test_pipeline_flux.py 13.7 KB
Newer Older
Sayak Paul's avatar
Sayak Paul committed
1
2
3
4
5
import gc
import unittest

import numpy as np
import torch
6
from huggingface_hub import hf_hub_download
Sayak Paul's avatar
Sayak Paul committed
7
8
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel

Aryan's avatar
Aryan committed
9
10
11
12
13
14
15
from diffusers import (
    AutoencoderKL,
    FasterCacheConfig,
    FlowMatchEulerDiscreteScheduler,
    FluxPipeline,
    FluxTransformer2DModel,
)
16
17

from ...testing_utils import (
18
    Expectations,
19
    backend_empty_cache,
20
    nightly,
Sayak Paul's avatar
Sayak Paul committed
21
    numpy_cosine_similarity_distance,
22
    require_big_accelerator,
Sayak Paul's avatar
Sayak Paul committed
23
24
25
    slow,
    torch_device,
)
26
from ..test_pipelines_common import (
Aryan's avatar
Aryan committed
27
    FasterCacheTesterMixin,
Aryan's avatar
Aryan committed
28
    FirstBlockCacheTesterMixin,
hlky's avatar
hlky committed
29
    FluxIPAdapterTesterMixin,
30
    PipelineTesterMixin,
31
    PyramidAttentionBroadcastTesterMixin,
32
    check_qkv_fused_layers_exist,
33
)
Sayak Paul's avatar
Sayak Paul committed
34
35


36
class FluxPipelineFastTests(
Aryan's avatar
Aryan committed
37
38
39
40
    PipelineTesterMixin,
    FluxIPAdapterTesterMixin,
    PyramidAttentionBroadcastTesterMixin,
    FasterCacheTesterMixin,
Aryan's avatar
Aryan committed
41
42
    FirstBlockCacheTesterMixin,
    unittest.TestCase,
43
):
Sayak Paul's avatar
Sayak Paul committed
44
    pipeline_class = FluxPipeline
Sayak Paul's avatar
Sayak Paul committed
45
46
    params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"])
    batch_params = frozenset(["prompt"])
Sayak Paul's avatar
Sayak Paul committed
47

48
49
    # there is no xformers processor for Flux
    test_xformers_attention = False
Aryan's avatar
Aryan committed
50
    test_layerwise_casting = True
Aryan's avatar
Aryan committed
51
    test_group_offloading = True
52

Aryan's avatar
Aryan committed
53
54
55
56
57
58
59
60
    faster_cache_config = FasterCacheConfig(
        spatial_attention_block_skip_range=2,
        spatial_attention_timestep_skip_range=(-1, 901),
        unconditional_batch_skip_range=2,
        attention_weight_callback=lambda _: 0.5,
        is_guidance_distilled=True,
    )

61
    def get_dummy_components(self, num_layers: int = 1, num_single_layers: int = 1):
Sayak Paul's avatar
Sayak Paul committed
62
63
64
65
        torch.manual_seed(0)
        transformer = FluxTransformer2DModel(
            patch_size=1,
            in_channels=4,
66
67
            num_layers=num_layers,
            num_single_layers=num_single_layers,
Sayak Paul's avatar
Sayak Paul committed
68
69
            attention_head_dim=16,
            num_attention_heads=2,
Sayak Paul's avatar
Sayak Paul committed
70
            joint_attention_dim=32,
Sayak Paul's avatar
Sayak Paul committed
71
72
            pooled_projection_dim=32,
            axes_dims_rope=[4, 4, 8],
Sayak Paul's avatar
Sayak Paul committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
        )
        clip_text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            hidden_act="gelu",
            projection_dim=32,
        )

        torch.manual_seed(0)
        text_encoder = CLIPTextModel(clip_text_encoder_config)

        torch.manual_seed(0)
        text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        vae = AutoencoderKL(
            sample_size=32,
            in_channels=3,
            out_channels=3,
            block_out_channels=(4,),
            layers_per_block=1,
Sayak Paul's avatar
Sayak Paul committed
104
            latent_channels=1,
Sayak Paul's avatar
Sayak Paul committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
            norm_num_groups=1,
            use_quant_conv=False,
            use_post_quant_conv=False,
            shift_factor=0.0609,
            scaling_factor=1.5035,
        )

        scheduler = FlowMatchEulerDiscreteScheduler()

        return {
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
            "transformer": transformer,
            "vae": vae,
hlky's avatar
hlky committed
122
123
            "image_encoder": None,
            "feature_extractor": None,
Sayak Paul's avatar
Sayak Paul committed
124
125
126
127
128
129
130
131
132
133
134
135
136
        }

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
Sayak Paul's avatar
Sayak Paul committed
137
138
139
            "height": 8,
            "width": 8,
            "max_sequence_length": 48,
Sayak Paul's avatar
Sayak Paul committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
            "output_type": "np",
        }
        return inputs

    def test_flux_different_prompts(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        output_same_prompt = pipe(**inputs).images[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt_2"] = "a different prompt"
        output_different_prompts = pipe(**inputs).images[0]

        max_diff = np.abs(output_same_prompt - output_different_prompts).max()

        # Outputs should be different here
Sayak Paul's avatar
Sayak Paul committed
157
        # For some reasons, they don't show large differences
Aryan's avatar
Aryan committed
158
        self.assertGreater(max_diff, 1e-6, "Outputs should be different for different prompts.")
Sayak Paul's avatar
Sayak Paul committed
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
    def test_fused_qkv_projections(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        original_image_slice = image[0, -3:, -3:, -1]

        # TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added
        # to the pipeline level.
        pipe.transformer.fuse_qkv_projections()
174
175
176
        self.assertTrue(
            check_qkv_fused_layers_exist(pipe.transformer, ["to_qkv"]),
            ("Something wrong with the fused attention layers. Expected all the attention projections to be fused."),
177
        )
178
179
180
181
182
183
184
185
186
187

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice_fused = image[0, -3:, -3:, -1]

        pipe.transformer.unfuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice_disabled = image[0, -3:, -3:, -1]

Aryan's avatar
Aryan committed
188
189
190
        self.assertTrue(
            np.allclose(original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3),
            ("Fusion of QKV projections shouldn't affect the outputs."),
191
        )
Aryan's avatar
Aryan committed
192
193
194
        self.assertTrue(
            np.allclose(image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3),
            ("Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."),
195
        )
Aryan's avatar
Aryan committed
196
197
198
        self.assertTrue(
            np.allclose(original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2),
            ("Original outputs should match when fused QKV projections are disabled."),
199
        )
200

Dhruv Nair's avatar
Dhruv Nair committed
201
202
203
204
205
206
207
208
209
210
211
212
    def test_flux_image_output_shape(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
        inputs = self.get_dummy_inputs(torch_device)

        height_width_pairs = [(32, 32), (72, 57)]
        for height, width in height_width_pairs:
            expected_height = height - height % (pipe.vae_scale_factor * 2)
            expected_width = width - width % (pipe.vae_scale_factor * 2)

            inputs.update({"height": height, "width": width})
            image = pipe(**inputs).images[0]
            output_height, output_width, _ = image.shape
Aryan's avatar
Aryan committed
213
214
215
216
217
            self.assertEqual(
                (output_height, output_width),
                (expected_height, expected_width),
                f"Output shape {image.shape} does not match expected shape {(expected_height, expected_width)}",
            )
Dhruv Nair's avatar
Dhruv Nair committed
218

219
220
221
222
223
224
225
226
227
    def test_flux_true_cfg(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
        inputs = self.get_dummy_inputs(torch_device)
        inputs.pop("generator")

        no_true_cfg_out = pipe(**inputs, generator=torch.manual_seed(0)).images[0]
        inputs["negative_prompt"] = "bad quality"
        inputs["true_cfg_scale"] = 2.0
        true_cfg_out = pipe(**inputs, generator=torch.manual_seed(0)).images[0]
Aryan's avatar
Aryan committed
228
229
230
        self.assertFalse(
            np.allclose(no_true_cfg_out, true_cfg_out), "Outputs should be different when true_cfg_scale is set."
        )
231

Sayak Paul's avatar
Sayak Paul committed
232

233
@nightly
234
@require_big_accelerator
Sayak Paul's avatar
Sayak Paul committed
235
236
237
238
239
240
241
class FluxPipelineSlowTests(unittest.TestCase):
    pipeline_class = FluxPipeline
    repo_id = "black-forest-labs/FLUX.1-schnell"

    def setUp(self):
        super().setUp()
        gc.collect()
242
        backend_empty_cache(torch_device)
Sayak Paul's avatar
Sayak Paul committed
243
244
245
246

    def tearDown(self):
        super().tearDown()
        gc.collect()
247
        backend_empty_cache(torch_device)
Sayak Paul's avatar
Sayak Paul committed
248
249

    def get_inputs(self, device, seed=0):
250
        generator = torch.Generator(device="cpu").manual_seed(seed)
Sayak Paul's avatar
Sayak Paul committed
251

252
253
        prompt_embeds = torch.load(
            hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt")
254
        ).to(torch_device)
255
256
257
258
        pooled_prompt_embeds = torch.load(
            hf_hub_download(
                repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt"
            )
259
        ).to(torch_device)
Sayak Paul's avatar
Sayak Paul committed
260
        return {
261
262
            "prompt_embeds": prompt_embeds,
            "pooled_prompt_embeds": pooled_prompt_embeds,
Sayak Paul's avatar
Sayak Paul committed
263
            "num_inference_steps": 2,
264
265
            "guidance_scale": 0.0,
            "max_sequence_length": 256,
Sayak Paul's avatar
Sayak Paul committed
266
267
268
269
270
            "output_type": "np",
            "generator": generator,
        }

    def test_flux_inference(self):
271
272
        pipe = self.pipeline_class.from_pretrained(
            self.repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None
273
        ).to(torch_device)
Sayak Paul's avatar
Sayak Paul committed
274
275
276
277
278

        inputs = self.get_inputs(torch_device)

        image = pipe(**inputs).images[0]
        image_slice = image[0, :10, :10]
Aryan's avatar
Aryan committed
279
        # fmt: off
280
281
282
283
284
285

        expected_slices = Expectations(
            {
                ("cuda", None): np.array([0.3242, 0.3203, 0.3164, 0.3164, 0.3125, 0.3125, 0.3281, 0.3242, 0.3203, 0.3301, 0.3262, 0.3242, 0.3281, 0.3242, 0.3203, 0.3262, 0.3262, 0.3164, 0.3262, 0.3281, 0.3184, 0.3281, 0.3281, 0.3203, 0.3281, 0.3281, 0.3164, 0.3320, 0.3320, 0.3203], dtype=np.float32,),
                ("xpu", 3): np.array([0.3301, 0.3281, 0.3359, 0.3203, 0.3203, 0.3281, 0.3281, 0.3301, 0.3340, 0.3281, 0.3320, 0.3359, 0.3281, 0.3301, 0.3320, 0.3242, 0.3301, 0.3281, 0.3242, 0.3320, 0.3320, 0.3281, 0.3320, 0.3320, 0.3262, 0.3320, 0.3301, 0.3301, 0.3359, 0.3320], dtype=np.float32,),
            }
Sayak Paul's avatar
Sayak Paul committed
286
        )
287
        expected_slice = expected_slices.get_expectation()
Aryan's avatar
Aryan committed
288
        # fmt: on
Sayak Paul's avatar
Sayak Paul committed
289
290

        max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())
Aryan's avatar
Aryan committed
291
292
293
        self.assertLess(
            max_diff, 1e-4, f"Image slice is different from expected slice: {image_slice} != {expected_slice}"
        )
hlky's avatar
hlky committed
294
295
296


@slow
297
@require_big_accelerator
hlky's avatar
hlky committed
298
299
300
301
302
303
304
305
306
307
class FluxIPAdapterPipelineSlowTests(unittest.TestCase):
    pipeline_class = FluxPipeline
    repo_id = "black-forest-labs/FLUX.1-dev"
    image_encoder_pretrained_model_name_or_path = "openai/clip-vit-large-patch14"
    weight_name = "ip_adapter.safetensors"
    ip_adapter_repo_id = "XLabs-AI/flux-ip-adapter"

    def setUp(self):
        super().setUp()
        gc.collect()
308
        backend_empty_cache(torch_device)
hlky's avatar
hlky committed
309
310
311
312

    def tearDown(self):
        super().tearDown()
        gc.collect()
313
        backend_empty_cache(torch_device)
hlky's avatar
hlky committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

    def get_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        prompt_embeds = torch.load(
            hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt")
        )
        pooled_prompt_embeds = torch.load(
            hf_hub_download(
                repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt"
            )
        )
        negative_prompt_embeds = torch.zeros_like(prompt_embeds)
        negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
        ip_adapter_image = np.zeros((1024, 1024, 3), dtype=np.uint8)
        return {
            "prompt_embeds": prompt_embeds,
            "pooled_prompt_embeds": pooled_prompt_embeds,
            "negative_prompt_embeds": negative_prompt_embeds,
            "negative_pooled_prompt_embeds": negative_pooled_prompt_embeds,
            "ip_adapter_image": ip_adapter_image,
            "num_inference_steps": 2,
            "guidance_scale": 3.5,
            "true_cfg_scale": 4.0,
            "max_sequence_length": 256,
            "output_type": "np",
            "generator": generator,
        }

    def test_flux_ip_adapter_inference(self):
        pipe = self.pipeline_class.from_pretrained(
            self.repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None
        )
        pipe.load_ip_adapter(
            self.ip_adapter_repo_id,
            weight_name=self.weight_name,
            image_encoder_pretrained_model_name_or_path=self.image_encoder_pretrained_model_name_or_path,
        )
        pipe.set_ip_adapter_scale(1.0)
        pipe.enable_model_cpu_offload()

        inputs = self.get_inputs(torch_device)

        image = pipe(**inputs).images[0]
        image_slice = image[0, :10, :10]

Aryan's avatar
Aryan committed
363
        # fmt: off
hlky's avatar
hlky committed
364
        expected_slice = np.array(
Aryan's avatar
Aryan committed
365
            [0.1855, 0.1680, 0.1406, 0.1953, 0.1699, 0.1465, 0.2012, 0.1738, 0.1484, 0.2051, 0.1797, 0.1523, 0.2012, 0.1719, 0.1445, 0.2070, 0.1777, 0.1465, 0.2090, 0.1836, 0.1484, 0.2129, 0.1875, 0.1523, 0.2090, 0.1816, 0.1484, 0.2110, 0.1836, 0.1543],
hlky's avatar
hlky committed
366
367
            dtype=np.float32,
        )
Aryan's avatar
Aryan committed
368
        # fmt: on
hlky's avatar
hlky committed
369
370

        max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())
Aryan's avatar
Aryan committed
371
372
373
        self.assertLess(
            max_diff, 1e-4, f"Image slice is different from expected slice: {image_slice} != {expected_slice}"
        )