test_pipeline_flux.py 13.8 KB
Newer Older
Sayak Paul's avatar
Sayak Paul committed
1
2
3
4
5
import gc
import unittest

import numpy as np
import torch
6
from huggingface_hub import hf_hub_download
Sayak Paul's avatar
Sayak Paul committed
7
8
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel

Aryan's avatar
Aryan committed
9
10
11
12
13
14
15
from diffusers import (
    AutoencoderKL,
    FasterCacheConfig,
    FlowMatchEulerDiscreteScheduler,
    FluxPipeline,
    FluxTransformer2DModel,
)
Sayak Paul's avatar
Sayak Paul committed
16
from diffusers.utils.testing_utils import (
17
    backend_empty_cache,
18
    nightly,
Sayak Paul's avatar
Sayak Paul committed
19
    numpy_cosine_similarity_distance,
20
    require_big_accelerator,
Sayak Paul's avatar
Sayak Paul committed
21
22
23
24
    slow,
    torch_device,
)

25
from ..test_pipelines_common import (
Aryan's avatar
Aryan committed
26
    FasterCacheTesterMixin,
hlky's avatar
hlky committed
27
    FluxIPAdapterTesterMixin,
28
    PipelineTesterMixin,
29
    PyramidAttentionBroadcastTesterMixin,
30
31
32
    check_qkv_fusion_matches_attn_procs_length,
    check_qkv_fusion_processors_exist,
)
Sayak Paul's avatar
Sayak Paul committed
33
34


35
class FluxPipelineFastTests(
Aryan's avatar
Aryan committed
36
37
38
39
40
    unittest.TestCase,
    PipelineTesterMixin,
    FluxIPAdapterTesterMixin,
    PyramidAttentionBroadcastTesterMixin,
    FasterCacheTesterMixin,
41
):
Sayak Paul's avatar
Sayak Paul committed
42
    pipeline_class = FluxPipeline
Sayak Paul's avatar
Sayak Paul committed
43
44
    params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"])
    batch_params = frozenset(["prompt"])
Sayak Paul's avatar
Sayak Paul committed
45

46
47
    # there is no xformers processor for Flux
    test_xformers_attention = False
Aryan's avatar
Aryan committed
48
    test_layerwise_casting = True
Aryan's avatar
Aryan committed
49
    test_group_offloading = True
50

Aryan's avatar
Aryan committed
51
52
53
54
55
56
57
58
    faster_cache_config = FasterCacheConfig(
        spatial_attention_block_skip_range=2,
        spatial_attention_timestep_skip_range=(-1, 901),
        unconditional_batch_skip_range=2,
        attention_weight_callback=lambda _: 0.5,
        is_guidance_distilled=True,
    )

59
    def get_dummy_components(self, num_layers: int = 1, num_single_layers: int = 1):
Sayak Paul's avatar
Sayak Paul committed
60
61
62
63
        torch.manual_seed(0)
        transformer = FluxTransformer2DModel(
            patch_size=1,
            in_channels=4,
64
65
            num_layers=num_layers,
            num_single_layers=num_single_layers,
Sayak Paul's avatar
Sayak Paul committed
66
67
            attention_head_dim=16,
            num_attention_heads=2,
Sayak Paul's avatar
Sayak Paul committed
68
            joint_attention_dim=32,
Sayak Paul's avatar
Sayak Paul committed
69
70
            pooled_projection_dim=32,
            axes_dims_rope=[4, 4, 8],
Sayak Paul's avatar
Sayak Paul committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        )
        clip_text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            hidden_act="gelu",
            projection_dim=32,
        )

        torch.manual_seed(0)
        text_encoder = CLIPTextModel(clip_text_encoder_config)

        torch.manual_seed(0)
        text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        vae = AutoencoderKL(
            sample_size=32,
            in_channels=3,
            out_channels=3,
            block_out_channels=(4,),
            layers_per_block=1,
Sayak Paul's avatar
Sayak Paul committed
102
            latent_channels=1,
Sayak Paul's avatar
Sayak Paul committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
            norm_num_groups=1,
            use_quant_conv=False,
            use_post_quant_conv=False,
            shift_factor=0.0609,
            scaling_factor=1.5035,
        )

        scheduler = FlowMatchEulerDiscreteScheduler()

        return {
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
            "transformer": transformer,
            "vae": vae,
hlky's avatar
hlky committed
120
121
            "image_encoder": None,
            "feature_extractor": None,
Sayak Paul's avatar
Sayak Paul committed
122
123
124
125
126
127
128
129
130
131
132
133
134
        }

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
Sayak Paul's avatar
Sayak Paul committed
135
136
137
            "height": 8,
            "width": 8,
            "max_sequence_length": 48,
Sayak Paul's avatar
Sayak Paul committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
            "output_type": "np",
        }
        return inputs

    def test_flux_different_prompts(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        output_same_prompt = pipe(**inputs).images[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt_2"] = "a different prompt"
        output_different_prompts = pipe(**inputs).images[0]

        max_diff = np.abs(output_same_prompt - output_different_prompts).max()

        # Outputs should be different here
Sayak Paul's avatar
Sayak Paul committed
155
156
        # For some reasons, they don't show large differences
        assert max_diff > 1e-6
Sayak Paul's avatar
Sayak Paul committed
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
    def test_fused_qkv_projections(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        original_image_slice = image[0, -3:, -3:, -1]

        # TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added
        # to the pipeline level.
        pipe.transformer.fuse_qkv_projections()
172
173
174
        assert check_qkv_fusion_processors_exist(pipe.transformer), (
            "Something wrong with the fused attention processors. Expected all the attention processors to be fused."
        )
175
176
177
178
179
180
181
182
183
184
185
186
187
        assert check_qkv_fusion_matches_attn_procs_length(
            pipe.transformer, pipe.transformer.original_attn_processors
        ), "Something wrong with the attention processors concerning the fused QKV projections."

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice_fused = image[0, -3:, -3:, -1]

        pipe.transformer.unfuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice_disabled = image[0, -3:, -3:, -1]

188
189
190
191
192
193
194
195
196
        assert np.allclose(original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3), (
            "Fusion of QKV projections shouldn't affect the outputs."
        )
        assert np.allclose(image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3), (
            "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
        )
        assert np.allclose(original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2), (
            "Original outputs should match when fused QKV projections are disabled."
        )
197

Dhruv Nair's avatar
Dhruv Nair committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    def test_flux_image_output_shape(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
        inputs = self.get_dummy_inputs(torch_device)

        height_width_pairs = [(32, 32), (72, 57)]
        for height, width in height_width_pairs:
            expected_height = height - height % (pipe.vae_scale_factor * 2)
            expected_width = width - width % (pipe.vae_scale_factor * 2)

            inputs.update({"height": height, "width": width})
            image = pipe(**inputs).images[0]
            output_height, output_width, _ = image.shape
            assert (output_height, output_width) == (expected_height, expected_width)

212
213
214
215
216
217
218
219
220
221
222
    def test_flux_true_cfg(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
        inputs = self.get_dummy_inputs(torch_device)
        inputs.pop("generator")

        no_true_cfg_out = pipe(**inputs, generator=torch.manual_seed(0)).images[0]
        inputs["negative_prompt"] = "bad quality"
        inputs["true_cfg_scale"] = 2.0
        true_cfg_out = pipe(**inputs, generator=torch.manual_seed(0)).images[0]
        assert not np.allclose(no_true_cfg_out, true_cfg_out)

Sayak Paul's avatar
Sayak Paul committed
223

224
@nightly
225
@require_big_accelerator
Sayak Paul's avatar
Sayak Paul committed
226
227
228
229
230
231
232
class FluxPipelineSlowTests(unittest.TestCase):
    pipeline_class = FluxPipeline
    repo_id = "black-forest-labs/FLUX.1-schnell"

    def setUp(self):
        super().setUp()
        gc.collect()
233
        backend_empty_cache(torch_device)
Sayak Paul's avatar
Sayak Paul committed
234
235
236
237

    def tearDown(self):
        super().tearDown()
        gc.collect()
238
        backend_empty_cache(torch_device)
Sayak Paul's avatar
Sayak Paul committed
239
240

    def get_inputs(self, device, seed=0):
241
        generator = torch.Generator(device="cpu").manual_seed(seed)
Sayak Paul's avatar
Sayak Paul committed
242

243
244
        prompt_embeds = torch.load(
            hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt")
245
        ).to(torch_device)
246
247
248
249
        pooled_prompt_embeds = torch.load(
            hf_hub_download(
                repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt"
            )
250
        ).to(torch_device)
Sayak Paul's avatar
Sayak Paul committed
251
        return {
252
253
            "prompt_embeds": prompt_embeds,
            "pooled_prompt_embeds": pooled_prompt_embeds,
Sayak Paul's avatar
Sayak Paul committed
254
            "num_inference_steps": 2,
255
256
            "guidance_scale": 0.0,
            "max_sequence_length": 256,
Sayak Paul's avatar
Sayak Paul committed
257
258
259
260
261
            "output_type": "np",
            "generator": generator,
        }

    def test_flux_inference(self):
262
263
        pipe = self.pipeline_class.from_pretrained(
            self.repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None
264
        ).to(torch_device)
Sayak Paul's avatar
Sayak Paul committed
265
266
267
268
269
270
271

        inputs = self.get_inputs(torch_device)

        image = pipe(**inputs).images[0]
        image_slice = image[0, :10, :10]
        expected_slice = np.array(
            [
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
                0.3242,
                0.3203,
                0.3164,
                0.3164,
                0.3125,
                0.3125,
                0.3281,
                0.3242,
                0.3203,
                0.3301,
                0.3262,
                0.3242,
                0.3281,
                0.3242,
                0.3203,
                0.3262,
                0.3262,
                0.3164,
                0.3262,
                0.3281,
                0.3184,
                0.3281,
                0.3281,
                0.3203,
                0.3281,
                0.3281,
                0.3164,
                0.3320,
                0.3320,
                0.3203,
Sayak Paul's avatar
Sayak Paul committed
302
303
304
305
306
307
308
            ],
            dtype=np.float32,
        )

        max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())

        assert max_diff < 1e-4
hlky's avatar
hlky committed
309
310
311


@slow
312
@require_big_accelerator
hlky's avatar
hlky committed
313
314
315
316
317
318
319
320
321
322
class FluxIPAdapterPipelineSlowTests(unittest.TestCase):
    pipeline_class = FluxPipeline
    repo_id = "black-forest-labs/FLUX.1-dev"
    image_encoder_pretrained_model_name_or_path = "openai/clip-vit-large-patch14"
    weight_name = "ip_adapter.safetensors"
    ip_adapter_repo_id = "XLabs-AI/flux-ip-adapter"

    def setUp(self):
        super().setUp()
        gc.collect()
323
        backend_empty_cache(torch_device)
hlky's avatar
hlky committed
324
325
326
327

    def tearDown(self):
        super().tearDown()
        gc.collect()
328
        backend_empty_cache(torch_device)
hlky's avatar
hlky committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

    def get_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        prompt_embeds = torch.load(
            hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt")
        )
        pooled_prompt_embeds = torch.load(
            hf_hub_download(
                repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt"
            )
        )
        negative_prompt_embeds = torch.zeros_like(prompt_embeds)
        negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
        ip_adapter_image = np.zeros((1024, 1024, 3), dtype=np.uint8)
        return {
            "prompt_embeds": prompt_embeds,
            "pooled_prompt_embeds": pooled_prompt_embeds,
            "negative_prompt_embeds": negative_prompt_embeds,
            "negative_pooled_prompt_embeds": negative_pooled_prompt_embeds,
            "ip_adapter_image": ip_adapter_image,
            "num_inference_steps": 2,
            "guidance_scale": 3.5,
            "true_cfg_scale": 4.0,
            "max_sequence_length": 256,
            "output_type": "np",
            "generator": generator,
        }

    def test_flux_ip_adapter_inference(self):
        pipe = self.pipeline_class.from_pretrained(
            self.repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None
        )
        pipe.load_ip_adapter(
            self.ip_adapter_repo_id,
            weight_name=self.weight_name,
            image_encoder_pretrained_model_name_or_path=self.image_encoder_pretrained_model_name_or_path,
        )
        pipe.set_ip_adapter_scale(1.0)
        pipe.enable_model_cpu_offload()

        inputs = self.get_inputs(torch_device)

        image = pipe(**inputs).images[0]
        image_slice = image[0, :10, :10]

        expected_slice = np.array(
            [
                0.1855,
                0.1680,
                0.1406,
                0.1953,
                0.1699,
                0.1465,
                0.2012,
                0.1738,
                0.1484,
                0.2051,
                0.1797,
                0.1523,
                0.2012,
                0.1719,
                0.1445,
                0.2070,
                0.1777,
                0.1465,
                0.2090,
                0.1836,
                0.1484,
                0.2129,
                0.1875,
                0.1523,
                0.2090,
                0.1816,
                0.1484,
                0.2110,
                0.1836,
                0.1543,
            ],
            dtype=np.float32,
        )

        max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())

        assert max_diff < 1e-4, f"{image_slice} != {expected_slice}"