vae.py 14.9 KB
Newer Older
patil-suraj's avatar
patil-suraj committed
1
2
3
4
import numpy as np
import torch
import torch.nn as nn

5
from ..configuration_utils import ConfigMixin, register_to_config
patil-suraj's avatar
patil-suraj committed
6
from ..modeling_utils import ModelMixin
7
from .unet_blocks import UNetMidBlock2D, get_down_block, get_up_block
patil-suraj's avatar
patil-suraj committed
8
9
10
11
12


class Encoder(nn.Module):
    def __init__(
        self,
13
14
15
16
17
18
        in_channels=3,
        out_channels=3,
        down_block_types=("DownEncoderBlock2D",),
        block_out_channels=(64,),
        layers_per_block=2,
        act_fn="silu",
patil-suraj's avatar
patil-suraj committed
19
20
21
        double_z=True,
    ):
        super().__init__()
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
        self.layers_per_block = layers_per_block

        self.conv_in = torch.nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)

        self.mid_block = None
        self.down_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=self.layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                add_downsample=not is_final_block,
                resnet_eps=1e-6,
43
                downsample_padding=0,
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
                resnet_act_fn=act_fn,
                attn_num_head_channels=None,
                temb_channels=None,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
            attn_num_head_channels=None,
            resnet_groups=32,
            temb_channels=None,
patil-suraj's avatar
patil-suraj committed
60
61
        )

62
63
64
65
66
67
68
        # out
        num_groups_out = 32
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=num_groups_out, eps=1e-6)
        self.conv_act = nn.SiLU()

        conv_out_channels = 2 * out_channels if double_z else out_channels
        self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
69
70

    def forward(self, x):
71
72
73
74
75
76
        sample = x
        sample = self.conv_in(sample)

        # down
        for down_block in self.down_blocks:
            sample = down_block(sample)
patil-suraj's avatar
patil-suraj committed
77
78

        # middle
79
80
81
82
83
84
85
86
        sample = self.mid_block(sample)

        # post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample
patil-suraj's avatar
patil-suraj committed
87
88
89
90
91


class Decoder(nn.Module):
    def __init__(
        self,
92
93
94
95
96
97
        in_channels=3,
        out_channels=3,
        up_block_types=("UpDecoderBlock2D",),
        block_out_channels=(64,),
        layers_per_block=2,
        act_fn="silu",
patil-suraj's avatar
patil-suraj committed
98
99
    ):
        super().__init__()
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
        self.layers_per_block = layers_per_block

        self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1)

        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

        # mid
        self.mid_block = UNetMidBlock2D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
            attn_num_head_channels=None,
            resnet_groups=32,
            temb_channels=None,
patil-suraj's avatar
patil-suraj committed
117
118
        )

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]

            is_final_block = i == len(block_out_channels) - 1

            up_block = get_up_block(
                up_block_type,
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                prev_output_channel=None,
                add_upsample=not is_final_block,
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
                attn_num_head_channels=None,
                temb_channels=None,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        num_groups_out = 32
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups_out, eps=1e-6)
        self.conv_act = nn.SiLU()
        self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
148
149

    def forward(self, z):
150
151
        sample = z
        sample = self.conv_in(sample)
patil-suraj's avatar
patil-suraj committed
152

153
154
        # middle
        sample = self.mid_block(sample)
patil-suraj's avatar
patil-suraj committed
155

156
157
158
        # up
        for up_block in self.up_blocks:
            sample = up_block(sample)
patil-suraj's avatar
patil-suraj committed
159

160
161
162
163
164
165
        # post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample
patil-suraj's avatar
patil-suraj committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295


class VectorQuantizer(nn.Module):
    """
    Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix
    multiplications and allows for post-hoc remapping of indices.
    """

    # NOTE: due to a bug the beta term was applied to the wrong term. for
    # backwards compatibility we use the buggy version by default, but you can
    # specify legacy=False to fix it.
    def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True):
        super().__init__()
        self.n_e = n_e
        self.e_dim = e_dim
        self.beta = beta
        self.legacy = legacy

        self.embedding = nn.Embedding(self.n_e, self.e_dim)
        self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)

        self.remap = remap
        if self.remap is not None:
            self.register_buffer("used", torch.tensor(np.load(self.remap)))
            self.re_embed = self.used.shape[0]
            self.unknown_index = unknown_index  # "random" or "extra" or integer
            if self.unknown_index == "extra":
                self.unknown_index = self.re_embed
                self.re_embed = self.re_embed + 1
            print(
                f"Remapping {self.n_e} indices to {self.re_embed} indices. "
                f"Using {self.unknown_index} for unknown indices."
            )
        else:
            self.re_embed = n_e

        self.sane_index_shape = sane_index_shape

    def remap_to_used(self, inds):
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        match = (inds[:, :, None] == used[None, None, ...]).long()
        new = match.argmax(-1)
        unknown = match.sum(2) < 1
        if self.unknown_index == "random":
            new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
        else:
            new[unknown] = self.unknown_index
        return new.reshape(ishape)

    def unmap_to_all(self, inds):
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        if self.re_embed > self.used.shape[0]:  # extra token
            inds[inds >= self.used.shape[0]] = 0  # simply set to zero
        back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
        return back.reshape(ishape)

    def forward(self, z):
        # reshape z -> (batch, height, width, channel) and flatten
        z = z.permute(0, 2, 3, 1).contiguous()
        z_flattened = z.view(-1, self.e_dim)
        # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z

        d = (
            torch.sum(z_flattened**2, dim=1, keepdim=True)
            + torch.sum(self.embedding.weight**2, dim=1)
            - 2 * torch.einsum("bd,dn->bn", z_flattened, self.embedding.weight.t())
        )

        min_encoding_indices = torch.argmin(d, dim=1)
        z_q = self.embedding(min_encoding_indices).view(z.shape)
        perplexity = None
        min_encodings = None

        # compute loss for embedding
        if not self.legacy:
            loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
        else:
            loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)

        # preserve gradients
        z_q = z + (z_q - z).detach()

        # reshape back to match original input shape
        z_q = z_q.permute(0, 3, 1, 2).contiguous()

        if self.remap is not None:
            min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1)  # add batch axis
            min_encoding_indices = self.remap_to_used(min_encoding_indices)
            min_encoding_indices = min_encoding_indices.reshape(-1, 1)  # flatten

        if self.sane_index_shape:
            min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])

        return z_q, loss, (perplexity, min_encodings, min_encoding_indices)

    def get_codebook_entry(self, indices, shape):
        # shape specifying (batch, height, width, channel)
        if self.remap is not None:
            indices = indices.reshape(shape[0], -1)  # add batch axis
            indices = self.unmap_to_all(indices)
            indices = indices.reshape(-1)  # flatten again

        # get quantized latent vectors
        z_q = self.embedding(indices)

        if shape is not None:
            z_q = z_q.view(shape)
            # reshape back to match original input shape
            z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return z_q


class DiagonalGaussianDistribution(object):
    def __init__(self, parameters, deterministic=False):
        self.parameters = parameters
        self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
        self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = torch.exp(0.5 * self.logvar)
        self.var = torch.exp(self.logvar)
        if self.deterministic:
            self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)

296
297
    def sample(self, generator=None):
        x = self.mean + self.std * torch.randn(self.mean.shape, generator=generator, device=self.parameters.device)
patil-suraj's avatar
patil-suraj committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
        return x

    def kl(self, other=None):
        if self.deterministic:
            return torch.Tensor([0.0])
        else:
            if other is None:
                return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=[1, 2, 3])
            else:
                return 0.5 * torch.sum(
                    torch.pow(self.mean - other.mean, 2) / other.var
                    + self.var / other.var
                    - 1.0
                    - self.logvar
                    + other.logvar,
                    dim=[1, 2, 3],
                )

    def nll(self, sample, dims=[1, 2, 3]):
        if self.deterministic:
            return torch.Tensor([0.0])
        logtwopi = np.log(2.0 * np.pi)
        return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims)

    def mode(self):
        return self.mean


class VQModel(ModelMixin, ConfigMixin):
327
    @register_to_config
patil-suraj's avatar
patil-suraj committed
328
329
    def __init__(
        self,
330
331
332
333
334
335
336
337
338
339
        in_channels=3,
        out_channels=3,
        down_block_types=("DownEncoderBlock2D",),
        up_block_types=("UpDecoderBlock2D",),
        block_out_channels=(64,),
        layers_per_block=1,
        act_fn="silu",
        latent_channels=3,
        sample_size=32,
        num_vq_embeddings=256,
patil-suraj's avatar
patil-suraj committed
340
    ):
341
        super().__init__()
patil-suraj's avatar
patil-suraj committed
342
343
344
345

        # pass init params to Encoder
        self.encoder = Encoder(
            in_channels=in_channels,
346
347
348
349
350
351
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            double_z=False,
patil-suraj's avatar
patil-suraj committed
352
353
        )

354
355
356
357
358
        self.quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1)
        self.quantize = VectorQuantizer(
            num_vq_embeddings, latent_channels, beta=0.25, remap=None, sane_index_shape=False
        )
        self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1)
patil-suraj's avatar
patil-suraj committed
359
360
361

        # pass init params to Decoder
        self.decoder = Decoder(
362
363
364
365
366
367
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
patil-suraj's avatar
patil-suraj committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
        )

    def encode(self, x):
        h = self.encoder(x)
        h = self.quant_conv(h)
        return h

    def decode(self, h, force_not_quantize=False):
        # also go through quantization layer
        if not force_not_quantize:
            quant, emb_loss, info = self.quantize(h)
        else:
            quant = h
        quant = self.post_quant_conv(quant)
        dec = self.decoder(quant)
        return dec
patil-suraj's avatar
style  
patil-suraj committed
384

385
386
    def forward(self, sample):
        x = sample
patil-suraj's avatar
patil-suraj committed
387
388
389
        h = self.encode(x)
        dec = self.decode(h)
        return dec
patil-suraj's avatar
patil-suraj committed
390
391
392


class AutoencoderKL(ModelMixin, ConfigMixin):
393
    @register_to_config
patil-suraj's avatar
patil-suraj committed
394
395
    def __init__(
        self,
396
397
398
399
400
401
402
403
404
        in_channels=3,
        out_channels=3,
        down_block_types=("DownEncoderBlock2D",),
        up_block_types=("UpDecoderBlock2D",),
        block_out_channels=(64,),
        layers_per_block=1,
        act_fn="silu",
        latent_channels=4,
        sample_size=32,
patil-suraj's avatar
patil-suraj committed
405
    ):
406
        super().__init__()
patil-suraj's avatar
patil-suraj committed
407
408
409
410

        # pass init params to Encoder
        self.encoder = Encoder(
            in_channels=in_channels,
411
412
413
414
415
416
            out_channels=latent_channels,
            down_block_types=down_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
            double_z=True,
patil-suraj's avatar
patil-suraj committed
417
418
419
420
        )

        # pass init params to Decoder
        self.decoder = Decoder(
421
422
423
424
425
426
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            act_fn=act_fn,
patil-suraj's avatar
patil-suraj committed
427
428
        )

429
430
        self.quant_conv = torch.nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
        self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1)
patil-suraj's avatar
patil-suraj committed
431
432
433
434
435
436
437
438
439
440
441
442

    def encode(self, x):
        h = self.encoder(x)
        moments = self.quant_conv(h)
        posterior = DiagonalGaussianDistribution(moments)
        return posterior

    def decode(self, z):
        z = self.post_quant_conv(z)
        dec = self.decoder(z)
        return dec

443
444
    def forward(self, sample, sample_posterior=False):
        x = sample
patil-suraj's avatar
patil-suraj committed
445
        posterior = self.encode(x)
patil-suraj's avatar
patil-suraj committed
446
447
448
449
450
        if sample_posterior:
            z = posterior.sample()
        else:
            z = posterior.mode()
        dec = self.decode(z)
patil-suraj's avatar
patil-suraj committed
451
        return dec