"git@developer.sourcefind.cn:change/sglang.git" did not exist on "c5210dfa3802dbe08a8de9e860cea0c932307c9d"
vae.py 35.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from dataclasses import dataclass
15
from typing import Optional, Tuple
Partho's avatar
Partho committed
16

patil-suraj's avatar
patil-suraj committed
17
18
19
20
import numpy as np
import torch
import torch.nn as nn

Dhruv Nair's avatar
Dhruv Nair committed
21
22
from ..utils import BaseOutput, is_torch_version
from ..utils.torch_utils import randn_tensor
23
from .activations import get_activation
YiYi Xu's avatar
YiYi Xu committed
24
from .attention_processor import SpatialNorm
Suraj Patil's avatar
Suraj Patil committed
25
26
27
28
29
30
from .unet_2d_blocks import (
    AutoencoderTinyBlock,
    UNetMidBlock2D,
    get_down_block,
    get_up_block,
)
patil-suraj's avatar
patil-suraj committed
31
32


33
34
@dataclass
class DecoderOutput(BaseOutput):
35
    r"""
36
37
38
39
    Output of decoding method.

    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Steven Liu's avatar
Steven Liu committed
40
            The decoded output sample from the last layer of the model.
41
42
43
44
45
    """

    sample: torch.FloatTensor


patil-suraj's avatar
patil-suraj committed
46
class Encoder(nn.Module):
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    r"""
    The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
            The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available
            options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
        double_z (`bool`, *optional*, defaults to `True`):
            Whether to double the number of output channels for the last block.
    """

patil-suraj's avatar
patil-suraj committed
70
71
    def __init__(
        self,
72
73
74
75
76
77
78
79
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        double_z: bool = True,
patil-suraj's avatar
patil-suraj committed
80
81
    ):
        super().__init__()
82
83
        self.layers_per_block = layers_per_block

Kashif Rasul's avatar
Kashif Rasul committed
84
        self.conv_in = nn.Conv2d(
85
86
87
88
89
90
            in_channels,
            block_out_channels[0],
            kernel_size=3,
            stride=1,
            padding=1,
        )
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

        self.mid_block = None
        self.down_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=self.layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                add_downsample=not is_final_block,
                resnet_eps=1e-6,
109
                downsample_padding=0,
110
                resnet_act_fn=act_fn,
111
                resnet_groups=norm_num_groups,
112
                attention_head_dim=output_channel,
113
114
115
116
117
118
119
120
121
122
123
                temb_channels=None,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
124
            attention_head_dim=block_out_channels[-1],
125
            resnet_groups=norm_num_groups,
126
            temb_channels=None,
patil-suraj's avatar
patil-suraj committed
127
128
        )

129
        # out
130
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
131
132
133
134
        self.conv_act = nn.SiLU()

        conv_out_channels = 2 * out_channels if double_z else out_channels
        self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
135

136
137
        self.gradient_checkpointing = False

138
    def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
139
        r"""The forward method of the `Encoder` class."""
140

141
142
        sample = self.conv_in(sample)

143
144
145
146
147
148
149
150
151
        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            # down
152
153
154
155
156
157
158
159
160
161
162
163
164
165
            if is_torch_version(">=", "1.11.0"):
                for down_block in self.down_blocks:
                    sample = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(down_block), sample, use_reentrant=False
                    )
                # middle
                sample = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(self.mid_block), sample, use_reentrant=False
                )
            else:
                for down_block in self.down_blocks:
                    sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample)
                # middle
                sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample)
166
167
168
169
170

        else:
            # down
            for down_block in self.down_blocks:
                sample = down_block(sample)
patil-suraj's avatar
patil-suraj committed
171

172
173
            # middle
            sample = self.mid_block(sample)
174
175
176
177
178
179
180

        # post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample
patil-suraj's avatar
patil-suraj committed
181
182
183


class Decoder(nn.Module):
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    r"""
    The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
        norm_type (`str`, *optional*, defaults to `"group"`):
            The normalization type to use. Can be either `"group"` or `"spatial"`.
    """

patil-suraj's avatar
patil-suraj committed
206
207
    def __init__(
        self,
208
209
210
211
212
213
214
215
        in_channels: int = 3,
        out_channels: int = 3,
        up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        norm_type: str = "group",  # group, spatial
patil-suraj's avatar
patil-suraj committed
216
217
    ):
        super().__init__()
218
219
        self.layers_per_block = layers_per_block

220
221
222
223
224
225
226
        self.conv_in = nn.Conv2d(
            in_channels,
            block_out_channels[-1],
            kernel_size=3,
            stride=1,
            padding=1,
        )
227
228
229
230

        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

YiYi Xu's avatar
YiYi Xu committed
231
232
        temb_channels = in_channels if norm_type == "spatial" else None

233
234
235
236
237
238
        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
YiYi Xu's avatar
YiYi Xu committed
239
            resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
240
            attention_head_dim=block_out_channels[-1],
241
            resnet_groups=norm_num_groups,
YiYi Xu's avatar
YiYi Xu committed
242
            temb_channels=temb_channels,
patil-suraj's avatar
patil-suraj committed
243
244
        )

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

            up_block = get_up_block(
                up_block_type,
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                prev_output_channel=None,
                add_upsample=not is_final_block,
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
263
                resnet_groups=norm_num_groups,
264
                attention_head_dim=output_channel,
YiYi Xu's avatar
YiYi Xu committed
265
266
                temb_channels=temb_channels,
                resnet_time_scale_shift=norm_type,
267
268
269
270
271
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
YiYi Xu's avatar
YiYi Xu committed
272
273
274
275
        if norm_type == "spatial":
            self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
        else:
            self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
276
277
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
278

279
280
        self.gradient_checkpointing = False

281
    def forward(
Suraj Patil's avatar
Suraj Patil committed
282
283
284
        self,
        sample: torch.FloatTensor,
        latent_embeds: Optional[torch.FloatTensor] = None,
285
    ) -> torch.FloatTensor:
286
        r"""The forward method of the `Decoder` class."""
287

288
        sample = self.conv_in(sample)
patil-suraj's avatar
patil-suraj committed
289

290
        upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
291
        if self.training and self.gradient_checkpointing:
patil-suraj's avatar
patil-suraj committed
292

293
294
295
296
297
298
            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

299
300
301
            if is_torch_version(">=", "1.11.0"):
                # middle
                sample = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
302
303
304
305
                    create_custom_forward(self.mid_block),
                    sample,
                    latent_embeds,
                    use_reentrant=False,
306
307
308
309
310
311
                )
                sample = sample.to(upscale_dtype)

                # up
                for up_block in self.up_blocks:
                    sample = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
312
313
314
315
                        create_custom_forward(up_block),
                        sample,
                        latent_embeds,
                        use_reentrant=False,
316
317
318
                    )
            else:
                # middle
YiYi Xu's avatar
YiYi Xu committed
319
320
321
                sample = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(self.mid_block), sample, latent_embeds
                )
322
323
324
325
                sample = sample.to(upscale_dtype)

                # up
                for up_block in self.up_blocks:
YiYi Xu's avatar
YiYi Xu committed
326
                    sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
327
328
        else:
            # middle
YiYi Xu's avatar
YiYi Xu committed
329
            sample = self.mid_block(sample, latent_embeds)
330
            sample = sample.to(upscale_dtype)
331
332
333

            # up
            for up_block in self.up_blocks:
YiYi Xu's avatar
YiYi Xu committed
334
                sample = up_block(sample, latent_embeds)
patil-suraj's avatar
patil-suraj committed
335

336
        # post-process
YiYi Xu's avatar
YiYi Xu committed
337
338
339
340
        if latent_embeds is None:
            sample = self.conv_norm_out(sample)
        else:
            sample = self.conv_norm_out(sample, latent_embeds)
341
342
343
344
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample
patil-suraj's avatar
patil-suraj committed
345
346


Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
347
class UpSample(nn.Module):
348
349
350
351
352
353
354
355
356
357
    r"""
    The `UpSample` layer of a variational autoencoder that upsamples its input.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
    """

Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
358
359
360
361
362
363
364
365
366
367
368
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
    ) -> None:
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1)

    def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
369
        r"""The forward method of the `UpSample` class."""
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
        x = torch.relu(x)
        x = self.deconv(x)
        return x


class MaskConditionEncoder(nn.Module):
    """
    used in AsymmetricAutoencoderKL
    """

    def __init__(
        self,
        in_ch: int,
        out_ch: int = 192,
        res_ch: int = 768,
        stride: int = 16,
    ) -> None:
        super().__init__()

        channels = []
        while stride > 1:
            stride = stride // 2
            in_ch_ = out_ch * 2
            if out_ch > res_ch:
                out_ch = res_ch
            if stride == 1:
                in_ch_ = res_ch
            channels.append((in_ch_, out_ch))
            out_ch *= 2

        out_channels = []
        for _in_ch, _out_ch in channels:
            out_channels.append(_out_ch)
        out_channels.append(channels[-1][0])

        layers = []
        in_ch_ = in_ch
        for l in range(len(out_channels)):
            out_ch_ = out_channels[l]
            if l == 0 or l == 1:
                layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=3, stride=1, padding=1))
            else:
                layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=4, stride=2, padding=1))
            in_ch_ = out_ch_

        self.layers = nn.Sequential(*layers)

    def forward(self, x: torch.FloatTensor, mask=None) -> torch.FloatTensor:
418
        r"""The forward method of the `MaskConditionEncoder` class."""
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
419
420
421
422
423
424
425
426
427
428
        out = {}
        for l in range(len(self.layers)):
            layer = self.layers[l]
            x = layer(x)
            out[str(tuple(x.shape))] = x
            x = torch.relu(x)
        return out


class MaskConditionDecoder(nn.Module):
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
    r"""The `MaskConditionDecoder` should be used in combination with [`AsymmetricAutoencoderKL`] to enhance the model's
    decoder with a conditioner on the mask and masked image.

    Args:
        in_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        out_channels (`int`, *optional*, defaults to 3):
            The number of output channels.
        up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
            The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
        block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
            The number of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2):
            The number of layers per block.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups for normalization.
        act_fn (`str`, *optional*, defaults to `"silu"`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
        norm_type (`str`, *optional*, defaults to `"group"`):
            The normalization type to use. Can be either `"group"` or `"spatial"`.
    """
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
450
451
452

    def __init__(
        self,
453
454
455
456
457
458
459
460
        in_channels: int = 3,
        out_channels: int = 3,
        up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int, ...] = (64,),
        layers_per_block: int = 2,
        norm_num_groups: int = 32,
        act_fn: str = "silu",
        norm_type: str = "group",  # group, spatial
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
    ):
        super().__init__()
        self.layers_per_block = layers_per_block

        self.conv_in = nn.Conv2d(
            in_channels,
            block_out_channels[-1],
            kernel_size=3,
            stride=1,
            padding=1,
        )

        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

        temb_channels = in_channels if norm_type == "spatial" else None

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
            attention_head_dim=block_out_channels[-1],
            resnet_groups=norm_num_groups,
            temb_channels=temb_channels,
        )

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

            up_block = get_up_block(
                up_block_type,
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                prev_output_channel=None,
                add_upsample=not is_final_block,
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                attention_head_dim=output_channel,
                temb_channels=temb_channels,
                resnet_time_scale_shift=norm_type,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # condition encoder
        self.condition_encoder = MaskConditionEncoder(
            in_ch=out_channels,
            out_ch=block_out_channels[0],
            res_ch=block_out_channels[-1],
        )

        # out
        if norm_type == "spatial":
            self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
        else:
            self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)

        self.gradient_checkpointing = False

533
534
535
536
537
538
539
540
    def forward(
        self,
        z: torch.FloatTensor,
        image: Optional[torch.FloatTensor] = None,
        mask: Optional[torch.FloatTensor] = None,
        latent_embeds: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        r"""The forward method of the `MaskConditionDecoder` class."""
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
        sample = z
        sample = self.conv_in(sample)

        upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            if is_torch_version(">=", "1.11.0"):
                # middle
                sample = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
556
557
558
559
                    create_custom_forward(self.mid_block),
                    sample,
                    latent_embeds,
                    use_reentrant=False,
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
560
561
562
563
564
565
566
                )
                sample = sample.to(upscale_dtype)

                # condition encoder
                if image is not None and mask is not None:
                    masked_image = (1 - mask) * image
                    im_x = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
567
568
569
570
                        create_custom_forward(self.condition_encoder),
                        masked_image,
                        mask,
                        use_reentrant=False,
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
571
572
573
574
575
576
577
578
579
                    )

                # up
                for up_block in self.up_blocks:
                    if image is not None and mask is not None:
                        sample_ = im_x[str(tuple(sample.shape))]
                        mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
                        sample = sample * mask_ + sample_ * (1 - mask_)
                    sample = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
580
581
582
583
                        create_custom_forward(up_block),
                        sample,
                        latent_embeds,
                        use_reentrant=False,
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
                    )
                if image is not None and mask is not None:
                    sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
            else:
                # middle
                sample = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(self.mid_block), sample, latent_embeds
                )
                sample = sample.to(upscale_dtype)

                # condition encoder
                if image is not None and mask is not None:
                    masked_image = (1 - mask) * image
                    im_x = torch.utils.checkpoint.checkpoint(
Suraj Patil's avatar
Suraj Patil committed
598
599
600
                        create_custom_forward(self.condition_encoder),
                        masked_image,
                        mask,
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
                    )

                # up
                for up_block in self.up_blocks:
                    if image is not None and mask is not None:
                        sample_ = im_x[str(tuple(sample.shape))]
                        mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
                        sample = sample * mask_ + sample_ * (1 - mask_)
                    sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
                if image is not None and mask is not None:
                    sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
        else:
            # middle
            sample = self.mid_block(sample, latent_embeds)
            sample = sample.to(upscale_dtype)

            # condition encoder
            if image is not None and mask is not None:
                masked_image = (1 - mask) * image
                im_x = self.condition_encoder(masked_image, mask)

            # up
            for up_block in self.up_blocks:
                if image is not None and mask is not None:
                    sample_ = im_x[str(tuple(sample.shape))]
                    mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
                    sample = sample * mask_ + sample_ * (1 - mask_)
                sample = up_block(sample, latent_embeds)
            if image is not None and mask is not None:
                sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)

        # post-process
        if latent_embeds is None:
            sample = self.conv_norm_out(sample)
        else:
            sample = self.conv_norm_out(sample, latent_embeds)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample


patil-suraj's avatar
patil-suraj committed
643
644
645
646
647
648
649
650
651
class VectorQuantizer(nn.Module):
    """
    Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix
    multiplications and allows for post-hoc remapping of indices.
    """

    # NOTE: due to a bug the beta term was applied to the wrong term. for
    # backwards compatibility we use the buggy version by default, but you can
    # specify legacy=False to fix it.
Will Berman's avatar
Will Berman committed
652
    def __init__(
653
654
655
656
657
658
659
660
        self,
        n_e: int,
        vq_embed_dim: int,
        beta: float,
        remap=None,
        unknown_index: str = "random",
        sane_index_shape: bool = False,
        legacy: bool = True,
Will Berman's avatar
Will Berman committed
661
    ):
patil-suraj's avatar
patil-suraj committed
662
663
        super().__init__()
        self.n_e = n_e
Will Berman's avatar
Will Berman committed
664
        self.vq_embed_dim = vq_embed_dim
patil-suraj's avatar
patil-suraj committed
665
666
667
        self.beta = beta
        self.legacy = legacy

Will Berman's avatar
Will Berman committed
668
        self.embedding = nn.Embedding(self.n_e, self.vq_embed_dim)
patil-suraj's avatar
patil-suraj committed
669
670
671
672
673
        self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)

        self.remap = remap
        if self.remap is not None:
            self.register_buffer("used", torch.tensor(np.load(self.remap)))
674
            self.used: torch.Tensor
patil-suraj's avatar
patil-suraj committed
675
676
677
678
679
680
681
682
683
684
685
686
687
688
            self.re_embed = self.used.shape[0]
            self.unknown_index = unknown_index  # "random" or "extra" or integer
            if self.unknown_index == "extra":
                self.unknown_index = self.re_embed
                self.re_embed = self.re_embed + 1
            print(
                f"Remapping {self.n_e} indices to {self.re_embed} indices. "
                f"Using {self.unknown_index} for unknown indices."
            )
        else:
            self.re_embed = n_e

        self.sane_index_shape = sane_index_shape

689
    def remap_to_used(self, inds: torch.LongTensor) -> torch.LongTensor:
patil-suraj's avatar
patil-suraj committed
690
691
692
693
694
695
696
697
698
699
700
701
702
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        match = (inds[:, :, None] == used[None, None, ...]).long()
        new = match.argmax(-1)
        unknown = match.sum(2) < 1
        if self.unknown_index == "random":
            new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
        else:
            new[unknown] = self.unknown_index
        return new.reshape(ishape)

703
    def unmap_to_all(self, inds: torch.LongTensor) -> torch.LongTensor:
patil-suraj's avatar
patil-suraj committed
704
705
706
707
708
709
710
711
712
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        if self.re_embed > self.used.shape[0]:  # extra token
            inds[inds >= self.used.shape[0]] = 0  # simply set to zero
        back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
        return back.reshape(ishape)

713
    def forward(self, z: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor, Tuple]:
patil-suraj's avatar
patil-suraj committed
714
715
        # reshape z -> (batch, height, width, channel) and flatten
        z = z.permute(0, 2, 3, 1).contiguous()
Will Berman's avatar
Will Berman committed
716
        z_flattened = z.view(-1, self.vq_embed_dim)
patil-suraj's avatar
patil-suraj committed
717

718
719
        # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
        min_encoding_indices = torch.argmin(torch.cdist(z_flattened, self.embedding.weight), dim=1)
patil-suraj's avatar
patil-suraj committed
720
721
722
723
724
725
726
727
728
729
730
731

        z_q = self.embedding(min_encoding_indices).view(z.shape)
        perplexity = None
        min_encodings = None

        # compute loss for embedding
        if not self.legacy:
            loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
        else:
            loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)

        # preserve gradients
732
        z_q: torch.FloatTensor = z + (z_q - z).detach()
patil-suraj's avatar
patil-suraj committed
733
734
735
736
737
738
739
740
741
742
743
744
745
746

        # reshape back to match original input shape
        z_q = z_q.permute(0, 3, 1, 2).contiguous()

        if self.remap is not None:
            min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1)  # add batch axis
            min_encoding_indices = self.remap_to_used(min_encoding_indices)
            min_encoding_indices = min_encoding_indices.reshape(-1, 1)  # flatten

        if self.sane_index_shape:
            min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])

        return z_q, loss, (perplexity, min_encodings, min_encoding_indices)

747
    def get_codebook_entry(self, indices: torch.LongTensor, shape: Tuple[int, ...]) -> torch.FloatTensor:
patil-suraj's avatar
patil-suraj committed
748
749
750
751
752
753
754
        # shape specifying (batch, height, width, channel)
        if self.remap is not None:
            indices = indices.reshape(shape[0], -1)  # add batch axis
            indices = self.unmap_to_all(indices)
            indices = indices.reshape(-1)  # flatten again

        # get quantized latent vectors
755
        z_q: torch.FloatTensor = self.embedding(indices)
patil-suraj's avatar
patil-suraj committed
756
757
758
759
760
761
762
763
764
765

        if shape is not None:
            z_q = z_q.view(shape)
            # reshape back to match original input shape
            z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return z_q


class DiagonalGaussianDistribution(object):
766
    def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
patil-suraj's avatar
patil-suraj committed
767
768
769
770
771
772
773
        self.parameters = parameters
        self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
        self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = torch.exp(0.5 * self.logvar)
        self.var = torch.exp(self.logvar)
        if self.deterministic:
774
775
776
            self.var = self.std = torch.zeros_like(
                self.mean, device=self.parameters.device, dtype=self.parameters.dtype
            )
patil-suraj's avatar
patil-suraj committed
777

Partho's avatar
Partho committed
778
    def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor:
779
        # make sure sample is on the same device as the parameters and has same dtype
780
        sample = randn_tensor(
Suraj Patil's avatar
Suraj Patil committed
781
782
783
784
            self.mean.shape,
            generator=generator,
            device=self.parameters.device,
            dtype=self.parameters.dtype,
785
        )
786
        x = self.mean + self.std * sample
patil-suraj's avatar
patil-suraj committed
787
788
        return x

789
    def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
790
791
792
793
        if self.deterministic:
            return torch.Tensor([0.0])
        else:
            if other is None:
Suraj Patil's avatar
Suraj Patil committed
794
795
796
797
                return 0.5 * torch.sum(
                    torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
                    dim=[1, 2, 3],
                )
patil-suraj's avatar
patil-suraj committed
798
799
800
801
802
803
804
805
806
807
            else:
                return 0.5 * torch.sum(
                    torch.pow(self.mean - other.mean, 2) / other.var
                    + self.var / other.var
                    - 1.0
                    - self.logvar
                    + other.logvar,
                    dim=[1, 2, 3],
                )

808
    def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
809
810
811
        if self.deterministic:
            return torch.Tensor([0.0])
        logtwopi = np.log(2.0 * np.pi)
Suraj Patil's avatar
Suraj Patil committed
812
813
814
815
        return 0.5 * torch.sum(
            logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
            dim=dims,
        )
patil-suraj's avatar
patil-suraj committed
816

817
    def mode(self) -> torch.Tensor:
patil-suraj's avatar
patil-suraj committed
818
        return self.mean
819
820
821


class EncoderTiny(nn.Module):
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
    r"""
    The `EncoderTiny` layer is a simpler version of the `Encoder` layer.

    Args:
        in_channels (`int`):
            The number of input channels.
        out_channels (`int`):
            The number of output channels.
        num_blocks (`Tuple[int, ...]`):
            Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
            use.
        block_out_channels (`Tuple[int, ...]`):
            The number of output channels for each block.
        act_fn (`str`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
    """

839
840
841
842
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
843
844
        num_blocks: Tuple[int, ...],
        block_out_channels: Tuple[int, ...],
845
846
847
848
849
850
851
852
853
854
855
        act_fn: str,
    ):
        super().__init__()

        layers = []
        for i, num_block in enumerate(num_blocks):
            num_channels = block_out_channels[i]

            if i == 0:
                layers.append(nn.Conv2d(in_channels, num_channels, kernel_size=3, padding=1))
            else:
Suraj Patil's avatar
Suraj Patil committed
856
857
858
859
860
861
862
863
864
865
                layers.append(
                    nn.Conv2d(
                        num_channels,
                        num_channels,
                        kernel_size=3,
                        padding=1,
                        stride=2,
                        bias=False,
                    )
                )
866
867
868
869
870
871
872
873
874

            for _ in range(num_block):
                layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))

        layers.append(nn.Conv2d(block_out_channels[-1], out_channels, kernel_size=3, padding=1))

        self.layers = nn.Sequential(*layers)
        self.gradient_checkpointing = False

875
876
    def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
        r"""The forward method of the `EncoderTiny` class."""
877
878
879
880
881
882
883
884
885
886
887
888
889
890
        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            if is_torch_version(">=", "1.11.0"):
                x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False)
            else:
                x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x)

        else:
891
892
            # scale image from [-1, 1] to [0, 1] to match TAESD convention
            x = self.layers(x.add(1).div(2))
893
894
895
896
897

        return x


class DecoderTiny(nn.Module):
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
    r"""
    The `DecoderTiny` layer is a simpler version of the `Decoder` layer.

    Args:
        in_channels (`int`):
            The number of input channels.
        out_channels (`int`):
            The number of output channels.
        num_blocks (`Tuple[int, ...]`):
            Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
            use.
        block_out_channels (`Tuple[int, ...]`):
            The number of output channels for each block.
        upsampling_scaling_factor (`int`):
            The scaling factor to use for upsampling.
        act_fn (`str`):
            The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
    """

917
918
919
920
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
921
922
        num_blocks: Tuple[int, ...],
        block_out_channels: Tuple[int, ...],
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
        upsampling_scaling_factor: int,
        act_fn: str,
    ):
        super().__init__()

        layers = [
            nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=1),
            get_activation(act_fn),
        ]

        for i, num_block in enumerate(num_blocks):
            is_final_block = i == (len(num_blocks) - 1)
            num_channels = block_out_channels[i]

            for _ in range(num_block):
                layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))

            if not is_final_block:
                layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor))

            conv_out_channel = num_channels if not is_final_block else out_channels
Suraj Patil's avatar
Suraj Patil committed
944
945
946
947
948
949
950
951
952
            layers.append(
                nn.Conv2d(
                    num_channels,
                    conv_out_channel,
                    kernel_size=3,
                    padding=1,
                    bias=is_final_block,
                )
            )
953
954
955
956

        self.layers = nn.Sequential(*layers)
        self.gradient_checkpointing = False

957
958
    def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
        r"""The forward method of the `DecoderTiny` class."""
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
        # Clamp.
        x = torch.tanh(x / 3) * 3

        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            if is_torch_version(">=", "1.11.0"):
                x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False)
            else:
                x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x)

        else:
            x = self.layers(x)

978
979
        # scale image from [0, 1] to [-1, 1] to match diffusers convention
        return x.mul(2).sub(1)