vae.py 15.3 KB
Newer Older
Partho's avatar
Partho committed
1
2
from typing import Optional, Tuple

patil-suraj's avatar
patil-suraj committed
3
4
5
6
import numpy as np
import torch
import torch.nn as nn

7
from ..configuration_utils import ConfigMixin, register_to_config
patil-suraj's avatar
patil-suraj committed
8
from ..modeling_utils import ModelMixin
9
from .unet_blocks import UNetMidBlock2D, get_down_block, get_up_block
patil-suraj's avatar
patil-suraj committed
10
11
12
13
14


class Encoder(nn.Module):
    def __init__(
        self,
15
16
17
18
19
20
        in_channels=3,
        out_channels=3,
        down_block_types=("DownEncoderBlock2D",),
        block_out_channels=(64,),
        layers_per_block=2,
        act_fn="silu",
patil-suraj's avatar
patil-suraj committed
21
22
23
        double_z=True,
    ):
        super().__init__()
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
        self.layers_per_block = layers_per_block

        self.conv_in = torch.nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)

        self.mid_block = None
        self.down_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=self.layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                add_downsample=not is_final_block,
                resnet_eps=1e-6,
45
                downsample_padding=0,
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
                resnet_act_fn=act_fn,
                attn_num_head_channels=None,
                temb_channels=None,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
            attn_num_head_channels=None,
            resnet_groups=32,
            temb_channels=None,
patil-suraj's avatar
patil-suraj committed
62
63
        )

64
65
66
67
68
69
70
        # out
        num_groups_out = 32
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=num_groups_out, eps=1e-6)
        self.conv_act = nn.SiLU()

        conv_out_channels = 2 * out_channels if double_z else out_channels
        self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
71
72

    def forward(self, x):
73
74
75
76
77
78
        sample = x
        sample = self.conv_in(sample)

        # down
        for down_block in self.down_blocks:
            sample = down_block(sample)
patil-suraj's avatar
patil-suraj committed
79
80

        # middle
81
82
83
84
85
86
87
88
        sample = self.mid_block(sample)

        # post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample
patil-suraj's avatar
patil-suraj committed
89
90
91
92
93


class Decoder(nn.Module):
    def __init__(
        self,
94
95
96
97
98
99
        in_channels=3,
        out_channels=3,
        up_block_types=("UpDecoderBlock2D",),
        block_out_channels=(64,),
        layers_per_block=2,
        act_fn="silu",
patil-suraj's avatar
patil-suraj committed
100
101
    ):
        super().__init__()
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        self.layers_per_block = layers_per_block

        self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1)

        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
            attn_num_head_channels=None,
            resnet_groups=32,
            temb_channels=None,
patil-suraj's avatar
patil-suraj committed
119
120
        )

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

            up_block = get_up_block(
                up_block_type,
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                prev_output_channel=None,
                add_upsample=not is_final_block,
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
                attn_num_head_channels=None,
                temb_channels=None,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        num_groups_out = 32
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups_out, eps=1e-6)
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
150
151

    def forward(self, z):
152
153
        sample = z
        sample = self.conv_in(sample)
patil-suraj's avatar
patil-suraj committed
154

155
156
        # middle
        sample = self.mid_block(sample)
patil-suraj's avatar
patil-suraj committed
157

158
159
160
        # up
        for up_block in self.up_blocks:
            sample = up_block(sample)
patil-suraj's avatar
patil-suraj committed
161

162
163
164
165
166
167
        # post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample
patil-suraj's avatar
patil-suraj committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297


class VectorQuantizer(nn.Module):
    """
    Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix
    multiplications and allows for post-hoc remapping of indices.
    """

    # NOTE: due to a bug the beta term was applied to the wrong term. for
    # backwards compatibility we use the buggy version by default, but you can
    # specify legacy=False to fix it.
    def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True):
        super().__init__()
        self.n_e = n_e
        self.e_dim = e_dim
        self.beta = beta
        self.legacy = legacy

        self.embedding = nn.Embedding(self.n_e, self.e_dim)
        self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)

        self.remap = remap
        if self.remap is not None:
            self.register_buffer("used", torch.tensor(np.load(self.remap)))
            self.re_embed = self.used.shape[0]
            self.unknown_index = unknown_index  # "random" or "extra" or integer
            if self.unknown_index == "extra":
                self.unknown_index = self.re_embed
                self.re_embed = self.re_embed + 1
            print(
                f"Remapping {self.n_e} indices to {self.re_embed} indices. "
                f"Using {self.unknown_index} for unknown indices."
            )
        else:
            self.re_embed = n_e

        self.sane_index_shape = sane_index_shape

    def remap_to_used(self, inds):
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        match = (inds[:, :, None] == used[None, None, ...]).long()
        new = match.argmax(-1)
        unknown = match.sum(2) < 1
        if self.unknown_index == "random":
            new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
        else:
            new[unknown] = self.unknown_index
        return new.reshape(ishape)

    def unmap_to_all(self, inds):
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        if self.re_embed > self.used.shape[0]:  # extra token
            inds[inds >= self.used.shape[0]] = 0  # simply set to zero
        back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
        return back.reshape(ishape)

    def forward(self, z):
        # reshape z -> (batch, height, width, channel) and flatten
        z = z.permute(0, 2, 3, 1).contiguous()
        z_flattened = z.view(-1, self.e_dim)
        # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z

        d = (
            torch.sum(z_flattened**2, dim=1, keepdim=True)
            + torch.sum(self.embedding.weight**2, dim=1)
            - 2 * torch.einsum("bd,dn->bn", z_flattened, self.embedding.weight.t())
        )

        min_encoding_indices = torch.argmin(d, dim=1)
        z_q = self.embedding(min_encoding_indices).view(z.shape)
        perplexity = None
        min_encodings = None

        # compute loss for embedding
        if not self.legacy:
            loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
        else:
            loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)

        # preserve gradients
        z_q = z + (z_q - z).detach()

        # reshape back to match original input shape
        z_q = z_q.permute(0, 3, 1, 2).contiguous()

        if self.remap is not None:
            min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1)  # add batch axis
            min_encoding_indices = self.remap_to_used(min_encoding_indices)
            min_encoding_indices = min_encoding_indices.reshape(-1, 1)  # flatten

        if self.sane_index_shape:
            min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])

        return z_q, loss, (perplexity, min_encodings, min_encoding_indices)

    def get_codebook_entry(self, indices, shape):
        # shape specifying (batch, height, width, channel)
        if self.remap is not None:
            indices = indices.reshape(shape[0], -1)  # add batch axis
            indices = self.unmap_to_all(indices)
            indices = indices.reshape(-1)  # flatten again

        # get quantized latent vectors
        z_q = self.embedding(indices)

        if shape is not None:
            z_q = z_q.view(shape)
            # reshape back to match original input shape
            z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return z_q


class DiagonalGaussianDistribution(object):
    def __init__(self, parameters, deterministic=False):
        self.parameters = parameters
        self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
        self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = torch.exp(0.5 * self.logvar)
        self.var = torch.exp(self.logvar)
        if self.deterministic:
            self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)

Partho's avatar
Partho committed
298
    def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor:
299
        x = self.mean + self.std * torch.randn(self.mean.shape, generator=generator, device=self.parameters.device)
patil-suraj's avatar
patil-suraj committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
        return x

    def kl(self, other=None):
        if self.deterministic:
            return torch.Tensor([0.0])
        else:
            if other is None:
                return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=[1, 2, 3])
            else:
                return 0.5 * torch.sum(
                    torch.pow(self.mean - other.mean, 2) / other.var
                    + self.var / other.var
                    - 1.0
                    - self.logvar
                    + other.logvar,
                    dim=[1, 2, 3],
                )

    def nll(self, sample, dims=[1, 2, 3]):
        if self.deterministic:
            return torch.Tensor([0.0])
        logtwopi = np.log(2.0 * np.pi)
        return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims)

    def mode(self):
        return self.mean


class VQModel(ModelMixin, ConfigMixin):
329
    @register_to_config
patil-suraj's avatar
patil-suraj committed
330
331
    def __init__(
        self,
Partho's avatar
Partho committed
332
333
334
335
336
337
338
339
340
341
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
        up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int] = (64,),
        layers_per_block: int = 1,
        act_fn: str = "silu",
        latent_channels: int = 3,
        sample_size: int = 32,
        num_vq_embeddings: int = 256,
patil-suraj's avatar
patil-suraj committed
342
    ):
343
        super().__init__()
patil-suraj's avatar
patil-suraj committed
344
345
346
347

        # pass init params to Encoder
        self.encoder = Encoder(
            in_channels=in_channels,
348
349
350
351
352
353
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            double_z=False,
patil-suraj's avatar
patil-suraj committed
354
355
        )

356
357
358
359
360
        self.quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1)
        self.quantize = VectorQuantizer(
            num_vq_embeddings, latent_channels, beta=0.25, remap=None, sane_index_shape=False
        )
        self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1)
patil-suraj's avatar
patil-suraj committed
361
362
363

        # pass init params to Decoder
        self.decoder = Decoder(
364
365
366
367
368
369
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
patil-suraj's avatar
patil-suraj committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
        )

    def encode(self, x):
        h = self.encoder(x)
        h = self.quant_conv(h)
        return h

    def decode(self, h, force_not_quantize=False):
        # also go through quantization layer
        if not force_not_quantize:
            quant, emb_loss, info = self.quantize(h)
        else:
            quant = h
        quant = self.post_quant_conv(quant)
        dec = self.decoder(quant)
        return dec
patil-suraj's avatar
style  
patil-suraj committed
386

Partho's avatar
Partho committed
387
    def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
388
        x = sample
patil-suraj's avatar
patil-suraj committed
389
390
391
        h = self.encode(x)
        dec = self.decode(h)
        return dec
patil-suraj's avatar
patil-suraj committed
392
393
394


class AutoencoderKL(ModelMixin, ConfigMixin):
395
    @register_to_config
patil-suraj's avatar
patil-suraj committed
396
397
    def __init__(
        self,
Partho's avatar
Partho committed
398
399
400
401
402
403
404
405
406
        in_channels: int = 3,
        out_channels: int = 3,
        down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
        up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
        block_out_channels: Tuple[int] = (64,),
        layers_per_block: int = 1,
        act_fn: str = "silu",
        latent_channels: int = 4,
        sample_size: int = 32,
patil-suraj's avatar
patil-suraj committed
407
    ):
408
        super().__init__()
patil-suraj's avatar
patil-suraj committed
409
410
411
412

        # pass init params to Encoder
        self.encoder = Encoder(
            in_channels=in_channels,
413
414
415
416
417
418
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            double_z=True,
patil-suraj's avatar
patil-suraj committed
419
420
421
422
        )

        # pass init params to Decoder
        self.decoder = Decoder(
423
424
425
426
427
428
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
patil-suraj's avatar
patil-suraj committed
429
430
        )

431
432
        self.quant_conv = torch.nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
        self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1)
patil-suraj's avatar
patil-suraj committed
433
434
435
436
437
438
439
440
441
442
443
444

    def encode(self, x):
        h = self.encoder(x)
        moments = self.quant_conv(h)
        posterior = DiagonalGaussianDistribution(moments)
        return posterior

    def decode(self, z):
        z = self.post_quant_conv(z)
        dec = self.decoder(z)
        return dec

Partho's avatar
Partho committed
445
    def forward(self, sample: torch.FloatTensor, sample_posterior: bool = False) -> torch.FloatTensor:
446
        x = sample
patil-suraj's avatar
patil-suraj committed
447
        posterior = self.encode(x)
patil-suraj's avatar
patil-suraj committed
448
449
450
451
452
        if sample_posterior:
            z = posterior.sample()
        else:
            z = posterior.mode()
        dec = self.decode(z)
patil-suraj's avatar
patil-suraj committed
453
        return dec