test_pipeline_flux.py 13.8 KB
Newer Older
Sayak Paul's avatar
Sayak Paul committed
1
2
3
4
5
import gc
import unittest

import numpy as np
import torch
6
from huggingface_hub import hf_hub_download
Sayak Paul's avatar
Sayak Paul committed
7
8
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel

Aryan's avatar
Aryan committed
9
10
11
12
13
14
15
from diffusers import (
    AutoencoderKL,
    FasterCacheConfig,
    FlowMatchEulerDiscreteScheduler,
    FluxPipeline,
    FluxTransformer2DModel,
)
16
17

from ...testing_utils import (
18
    Expectations,
19
    backend_empty_cache,
20
    nightly,
Sayak Paul's avatar
Sayak Paul committed
21
    numpy_cosine_similarity_distance,
22
    require_big_accelerator,
Sayak Paul's avatar
Sayak Paul committed
23
24
25
    slow,
    torch_device,
)
26
from ..test_pipelines_common import (
Aryan's avatar
Aryan committed
27
    FasterCacheTesterMixin,
Aryan's avatar
Aryan committed
28
    FirstBlockCacheTesterMixin,
hlky's avatar
hlky committed
29
    FluxIPAdapterTesterMixin,
30
    PipelineTesterMixin,
31
    PyramidAttentionBroadcastTesterMixin,
32
    TaylorSeerCacheTesterMixin,
33
    check_qkv_fused_layers_exist,
34
)
Sayak Paul's avatar
Sayak Paul committed
35
36


37
class FluxPipelineFastTests(
Aryan's avatar
Aryan committed
38
39
40
41
    PipelineTesterMixin,
    FluxIPAdapterTesterMixin,
    PyramidAttentionBroadcastTesterMixin,
    FasterCacheTesterMixin,
Aryan's avatar
Aryan committed
42
    FirstBlockCacheTesterMixin,
43
    TaylorSeerCacheTesterMixin,
Aryan's avatar
Aryan committed
44
    unittest.TestCase,
45
):
Sayak Paul's avatar
Sayak Paul committed
46
    pipeline_class = FluxPipeline
Sayak Paul's avatar
Sayak Paul committed
47
48
    params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"])
    batch_params = frozenset(["prompt"])
Sayak Paul's avatar
Sayak Paul committed
49

50
51
    # there is no xformers processor for Flux
    test_xformers_attention = False
Aryan's avatar
Aryan committed
52
    test_layerwise_casting = True
Aryan's avatar
Aryan committed
53
    test_group_offloading = True
54

Aryan's avatar
Aryan committed
55
56
57
58
59
60
61
62
    faster_cache_config = FasterCacheConfig(
        spatial_attention_block_skip_range=2,
        spatial_attention_timestep_skip_range=(-1, 901),
        unconditional_batch_skip_range=2,
        attention_weight_callback=lambda _: 0.5,
        is_guidance_distilled=True,
    )

63
    def get_dummy_components(self, num_layers: int = 1, num_single_layers: int = 1):
Sayak Paul's avatar
Sayak Paul committed
64
65
66
67
        torch.manual_seed(0)
        transformer = FluxTransformer2DModel(
            patch_size=1,
            in_channels=4,
68
69
            num_layers=num_layers,
            num_single_layers=num_single_layers,
Sayak Paul's avatar
Sayak Paul committed
70
71
            attention_head_dim=16,
            num_attention_heads=2,
Sayak Paul's avatar
Sayak Paul committed
72
            joint_attention_dim=32,
Sayak Paul's avatar
Sayak Paul committed
73
74
            pooled_projection_dim=32,
            axes_dims_rope=[4, 4, 8],
Sayak Paul's avatar
Sayak Paul committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        )
        clip_text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            hidden_act="gelu",
            projection_dim=32,
        )

        torch.manual_seed(0)
        text_encoder = CLIPTextModel(clip_text_encoder_config)

        torch.manual_seed(0)
        text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        vae = AutoencoderKL(
            sample_size=32,
            in_channels=3,
            out_channels=3,
            block_out_channels=(4,),
            layers_per_block=1,
Sayak Paul's avatar
Sayak Paul committed
106
            latent_channels=1,
Sayak Paul's avatar
Sayak Paul committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
            norm_num_groups=1,
            use_quant_conv=False,
            use_post_quant_conv=False,
            shift_factor=0.0609,
            scaling_factor=1.5035,
        )

        scheduler = FlowMatchEulerDiscreteScheduler()

        return {
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
            "transformer": transformer,
            "vae": vae,
hlky's avatar
hlky committed
124
125
            "image_encoder": None,
            "feature_extractor": None,
Sayak Paul's avatar
Sayak Paul committed
126
127
128
129
130
131
132
133
134
135
136
137
138
        }

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
Sayak Paul's avatar
Sayak Paul committed
139
140
141
            "height": 8,
            "width": 8,
            "max_sequence_length": 48,
Sayak Paul's avatar
Sayak Paul committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
            "output_type": "np",
        }
        return inputs

    def test_flux_different_prompts(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        output_same_prompt = pipe(**inputs).images[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt_2"] = "a different prompt"
        output_different_prompts = pipe(**inputs).images[0]

        max_diff = np.abs(output_same_prompt - output_different_prompts).max()

        # Outputs should be different here
Sayak Paul's avatar
Sayak Paul committed
159
        # For some reasons, they don't show large differences
Aryan's avatar
Aryan committed
160
        self.assertGreater(max_diff, 1e-6, "Outputs should be different for different prompts.")
Sayak Paul's avatar
Sayak Paul committed
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
    def test_fused_qkv_projections(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        original_image_slice = image[0, -3:, -3:, -1]

        # TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added
        # to the pipeline level.
        pipe.transformer.fuse_qkv_projections()
176
177
178
        self.assertTrue(
            check_qkv_fused_layers_exist(pipe.transformer, ["to_qkv"]),
            ("Something wrong with the fused attention layers. Expected all the attention projections to be fused."),
179
        )
180
181
182
183
184
185
186
187
188
189

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice_fused = image[0, -3:, -3:, -1]

        pipe.transformer.unfuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice_disabled = image[0, -3:, -3:, -1]

Aryan's avatar
Aryan committed
190
191
192
        self.assertTrue(
            np.allclose(original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3),
            ("Fusion of QKV projections shouldn't affect the outputs."),
193
        )
Aryan's avatar
Aryan committed
194
195
196
        self.assertTrue(
            np.allclose(image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3),
            ("Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."),
197
        )
Aryan's avatar
Aryan committed
198
199
200
        self.assertTrue(
            np.allclose(original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2),
            ("Original outputs should match when fused QKV projections are disabled."),
201
        )
202

Dhruv Nair's avatar
Dhruv Nair committed
203
204
205
206
207
208
209
210
211
212
213
214
    def test_flux_image_output_shape(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
        inputs = self.get_dummy_inputs(torch_device)

        height_width_pairs = [(32, 32), (72, 57)]
        for height, width in height_width_pairs:
            expected_height = height - height % (pipe.vae_scale_factor * 2)
            expected_width = width - width % (pipe.vae_scale_factor * 2)

            inputs.update({"height": height, "width": width})
            image = pipe(**inputs).images[0]
            output_height, output_width, _ = image.shape
Aryan's avatar
Aryan committed
215
216
217
218
219
            self.assertEqual(
                (output_height, output_width),
                (expected_height, expected_width),
                f"Output shape {image.shape} does not match expected shape {(expected_height, expected_width)}",
            )
Dhruv Nair's avatar
Dhruv Nair committed
220

221
222
223
224
225
226
227
228
229
    def test_flux_true_cfg(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
        inputs = self.get_dummy_inputs(torch_device)
        inputs.pop("generator")

        no_true_cfg_out = pipe(**inputs, generator=torch.manual_seed(0)).images[0]
        inputs["negative_prompt"] = "bad quality"
        inputs["true_cfg_scale"] = 2.0
        true_cfg_out = pipe(**inputs, generator=torch.manual_seed(0)).images[0]
Aryan's avatar
Aryan committed
230
231
232
        self.assertFalse(
            np.allclose(no_true_cfg_out, true_cfg_out), "Outputs should be different when true_cfg_scale is set."
        )
233

Sayak Paul's avatar
Sayak Paul committed
234

235
@nightly
236
@require_big_accelerator
Sayak Paul's avatar
Sayak Paul committed
237
238
239
240
241
242
243
class FluxPipelineSlowTests(unittest.TestCase):
    pipeline_class = FluxPipeline
    repo_id = "black-forest-labs/FLUX.1-schnell"

    def setUp(self):
        super().setUp()
        gc.collect()
244
        backend_empty_cache(torch_device)
Sayak Paul's avatar
Sayak Paul committed
245
246
247
248

    def tearDown(self):
        super().tearDown()
        gc.collect()
249
        backend_empty_cache(torch_device)
Sayak Paul's avatar
Sayak Paul committed
250
251

    def get_inputs(self, device, seed=0):
252
        generator = torch.Generator(device="cpu").manual_seed(seed)
Sayak Paul's avatar
Sayak Paul committed
253

254
255
        prompt_embeds = torch.load(
            hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt")
256
        ).to(torch_device)
257
258
259
260
        pooled_prompt_embeds = torch.load(
            hf_hub_download(
                repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt"
            )
261
        ).to(torch_device)
Sayak Paul's avatar
Sayak Paul committed
262
        return {
263
264
            "prompt_embeds": prompt_embeds,
            "pooled_prompt_embeds": pooled_prompt_embeds,
Sayak Paul's avatar
Sayak Paul committed
265
            "num_inference_steps": 2,
266
267
            "guidance_scale": 0.0,
            "max_sequence_length": 256,
Sayak Paul's avatar
Sayak Paul committed
268
269
270
271
272
            "output_type": "np",
            "generator": generator,
        }

    def test_flux_inference(self):
273
274
        pipe = self.pipeline_class.from_pretrained(
            self.repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None
275
        ).to(torch_device)
Sayak Paul's avatar
Sayak Paul committed
276
277
278
279
280

        inputs = self.get_inputs(torch_device)

        image = pipe(**inputs).images[0]
        image_slice = image[0, :10, :10]
Aryan's avatar
Aryan committed
281
        # fmt: off
282
283
284
285
286
287

        expected_slices = Expectations(
            {
                ("cuda", None): np.array([0.3242, 0.3203, 0.3164, 0.3164, 0.3125, 0.3125, 0.3281, 0.3242, 0.3203, 0.3301, 0.3262, 0.3242, 0.3281, 0.3242, 0.3203, 0.3262, 0.3262, 0.3164, 0.3262, 0.3281, 0.3184, 0.3281, 0.3281, 0.3203, 0.3281, 0.3281, 0.3164, 0.3320, 0.3320, 0.3203], dtype=np.float32,),
                ("xpu", 3): np.array([0.3301, 0.3281, 0.3359, 0.3203, 0.3203, 0.3281, 0.3281, 0.3301, 0.3340, 0.3281, 0.3320, 0.3359, 0.3281, 0.3301, 0.3320, 0.3242, 0.3301, 0.3281, 0.3242, 0.3320, 0.3320, 0.3281, 0.3320, 0.3320, 0.3262, 0.3320, 0.3301, 0.3301, 0.3359, 0.3320], dtype=np.float32,),
            }
Sayak Paul's avatar
Sayak Paul committed
288
        )
289
        expected_slice = expected_slices.get_expectation()
Aryan's avatar
Aryan committed
290
        # fmt: on
Sayak Paul's avatar
Sayak Paul committed
291
292

        max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())
Aryan's avatar
Aryan committed
293
294
295
        self.assertLess(
            max_diff, 1e-4, f"Image slice is different from expected slice: {image_slice} != {expected_slice}"
        )
hlky's avatar
hlky committed
296
297
298


@slow
299
@require_big_accelerator
hlky's avatar
hlky committed
300
301
302
303
304
305
306
307
308
309
class FluxIPAdapterPipelineSlowTests(unittest.TestCase):
    pipeline_class = FluxPipeline
    repo_id = "black-forest-labs/FLUX.1-dev"
    image_encoder_pretrained_model_name_or_path = "openai/clip-vit-large-patch14"
    weight_name = "ip_adapter.safetensors"
    ip_adapter_repo_id = "XLabs-AI/flux-ip-adapter"

    def setUp(self):
        super().setUp()
        gc.collect()
310
        backend_empty_cache(torch_device)
hlky's avatar
hlky committed
311
312
313
314

    def tearDown(self):
        super().tearDown()
        gc.collect()
315
        backend_empty_cache(torch_device)
hlky's avatar
hlky committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

    def get_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        prompt_embeds = torch.load(
            hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt")
        )
        pooled_prompt_embeds = torch.load(
            hf_hub_download(
                repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt"
            )
        )
        negative_prompt_embeds = torch.zeros_like(prompt_embeds)
        negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
        ip_adapter_image = np.zeros((1024, 1024, 3), dtype=np.uint8)
        return {
            "prompt_embeds": prompt_embeds,
            "pooled_prompt_embeds": pooled_prompt_embeds,
            "negative_prompt_embeds": negative_prompt_embeds,
            "negative_pooled_prompt_embeds": negative_pooled_prompt_embeds,
            "ip_adapter_image": ip_adapter_image,
            "num_inference_steps": 2,
            "guidance_scale": 3.5,
            "true_cfg_scale": 4.0,
            "max_sequence_length": 256,
            "output_type": "np",
            "generator": generator,
        }

    def test_flux_ip_adapter_inference(self):
        pipe = self.pipeline_class.from_pretrained(
            self.repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None
        )
        pipe.load_ip_adapter(
            self.ip_adapter_repo_id,
            weight_name=self.weight_name,
            image_encoder_pretrained_model_name_or_path=self.image_encoder_pretrained_model_name_or_path,
        )
        pipe.set_ip_adapter_scale(1.0)
        pipe.enable_model_cpu_offload()

        inputs = self.get_inputs(torch_device)

        image = pipe(**inputs).images[0]
        image_slice = image[0, :10, :10]

Aryan's avatar
Aryan committed
365
        # fmt: off
hlky's avatar
hlky committed
366
        expected_slice = np.array(
Aryan's avatar
Aryan committed
367
            [0.1855, 0.1680, 0.1406, 0.1953, 0.1699, 0.1465, 0.2012, 0.1738, 0.1484, 0.2051, 0.1797, 0.1523, 0.2012, 0.1719, 0.1445, 0.2070, 0.1777, 0.1465, 0.2090, 0.1836, 0.1484, 0.2129, 0.1875, 0.1523, 0.2090, 0.1816, 0.1484, 0.2110, 0.1836, 0.1543],
hlky's avatar
hlky committed
368
369
            dtype=np.float32,
        )
Aryan's avatar
Aryan committed
370
        # fmt: on
hlky's avatar
hlky committed
371
372

        max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())
Aryan's avatar
Aryan committed
373
374
375
        self.assertLess(
            max_diff, 1e-4, f"Image slice is different from expected slice: {image_slice} != {expected_slice}"
        )