_states
        else:
            crossattn = True
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if self.train_kv:
3785
3786
3787
3788
            key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype))
            value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype))
            key = key.to(attn.to_q.weight.dtype)
            value = value.to(attn.to_q.weight.dtype)
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
        else:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)

        if crossattn:
            detach = torch.ones_like(key)
            detach[:, :1, :] = detach[:, :1, :] * 0.0
            key = detach * key + (1 - detach) * key.detach()
            value = detach * value + (1 - detach) * value.detach()

        query = attn.head_to_batch_dim(query).contiguous()
        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        if self.train_q_out:
            # linear proj
            hidden_states = self.to_out_custom_diffusion[0](hidden_states)
            # dropout
            hidden_states = self.to_out_custom_diffusion[1](hidden_states)
        else:
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)
3819

3820
3821
3822
        return hidden_states


3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
class CustomDiffusionAttnProcessor2_0(nn.Module):
    r"""
    Processor for implementing attention for the Custom Diffusion method using PyTorch 2.0’s memory-efficient scaled
    dot-product attention.

    Args:
        train_kv (`bool`, defaults to `True`):
            Whether to newly train the key and value matrices corresponding to the text features.
        train_q_out (`bool`, defaults to `True`):
            Whether to newly train query matrices corresponding to the latent image features.
        hidden_size (`int`, *optional*, defaults to `None`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`, *optional*, defaults to `None`):
            The number of channels in the `encoder_hidden_states`.
        out_bias (`bool`, defaults to `True`):
            Whether to include the bias parameter in `train_q_out`.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability to use.
    """

    def __init__(
        self,
3845
3846
3847
3848
3849
3850
        train_kv: bool = True,
        train_q_out: bool = True,
        hidden_size: Optional[int] = None,
        cross_attention_dim: Optional[int] = None,
        out_bias: bool = True,
        dropout: float = 0.0,
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
    ):
        super().__init__()
        self.train_kv = train_kv
        self.train_q_out = train_q_out

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim

        # `_custom_diffusion` id for easy serialization and loading.
        if self.train_kv:
            self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
            self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
        if self.train_q_out:
            self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
            self.to_out_custom_diffusion = nn.ModuleList([])
            self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
            self.to_out_custom_diffusion.append(nn.Dropout(dropout))

3869
3870
3871
    def __call__(
        self,
        attn: Attention,
3872
3873
3874
3875
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        if self.train_q_out:
            query = self.to_q_custom_diffusion(hidden_states)
        else:
            query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            crossattn = False
            encoder_hidden_states = hidden_states
        else:
            crossattn = True
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        if self.train_kv:
3892
3893
3894
3895
3896
            key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype))
            value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype))
            key = key.to(attn.to_q.weight.dtype)
            value = value.to(attn.to_q.weight.dtype)

3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
        else:
            key = attn.to_k(encoder_hidden_states)
            value = attn.to_v(encoder_hidden_states)

        if crossattn:
            detach = torch.ones_like(key)
            detach[:, :1, :] = detach[:, :1, :] * 0.0
            key = detach * key + (1 - detach) * key.detach()
            value = detach * value + (1 - detach) * value.detach()

        inner_dim = hidden_states.shape[-1]

        head_dim = inner_dim // attn.heads
        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        if self.train_q_out:
            # linear proj
            hidden_states = self.to_out_custom_diffusion[0](hidden_states)
            # dropout
            hidden_states = self.to_out_custom_diffusion[1](hidden_states)
        else:
            # linear proj
            hidden_states = attn.to_out[0](hidden_states)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
3937
class SlicedAttnProcessor:
3938
3939
3940
3941
3942
3943
3944
3945
3946
    r"""
    Processor for implementing sliced attention.

    Args:
        slice_size (`int`, *optional*):
            The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
            `attention_head_dim` must be a multiple of the `slice_size`.
    """

3947
    def __init__(self, slice_size: int):
Patrick von Platen's avatar
Patrick von Platen committed
3948
3949
        self.slice_size = slice_size

3950
3951
3952
    def __call__(
        self,
        attn: Attention,
3953
3954
3955
3956
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
3957
3958
3959
3960
3961
3962
3963
3964
        residual = hidden_states

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

Patrick von Platen's avatar
Patrick von Platen committed
3965
3966
3967
3968
3969
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

3970
3971
3972
        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

Patrick von Platen's avatar
Patrick von Platen committed
3973
3974
3975
3976
3977
3978
        query = attn.to_q(hidden_states)
        dim = query.shape[-1]
        query = attn.head_to_batch_dim(query)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
3979
3980
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        batch_size_attention, query_tokens, _ = query.shape
        hidden_states = torch.zeros(
            (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
        )

3992
        for i in range((batch_size_attention - 1) // self.slice_size + 1):
Patrick von Platen's avatar
Patrick von Platen committed
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
            start_idx = i * self.slice_size
            end_idx = (i + 1) * self.slice_size

            query_slice = query[start_idx:end_idx]
            key_slice = key[start_idx:end_idx]
            attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None

            attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)

            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])

            hidden_states[start_idx:end_idx] = attn_slice

        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

4013
4014
4015
4016
4017
4018
4019
4020
        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

Patrick von Platen's avatar
Patrick von Platen committed
4021
4022
4023
4024
        return hidden_states


class SlicedAttnAddedKVProcessor:
4025
4026
4027
4028
4029
4030
4031
4032
4033
    r"""
    Processor for implementing sliced attention with extra learnable key and value matrices for the text encoder.

    Args:
        slice_size (`int`, *optional*):
            The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
            `attention_head_dim` must be a multiple of the `slice_size`.
    """

Patrick von Platen's avatar
Patrick von Platen committed
4034
4035
4036
    def __init__(self, slice_size):
        self.slice_size = slice_size

4037
4038
4039
    def __call__(
        self,
        attn: "Attention",
4040
4041
4042
4043
4044
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
Patrick von Platen's avatar
Patrick von Platen committed
4045
        residual = hidden_states
4046
4047
4048
4049

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

Patrick von Platen's avatar
Patrick von Platen committed
4050
4051
4052
4053
4054
4055
        hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)

        batch_size, sequence_length, _ = hidden_states.shape

        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

4056
4057
4058
4059
4060
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

Patrick von Platen's avatar
Patrick von Platen committed
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)
        dim = query.shape[-1]
        query = attn.head_to_batch_dim(query)

        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

        encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
        encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)

4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
        if not attn.only_cross_attention:
            key = attn.to_k(hidden_states)
            value = attn.to_v(hidden_states)
            key = attn.head_to_batch_dim(key)
            value = attn.head_to_batch_dim(value)
            key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
            value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
        else:
            key = encoder_hidden_states_key_proj
            value = encoder_hidden_states_value_proj
Patrick von Platen's avatar
Patrick von Platen committed
4083
4084
4085
4086
4087
4088

        batch_size_attention, query_tokens, _ = query.shape
        hidden_states = torch.zeros(
            (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
        )

4089
        for i in range((batch_size_attention - 1) // self.slice_size + 1):
Patrick von Platen's avatar
Patrick von Platen committed
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
            start_idx = i * self.slice_size
            end_idx = (i + 1) * self.slice_size

            query_slice = query[start_idx:end_idx]
            key_slice = key[start_idx:end_idx]
            attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None

            attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)

            attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])

            hidden_states[start_idx:end_idx] = attn_slice

        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
        hidden_states = hidden_states + residual

        return hidden_states


YiYi Xu's avatar
YiYi Xu committed
4116
4117
class SpatialNorm(nn.Module):
    """
4118
4119
4120
4121
4122
4123
4124
    Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002.

    Args:
        f_channels (`int`):
            The number of channels for input to group normalization layer, and output of the spatial norm layer.
        zq_channels (`int`):
            The number of channels for the quantized vector as described in the paper.
YiYi Xu's avatar
YiYi Xu committed
4125
4126
4127
4128
    """

    def __init__(
        self,
4129
4130
        f_channels: int,
        zq_channels: int,
YiYi Xu's avatar
YiYi Xu committed
4131
4132
4133
4134
4135
4136
    ):
        super().__init__()
        self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=32, eps=1e-6, affine=True)
        self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)
        self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)

4137
    def forward(self, f: torch.Tensor, zq: torch.Tensor) -> torch.Tensor:
YiYi Xu's avatar
YiYi Xu committed
4138
4139
4140
4141
4142
        f_size = f.shape[-2:]
        zq = F.interpolate(zq, size=f_size, mode="nearest")
        norm_f = self.norm_layer(f)
        new_f = norm_f * self.conv_y(zq) + self.conv_b(zq)
        return new_f
4143
4144


4145
4146
class IPAdapterAttnProcessor(nn.Module):
    r"""
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4147
    Attention processor for Multiple IP-Adapters.
4148
4149
4150
4151
4152
4153

    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`):
            The number of channels in the `encoder_hidden_states`.
4154
        num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`):
4155
            The context length of the image features.
4156
        scale (`float` or List[`float`], defaults to 1.0):
4157
4158
4159
            the weight scale of image prompt.
    """

4160
    def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0):
4161
4162
4163
4164
        super().__init__()

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
4165
4166
4167

        if not isinstance(num_tokens, (tuple, list)):
            num_tokens = [num_tokens]
4168
        self.num_tokens = num_tokens
4169
4170
4171
4172
4173

        if not isinstance(scale, list):
            scale = [scale] * len(num_tokens)
        if len(scale) != len(num_tokens):
            raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.")
4174
4175
        self.scale = scale

4176
4177
4178
4179
4180
4181
        self.to_k_ip = nn.ModuleList(
            [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
        )
        self.to_v_ip = nn.ModuleList(
            [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
        )
4182
4183
4184

    def __call__(
        self,
4185
        attn: Attention,
4186
4187
4188
4189
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
4190
        scale: float = 1.0,
4191
        ip_adapter_masks: Optional[torch.Tensor] = None,
4192
4193
4194
    ):
        residual = hidden_states

4195
4196
4197
4198
4199
4200
        # separate ip_hidden_states from encoder_hidden_states
        if encoder_hidden_states is not None:
            if isinstance(encoder_hidden_states, tuple):
                encoder_hidden_states, ip_hidden_states = encoder_hidden_states
            else:
                deprecation_message = (
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4201
4202
                    "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release."
                    " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning."
4203
4204
4205
4206
4207
4208
4209
4210
                )
                deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False)
                end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0]
                encoder_hidden_states, ip_hidden_states = (
                    encoder_hidden_states[:, :end_pos, :],
                    [encoder_hidden_states[:, end_pos:, :]],
                )

4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

4246
        if ip_adapter_masks is not None:
4247
4248
4249
4250
            if not isinstance(ip_adapter_masks, List):
                # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width]
                ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1))
            if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)):
4251
                raise ValueError(
4252
4253
4254
                    f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match "
                    f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states "
                    f"({len(ip_hidden_states)})"
4255
                )
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
            else:
                for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)):
                    if not isinstance(mask, torch.Tensor) or mask.ndim != 4:
                        raise ValueError(
                            "Each element of the ip_adapter_masks array should be a tensor with shape "
                            "[1, num_images_for_ip_adapter, height, width]."
                            " Please use `IPAdapterMaskProcessor` to preprocess your mask"
                        )
                    if mask.shape[1] != ip_state.shape[1]:
                        raise ValueError(
                            f"Number of masks ({mask.shape[1]}) does not match "
                            f"number of ip images ({ip_state.shape[1]}) at index {index}"
                        )
                    if isinstance(scale, list) and not len(scale) == mask.shape[1]:
                        raise ValueError(
                            f"Number of masks ({mask.shape[1]}) does not match "
                            f"number of scales ({len(scale)}) at index {index}"
                        )
4274
4275
4276
        else:
            ip_adapter_masks = [None] * len(self.scale)

4277
        # for ip-adapter
4278
4279
        for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip(
            ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks
4280
        ):
Jenyuan-Huang's avatar
Jenyuan-Huang committed
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
            skip = False
            if isinstance(scale, list):
                if all(s == 0 for s in scale):
                    skip = True
            elif scale == 0:
                skip = True
            if not skip:
                if mask is not None:
                    if not isinstance(scale, list):
                        scale = [scale] * mask.shape[1]

                    current_num_images = mask.shape[1]
                    for i in range(current_num_images):
                        ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :])
                        ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :])

                        ip_key = attn.head_to_batch_dim(ip_key)
                        ip_value = attn.head_to_batch_dim(ip_value)

                        ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
                        _current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
                        _current_ip_hidden_states = attn.batch_to_head_dim(_current_ip_hidden_states)

                        mask_downsample = IPAdapterMaskProcessor.downsample(
                            mask[:, i, :, :],
                            batch_size,
                            _current_ip_hidden_states.shape[1],
                            _current_ip_hidden_states.shape[2],
                        )

                        mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device)
4312

Jenyuan-Huang's avatar
Jenyuan-Huang committed
4313
4314
4315
4316
                        hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample)
                else:
                    ip_key = to_k_ip(current_ip_hidden_states)
                    ip_value = to_v_ip(current_ip_hidden_states)
4317
4318
4319
4320
4321

                    ip_key = attn.head_to_batch_dim(ip_key)
                    ip_value = attn.head_to_batch_dim(ip_value)

                    ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
Jenyuan-Huang's avatar
Jenyuan-Huang committed
4322
4323
                    current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
                    current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states)
4324

Jenyuan-Huang's avatar
Jenyuan-Huang committed
4325
                    hidden_states = hidden_states + scale * current_ip_hidden_states
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class IPAdapterAttnProcessor2_0(torch.nn.Module):
    r"""
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4345
    Attention processor for IP-Adapter for PyTorch 2.0.
4346
4347
4348
4349
4350
4351

    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`):
            The number of channels in the `encoder_hidden_states`.
4352
        num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`):
4353
            The context length of the image features.
4354
        scale (`float` or `List[float]`, defaults to 1.0):
4355
4356
4357
            the weight scale of image prompt.
    """

4358
    def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0):
4359
4360
4361
4362
4363
4364
4365
4366
4367
        super().__init__()

        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
4368
4369
4370

        if not isinstance(num_tokens, (tuple, list)):
            num_tokens = [num_tokens]
4371
        self.num_tokens = num_tokens
4372
4373
4374
4375
4376

        if not isinstance(scale, list):
            scale = [scale] * len(num_tokens)
        if len(scale) != len(num_tokens):
            raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.")
4377
4378
        self.scale = scale

4379
4380
4381
4382
4383
4384
        self.to_k_ip = nn.ModuleList(
            [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
        )
        self.to_v_ip = nn.ModuleList(
            [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
        )
4385
4386
4387

    def __call__(
        self,
4388
        attn: Attention,
4389
4390
4391
4392
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        temb: Optional[torch.Tensor] = None,
4393
        scale: float = 1.0,
4394
        ip_adapter_masks: Optional[torch.Tensor] = None,
4395
4396
4397
    ):
        residual = hidden_states

4398
4399
4400
4401
4402
4403
        # separate ip_hidden_states from encoder_hidden_states
        if encoder_hidden_states is not None:
            if isinstance(encoder_hidden_states, tuple):
                encoder_hidden_states, ip_hidden_states = encoder_hidden_states
            else:
                deprecation_message = (
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
4404
4405
                    "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release."
                    " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning."
4406
4407
4408
4409
4410
4411
4412
4413
                )
                deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False)
                end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0]
                encoder_hidden_states, ip_hidden_states = (
                    encoder_hidden_states[:, :end_pos, :],
                    [encoder_hidden_states[:, end_pos:, :]],
                )

4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

4463
        if ip_adapter_masks is not None:
4464
4465
4466
4467
            if not isinstance(ip_adapter_masks, List):
                # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width]
                ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1))
            if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)):
4468
                raise ValueError(
4469
4470
4471
                    f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match "
                    f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states "
                    f"({len(ip_hidden_states)})"
4472
                )
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
            else:
                for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)):
                    if not isinstance(mask, torch.Tensor) or mask.ndim != 4:
                        raise ValueError(
                            "Each element of the ip_adapter_masks array should be a tensor with shape "
                            "[1, num_images_for_ip_adapter, height, width]."
                            " Please use `IPAdapterMaskProcessor` to preprocess your mask"
                        )
                    if mask.shape[1] != ip_state.shape[1]:
                        raise ValueError(
                            f"Number of masks ({mask.shape[1]}) does not match "
                            f"number of ip images ({ip_state.shape[1]}) at index {index}"
                        )
                    if isinstance(scale, list) and not len(scale) == mask.shape[1]:
                        raise ValueError(
                            f"Number of masks ({mask.shape[1]}) does not match "
                            f"number of scales ({len(scale)}) at index {index}"
                        )
4491
4492
4493
        else:
            ip_adapter_masks = [None] * len(self.scale)

4494
        # for ip-adapter
4495
4496
        for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip(
            ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks
4497
        ):
Jenyuan-Huang's avatar
Jenyuan-Huang committed
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
            skip = False
            if isinstance(scale, list):
                if all(s == 0 for s in scale):
                    skip = True
            elif scale == 0:
                skip = True
            if not skip:
                if mask is not None:
                    if not isinstance(scale, list):
                        scale = [scale] * mask.shape[1]

                    current_num_images = mask.shape[1]
                    for i in range(current_num_images):
                        ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :])
                        ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :])

                        ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
                        ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

                        # the output of sdp = (batch, num_heads, seq_len, head_dim)
                        # TODO: add support for attn.scale when we move to Torch 2.1
                        _current_ip_hidden_states = F.scaled_dot_product_attention(
                            query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
                        )

                        _current_ip_hidden_states = _current_ip_hidden_states.transpose(1, 2).reshape(
                            batch_size, -1, attn.heads * head_dim
                        )
                        _current_ip_hidden_states = _current_ip_hidden_states.to(query.dtype)
4527

Jenyuan-Huang's avatar
Jenyuan-Huang committed
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
                        mask_downsample = IPAdapterMaskProcessor.downsample(
                            mask[:, i, :, :],
                            batch_size,
                            _current_ip_hidden_states.shape[1],
                            _current_ip_hidden_states.shape[2],
                        )

                        mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device)
                        hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample)
                else:
                    ip_key = to_k_ip(current_ip_hidden_states)
                    ip_value = to_v_ip(current_ip_hidden_states)
4540

4541
4542
                    ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
                    ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
4543

4544
4545
                    # the output of sdp = (batch, num_heads, seq_len, head_dim)
                    # TODO: add support for attn.scale when we move to Torch 2.1
Jenyuan-Huang's avatar
Jenyuan-Huang committed
4546
                    current_ip_hidden_states = F.scaled_dot_product_attention(
4547
4548
                        query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
                    )
4549

Jenyuan-Huang's avatar
Jenyuan-Huang committed
4550
                    current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape(
4551
4552
                        batch_size, -1, attn.heads * head_dim
                    )
Jenyuan-Huang's avatar
Jenyuan-Huang committed
4553
                    current_ip_hidden_states = current_ip_hidden_states.to(query.dtype)
4554

Jenyuan-Huang's avatar
Jenyuan-Huang committed
4555
                    hidden_states = hidden_states + scale * current_ip_hidden_states
4556
4557
4558

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class IPAdapterXFormersAttnProcessor(torch.nn.Module):
    r"""
    Attention processor for IP-Adapter using xFormers.

    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`):
            The number of channels in the `encoder_hidden_states`.
        num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`):
            The context length of the image features.
        scale (`float` or `List[float]`, defaults to 1.0):
            the weight scale of image prompt.
        attention_op (`Callable`, *optional*, defaults to `None`):
            The base
            [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
            use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
            operator.
    """

    def __init__(
        self,
        hidden_size,
        cross_attention_dim=None,
        num_tokens=(4,),
        scale=1.0,
        attention_op: Optional[Callable] = None,
    ):
        super().__init__()

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.attention_op = attention_op

        if not isinstance(num_tokens, (tuple, list)):
            num_tokens = [num_tokens]
        self.num_tokens = num_tokens

        if not isinstance(scale, list):
            scale = [scale] * len(num_tokens)
        if len(scale) != len(num_tokens):
            raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.")
        self.scale = scale

        self.to_k_ip = nn.ModuleList(
            [nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) for _ in range(len(num_tokens))]
        )
        self.to_v_ip = nn.ModuleList(
            [nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) for _ in range(len(num_tokens))]
        )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
        scale: float = 1.0,
        ip_adapter_masks: Optional[torch.FloatTensor] = None,
    ):
        residual = hidden_states

        # separate ip_hidden_states from encoder_hidden_states
        if encoder_hidden_states is not None:
            if isinstance(encoder_hidden_states, tuple):
                encoder_hidden_states, ip_hidden_states = encoder_hidden_states
            else:
                deprecation_message = (
                    "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release."
                    " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning."
                )
                deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False)
                end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0]
                encoder_hidden_states, ip_hidden_states = (
                    encoder_hidden_states[:, :end_pos, :],
                    [encoder_hidden_states[:, end_pos:, :]],
                )

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # expand our mask's singleton query_tokens dimension:
            #   [batch*heads,            1, key_tokens] ->
            #   [batch*heads, query_tokens, key_tokens]
            # so that it can be added as a bias onto the attention scores that xformers computes:
            #   [batch*heads, query_tokens, key_tokens]
            # we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
            _, query_tokens, _ = hidden_states.shape
            attention_mask = attention_mask.expand(-1, query_tokens, -1)

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query).contiguous()
        key = attn.head_to_batch_dim(key).contiguous()
        value = attn.head_to_batch_dim(value).contiguous()

        hidden_states = xformers.ops.memory_efficient_attention(
            query, key, value, attn_bias=attention_mask, op=self.attention_op
        )
        hidden_states = hidden_states.to(query.dtype)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        if ip_hidden_states:
            if ip_adapter_masks is not None:
                if not isinstance(ip_adapter_masks, List):
                    # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width]
                    ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1))
                if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)):
                    raise ValueError(
                        f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match "
                        f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states "
                        f"({len(ip_hidden_states)})"
                    )
                else:
                    for index, (mask, scale, ip_state) in enumerate(
                        zip(ip_adapter_masks, self.scale, ip_hidden_states)
                    ):
                        if mask is None:
                            continue
                        if not isinstance(mask, torch.Tensor) or mask.ndim != 4:
                            raise ValueError(
                                "Each element of the ip_adapter_masks array should be a tensor with shape "
                                "[1, num_images_for_ip_adapter, height, width]."
                                " Please use `IPAdapterMaskProcessor` to preprocess your mask"
                            )
                        if mask.shape[1] != ip_state.shape[1]:
                            raise ValueError(
                                f"Number of masks ({mask.shape[1]}) does not match "
                                f"number of ip images ({ip_state.shape[1]}) at index {index}"
                            )
                        if isinstance(scale, list) and not len(scale) == mask.shape[1]:
                            raise ValueError(
                                f"Number of masks ({mask.shape[1]}) does not match "
                                f"number of scales ({len(scale)}) at index {index}"
                            )
            else:
                ip_adapter_masks = [None] * len(self.scale)

            # for ip-adapter
            for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip(
                ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks
            ):
                skip = False
                if isinstance(scale, list):
                    if all(s == 0 for s in scale):
                        skip = True
                elif scale == 0:
                    skip = True
                if not skip:
                    if mask is not None:
                        mask = mask.to(torch.float16)
                        if not isinstance(scale, list):
                            scale = [scale] * mask.shape[1]

                        current_num_images = mask.shape[1]
                        for i in range(current_num_images):
                            ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :])
                            ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :])

                            ip_key = attn.head_to_batch_dim(ip_key).contiguous()
                            ip_value = attn.head_to_batch_dim(ip_value).contiguous()

                            _current_ip_hidden_states = xformers.ops.memory_efficient_attention(
                                query, ip_key, ip_value, op=self.attention_op
                            )
                            _current_ip_hidden_states = _current_ip_hidden_states.to(query.dtype)
                            _current_ip_hidden_states = attn.batch_to_head_dim(_current_ip_hidden_states)

                            mask_downsample = IPAdapterMaskProcessor.downsample(
                                mask[:, i, :, :],
                                batch_size,
                                _current_ip_hidden_states.shape[1],
                                _current_ip_hidden_states.shape[2],
                            )

                            mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device)
                            hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample)
                    else:
                        ip_key = to_k_ip(current_ip_hidden_states)
                        ip_value = to_v_ip(current_ip_hidden_states)

                        ip_key = attn.head_to_batch_dim(ip_key).contiguous()
                        ip_value = attn.head_to_batch_dim(ip_value).contiguous()

                        current_ip_hidden_states = xformers.ops.memory_efficient_attention(
                            query, ip_key, ip_value, op=self.attention_op
                        )
                        current_ip_hidden_states = current_ip_hidden_states.to(query.dtype)
                        current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states)

                        hidden_states = hidden_states + scale * current_ip_hidden_states

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


YiYi Xu's avatar
YiYi Xu committed
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
class PAGIdentitySelfAttnProcessor2_0:
    r"""
    Processor for implementing PAG using scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    PAG reference: https://arxiv.org/abs/2403.17377
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "PAGIdentitySelfAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
    ) -> torch.Tensor:
        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim
        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        # chunk
        hidden_states_org, hidden_states_ptb = hidden_states.chunk(2)

        # original path
        batch_size, sequence_length, _ = hidden_states_org.shape

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states_org)
        key = attn.to_k(hidden_states_org)
        value = attn.to_v(hidden_states_org)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states_org = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )
        hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states_org = hidden_states_org.to(query.dtype)

        # linear proj
        hidden_states_org = attn.to_out[0](hidden_states_org)
        # dropout
        hidden_states_org = attn.to_out[1](hidden_states_org)

        if input_ndim == 4:
            hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width)

        # perturbed path (identity attention)
        batch_size, sequence_length, _ = hidden_states_ptb.shape

        if attn.group_norm is not None:
            hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2)

        hidden_states_ptb = attn.to_v(hidden_states_ptb)
        hidden_states_ptb = hidden_states_ptb.to(query.dtype)

        # linear proj
        hidden_states_ptb = attn.to_out[0](hidden_states_ptb)
        # dropout
        hidden_states_ptb = attn.to_out[1](hidden_states_ptb)

        if input_ndim == 4:
            hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width)

        # cat
        hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class PAGCFGIdentitySelfAttnProcessor2_0:
    r"""
    Processor for implementing PAG using scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    PAG reference: https://arxiv.org/abs/2403.17377
    """

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "PAGCFGIdentitySelfAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
    ) -> torch.Tensor:
        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim
        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        # chunk
        hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3)
        hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org])

        # original path
        batch_size, sequence_length, _ = hidden_states_org.shape

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states_org)
        key = attn.to_k(hidden_states_org)
        value = attn.to_v(hidden_states_org)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states_org = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states_org = hidden_states_org.to(query.dtype)

        # linear proj
        hidden_states_org = attn.to_out[0](hidden_states_org)
        # dropout
        hidden_states_org = attn.to_out[1](hidden_states_org)

        if input_ndim == 4:
            hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width)

        # perturbed path (identity attention)
        batch_size, sequence_length, _ = hidden_states_ptb.shape

        if attn.group_norm is not None:
            hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2)

        value = attn.to_v(hidden_states_ptb)
        hidden_states_ptb = value
        hidden_states_ptb = hidden_states_ptb.to(query.dtype)

        # linear proj
        hidden_states_ptb = attn.to_out[0](hidden_states_ptb)
        # dropout
        hidden_states_ptb = attn.to_out[1](hidden_states_ptb)

        if input_ndim == 4:
            hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width)

        # cat
        hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
class LoRAAttnProcessor:
    def __init__(self):
        pass


class LoRAAttnProcessor2_0:
    def __init__(self):
        pass


class LoRAXFormersAttnProcessor:
    def __init__(self):
        pass


class LoRAAttnAddedKVProcessor:
    def __init__(self):
        pass


YiYi Xu's avatar
YiYi Xu committed
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
class FluxSingleAttnProcessor2_0(FluxAttnProcessor2_0):
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    """

    def __init__(self):
        deprecation_message = "`FluxSingleAttnProcessor2_0` is deprecated and will be removed in a future version. Please use `FluxAttnProcessor2_0` instead."
        deprecate("FluxSingleAttnProcessor2_0", "0.32.0", deprecation_message)
        super().__init__()


5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
ADDED_KV_ATTENTION_PROCESSORS = (
    AttnAddedKVProcessor,
    SlicedAttnAddedKVProcessor,
    AttnAddedKVProcessor2_0,
    XFormersAttnAddedKVProcessor,
)

CROSS_ATTENTION_PROCESSORS = (
    AttnProcessor,
    AttnProcessor2_0,
    XFormersAttnProcessor,
    SlicedAttnProcessor,
5050
5051
    IPAdapterAttnProcessor,
    IPAdapterAttnProcessor2_0,
5052
5053
)

5054
5055
5056
AttentionProcessor = Union[
    AttnProcessor,
    AttnProcessor2_0,
5057
    FusedAttnProcessor2_0,
5058
5059
5060
5061
5062
5063
5064
5065
    XFormersAttnProcessor,
    SlicedAttnProcessor,
    AttnAddedKVProcessor,
    SlicedAttnAddedKVProcessor,
    AttnAddedKVProcessor2_0,
    XFormersAttnAddedKVProcessor,
    CustomDiffusionAttnProcessor,
    CustomDiffusionXFormersAttnProcessor,
5066
    CustomDiffusionAttnProcessor2_0,
YiYi Xu's avatar
YiYi Xu committed
5067
5068
    PAGCFGIdentitySelfAttnProcessor2_0,
    PAGIdentitySelfAttnProcessor2_0,
5069
5070
    PAGCFGHunyuanAttnProcessor2_0,
    PAGHunyuanAttnProcessor2_0,
5071
]