scheduling_unipc_multistep.py 45.9 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 TSAIL Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Quentin Gallouédec's avatar
Quentin Gallouédec committed
15
# DISCLAIMER: check https://huggingface.co/papers/2302.04867 and https://github.com/wl-zhao/UniPC for more info
Wenliang Zhao's avatar
Wenliang Zhao committed
16
# The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
17
18
19
20
21
22
23
24

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
25
from ..utils import deprecate, is_scipy_available
26
27
28
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput


29
30
31
32
if is_scipy_available():
    import scipy.stats


33
34
35
36
37
38
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
39
40
41
42
43
44
45
46
47
48
49
50
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
51
52
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
53
54
55
56

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
57
    if alpha_transform_type == "cosine":
58

59
60
61
62
63
64
65
66
67
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
68
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
69
70
71
72
73

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
74
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
75
76
77
    return torch.tensor(betas, dtype=torch.float32)


78
79
80
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
    """
Quentin Gallouédec's avatar
Quentin Gallouédec committed
81
    Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
82
83
84


    Args:
85
        betas (`torch.Tensor`):
86
87
88
            the betas that the scheduler is being initialized with.

    Returns:
89
        `torch.Tensor`: rescaled betas with zero terminal SNR
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


115
116
class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
    """
117
    `UniPCMultistepScheduler` is a training-free framework designed for the fast sampling of diffusion models.
118

119
120
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
121
122

    Args:
123
124
125
126
127
128
129
130
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
131
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
132
133
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
134
        solver_order (`int`, default `2`):
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
            The UniPC order which can be any positive integer. The effective order of accuracy is `solver_order + 1`
            due to the UniC. It is recommended to use `solver_order=2` for guided sampling, and `solver_order=3` for
            unconditional sampling.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and `predict_x0=True`.
        predict_x0 (`bool`, defaults to `True`):
            Whether to use the updating algorithm on the predicted x0.
151
        solver_type (`str`, default `bh2`):
152
            Solver type for UniPC. It is recommended to use `bh1` for unconditional sampling when steps < 10, and `bh2`
153
154
            otherwise.
        lower_order_final (`bool`, default `True`):
155
156
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
157
        disable_corrector (`list`, default `[]`):
158
159
160
            Decides which step to disable the corrector to mitigate the misalignment between `epsilon_theta(x_t, c)`
            and `epsilon_theta(x_t^c, c)` which can influence convergence for a large guidance scale. Corrector is
            usually disabled during the first few steps.
161
        solver_p (`SchedulerMixin`, default `None`):
162
            Any other scheduler that if specified, the algorithm becomes `solver_p + UniC`.
163
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
164
165
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
166
167
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
168
169
170
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
171
172
173
174
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
175
            An offset added to the inference steps, as required by some model families.
176
        final_sigmas_type (`str`, defaults to `"zero"`):
177
178
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
            sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
179
180
181
182
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        solver_order: int = 2,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        predict_x0: bool = True,
Wenliang Zhao's avatar
Wenliang Zhao committed
202
        solver_type: str = "bh2",
203
204
205
        lower_order_final: bool = True,
        disable_corrector: List[int] = [],
        solver_p: SchedulerMixin = None,
206
        use_karras_sigmas: Optional[bool] = False,
207
        use_exponential_sigmas: Optional[bool] = False,
208
        use_beta_sigmas: Optional[bool] = False,
209
210
        use_flow_sigmas: Optional[bool] = False,
        flow_shift: Optional[float] = 1.0,
211
212
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
213
        final_sigmas_type: Optional[str] = "zero",  # "zero", "sigma_min"
214
        rescale_betas_zero_snr: bool = False,
215
216
        use_dynamic_shifting: bool = False,
        time_shift_type: str = "exponential",
217
    ):
218
219
220
221
222
223
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
224
225
226
227
228
229
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
230
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
231
232
233
234
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
235
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
236

237
238
239
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

240
241
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
242
243
244
245
246
247

        if rescale_betas_zero_snr:
            # Close to 0 without being 0 so first sigma is not inf
            # FP16 smallest positive subnormal works well here
            self.alphas_cumprod[-1] = 2**-24

248
249
250
251
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
252
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
253
254
255
256
257
258

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        if solver_type not in ["bh1", "bh2"]:
            if solver_type in ["midpoint", "heun", "logrho"]:
259
                self.register_to_config(solver_type="bh2")
260
            else:
261
                raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
262
263
264
265
266
267
268
269
270
271
272
273

        self.predict_x0 = predict_x0
        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.timestep_list = [None] * solver_order
        self.lower_order_nums = 0
        self.disable_corrector = disable_corrector
        self.solver_p = solver_p
        self.last_sample = None
274
        self._step_index = None
275
        self._begin_index = None
276
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
277
278
279
280

    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
281
        The index counter for current timestep. It will increase 1 after each scheduler step.
282
283
        """
        return self._step_index
284

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

303
304
305
    def set_timesteps(
        self, num_inference_steps: int, device: Union[str, torch.device] = None, mu: Optional[float] = None
    ):
306
        """
307
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
308
309
310

        Args:
            num_inference_steps (`int`):
311
312
313
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
314
        """
Quentin Gallouédec's avatar
Quentin Gallouédec committed
315
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
316
317
318
        if mu is not None:
            assert self.config.use_dynamic_shifting and self.config.time_shift_type == "exponential"
            self.config.flow_shift = np.exp(mu)
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1)
                .round()[::-1][:-1]
                .copy()
                .astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // (num_inference_steps + 1)
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.arange(self.config.num_train_timesteps, 0, -step_ratio).round().copy().astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
342

343
344
345
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        if self.config.use_karras_sigmas:
            log_sigmas = np.log(sigmas)
346
            sigmas = np.flip(sigmas).copy()
347
348
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
349
350
351
352
353
354
355
356
357
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = sigmas[-1]
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
358
        elif self.config.use_exponential_sigmas:
359
360
361
            log_sigmas = np.log(sigmas)
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
362
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
363
364
365
366
367
368
369
370
371
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = sigmas[-1]
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
372
        elif self.config.use_beta_sigmas:
373
374
375
            log_sigmas = np.log(sigmas)
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
376
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
377
378
379
380
381
382
383
384
385
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = sigmas[-1]
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
386
387
388
        elif self.config.use_flow_sigmas:
            alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
            sigmas = 1.0 - alphas
hlky's avatar
hlky committed
389
            sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
390
            timesteps = (sigmas * self.config.num_train_timesteps).copy()
391
392
393
394
395
396
397
398
399
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = sigmas[-1]
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
400
401
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
402
403
404
405
406
407
408
409
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )
410
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
411

412
413
        self.sigmas = torch.from_numpy(sigmas)
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
414
415
416

        self.num_inference_steps = len(timesteps)

417
418
419
420
421
422
        self.model_outputs = [
            None,
        ] * self.config.solver_order
        self.lower_order_nums = 0
        self.last_sample = None
        if self.solver_p:
423
            self.solver_p.set_timesteps(self.num_inference_steps, device=device)
424

425
426
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
427
        self._begin_index = None
428
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
429

430
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
431
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
432
433
434
435
436
437
438
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

Quentin Gallouédec's avatar
Quentin Gallouédec committed
439
        https://huggingface.co/papers/2205.11487
440
441
        """
        dtype = sample.dtype
442
        batch_size, channels, *remaining_dims = sample.shape
443
444
445
446
447

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
448
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
449
450
451
452
453
454
455
456
457
458

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

459
        sample = sample.reshape(batch_size, channels, *remaining_dims)
460
461
462
        sample = sample.to(dtype)

        return sample
463

464
465
466
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
467
        log_sigma = np.log(np.maximum(sigma, 1e-10))
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

488
489
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
490
491
492
493
494
495
        if self.config.use_flow_sigmas:
            alpha_t = 1 - sigma
            sigma_t = sigma
        else:
            alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
            sigma_t = sigma * alpha_t
496
497
498

        return alpha_t, sigma_t

499
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
500
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
501
502
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
517
518
519
520
521
522
523
524

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
        """Constructs an exponential noise schedule."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

544
        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
545
546
        return sigmas

547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
        """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

568
        sigmas = np.array(
569
570
571
572
573
574
575
576
577
578
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

579
    def convert_model_output(
580
        self,
581
        model_output: torch.Tensor,
582
        *args,
583
        sample: torch.Tensor = None,
584
        **kwargs,
585
    ) -> torch.Tensor:
586
        r"""
587
        Convert the model output to the corresponding type the UniPC algorithm needs.
588
589

        Args:
590
            model_output (`torch.Tensor`):
591
592
593
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
594
            sample (`torch.Tensor`):
595
                A current instance of a sample created by the diffusion process.
596
597

        Returns:
598
            `torch.Tensor`:
599
                The converted model output.
600
        """
601
602
603
604
605
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
606
                raise ValueError("missing `sample` as a required keyword argument")
607
608
609
610
611
612
613
614
615
616
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma = self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)

617
618
619
620
621
622
623
        if self.predict_x0:
            if self.config.prediction_type == "epsilon":
                x0_pred = (sample - sigma_t * model_output) / alpha_t
            elif self.config.prediction_type == "sample":
                x0_pred = model_output
            elif self.config.prediction_type == "v_prediction":
                x0_pred = alpha_t * sample - sigma_t * model_output
624
625
626
            elif self.config.prediction_type == "flow_prediction":
                sigma_t = self.sigmas[self.step_index]
                x0_pred = sample - sigma_t * model_output
627
628
            else:
                raise ValueError(
629
630
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
                    "`v_prediction`, or `flow_prediction` for the UniPCMultistepScheduler."
631
632
633
                )

            if self.config.thresholding:
634
635
                x0_pred = self._threshold_sample(x0_pred)

636
637
638
639
640
641
642
643
644
645
646
647
648
            return x0_pred
        else:
            if self.config.prediction_type == "epsilon":
                return model_output
            elif self.config.prediction_type == "sample":
                epsilon = (sample - alpha_t * model_output) / sigma_t
                return epsilon
            elif self.config.prediction_type == "v_prediction":
                epsilon = alpha_t * model_output + sigma_t * sample
                return epsilon
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
Wenliang Zhao's avatar
Wenliang Zhao committed
649
                    " `v_prediction` for the UniPCMultistepScheduler."
650
651
652
653
                )

    def multistep_uni_p_bh_update(
        self,
654
        model_output: torch.Tensor,
655
        *args,
656
        sample: torch.Tensor = None,
657
658
        order: int = None,
        **kwargs,
659
    ) -> torch.Tensor:
660
661
662
663
        """
        One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified.

        Args:
664
            model_output (`torch.Tensor`):
665
666
667
                The direct output from the learned diffusion model at the current timestep.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
668
            sample (`torch.Tensor`):
669
670
671
                A current instance of a sample created by the diffusion process.
            order (`int`):
                The order of UniP at this timestep (corresponds to the *p* in UniPC-p).
672
673

        Returns:
674
            `torch.Tensor`:
675
                The sample tensor at the previous timestep.
676
        """
677
678
679
680
681
        prev_timestep = args[0] if len(args) > 0 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
682
                raise ValueError("missing `sample` as a required keyword argument")
683
684
685
686
        if order is None:
            if len(args) > 2:
                order = args[2]
            else:
687
                raise ValueError("missing `order` as a required keyword argument")
688
689
690
691
692
693
        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
694
695
        model_output_list = self.model_outputs

696
        s0 = self.timestep_list[-1]
697
698
699
700
701
702
703
        m0 = model_output_list[-1]
        x = sample

        if self.solver_p:
            x_t = self.solver_p.step(model_output, s0, x).prev_sample
            return x_t

704
705
706
707
708
709
        sigma_t, sigma_s0 = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
710
711
712
713
714
715
716

        h = lambda_t - lambda_s0
        device = sample.device

        rks = []
        D1s = []
        for i in range(1, order):
717
            si = self.step_index - i
718
            mi = model_output_list[-(i + 1)]
719
720
            alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
            lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
            rk = (lambda_si - lambda_s0) / h
            rks.append(rk)
            D1s.append((mi - m0) / rk)

        rks.append(1.0)
        rks = torch.tensor(rks, device=device)

        R = []
        b = []

        hh = -h if self.predict_x0 else h
        h_phi_1 = torch.expm1(hh)  # h\phi_1(h) = e^h - 1
        h_phi_k = h_phi_1 / hh - 1

        factorial_i = 1

        if self.config.solver_type == "bh1":
            B_h = hh
        elif self.config.solver_type == "bh2":
            B_h = torch.expm1(hh)
        else:
            raise NotImplementedError()

        for i in range(1, order + 1):
            R.append(torch.pow(rks, i - 1))
            b.append(h_phi_k * factorial_i / B_h)
            factorial_i *= i + 1
            h_phi_k = h_phi_k / hh - 1 / factorial_i

        R = torch.stack(R)
        b = torch.tensor(b, device=device)

        if len(D1s) > 0:
            D1s = torch.stack(D1s, dim=1)  # (B, K)
            # for order 2, we use a simplified version
            if order == 2:
                rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device)
            else:
759
                rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]).to(device).to(x.dtype)
760
761
762
763
764
765
        else:
            D1s = None

        if self.predict_x0:
            x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
            if D1s is not None:
766
                pred_res = torch.einsum("k,bkc...->bc...", rhos_p, D1s)
767
768
769
770
771
772
            else:
                pred_res = 0
            x_t = x_t_ - alpha_t * B_h * pred_res
        else:
            x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
            if D1s is not None:
773
                pred_res = torch.einsum("k,bkc...->bc...", rhos_p, D1s)
774
775
776
777
778
779
780
781
782
            else:
                pred_res = 0
            x_t = x_t_ - sigma_t * B_h * pred_res

        x_t = x_t.to(x.dtype)
        return x_t

    def multistep_uni_c_bh_update(
        self,
783
        this_model_output: torch.Tensor,
784
        *args,
785
786
        last_sample: torch.Tensor = None,
        this_sample: torch.Tensor = None,
787
788
        order: int = None,
        **kwargs,
789
    ) -> torch.Tensor:
790
791
792
793
        """
        One step for the UniC (B(h) version).

        Args:
794
            this_model_output (`torch.Tensor`):
795
796
797
                The model outputs at `x_t`.
            this_timestep (`int`):
                The current timestep `t`.
798
            last_sample (`torch.Tensor`):
799
                The generated sample before the last predictor `x_{t-1}`.
800
            this_sample (`torch.Tensor`):
801
802
803
                The generated sample after the last predictor `x_{t}`.
            order (`int`):
                The `p` of UniC-p at this step. The effective order of accuracy should be `order + 1`.
804
805

        Returns:
806
            `torch.Tensor`:
807
                The corrected sample tensor at the current timestep.
808
        """
809
810
811
812
813
        this_timestep = args[0] if len(args) > 0 else kwargs.pop("this_timestep", None)
        if last_sample is None:
            if len(args) > 1:
                last_sample = args[1]
            else:
814
                raise ValueError("missing `last_sample` as a required keyword argument")
815
816
817
818
        if this_sample is None:
            if len(args) > 2:
                this_sample = args[2]
            else:
819
                raise ValueError("missing `this_sample` as a required keyword argument")
820
821
822
823
        if order is None:
            if len(args) > 3:
                order = args[3]
            else:
824
                raise ValueError("missing `order` as a required keyword argument")
825
826
827
828
829
830
831
        if this_timestep is not None:
            deprecate(
                "this_timestep",
                "1.0.0",
                "Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

832
833
834
835
836
837
838
        model_output_list = self.model_outputs

        m0 = model_output_list[-1]
        x = last_sample
        x_t = this_sample
        model_t = this_model_output

839
840
841
842
843
844
        sigma_t, sigma_s0 = self.sigmas[self.step_index], self.sigmas[self.step_index - 1]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
845
846
847
848
849
850
851

        h = lambda_t - lambda_s0
        device = this_sample.device

        rks = []
        D1s = []
        for i in range(1, order):
852
            si = self.step_index - (i + 1)
853
            mi = model_output_list[-(i + 1)]
854
855
            alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
            lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
            rk = (lambda_si - lambda_s0) / h
            rks.append(rk)
            D1s.append((mi - m0) / rk)

        rks.append(1.0)
        rks = torch.tensor(rks, device=device)

        R = []
        b = []

        hh = -h if self.predict_x0 else h
        h_phi_1 = torch.expm1(hh)  # h\phi_1(h) = e^h - 1
        h_phi_k = h_phi_1 / hh - 1

        factorial_i = 1

        if self.config.solver_type == "bh1":
            B_h = hh
        elif self.config.solver_type == "bh2":
            B_h = torch.expm1(hh)
        else:
            raise NotImplementedError()

        for i in range(1, order + 1):
            R.append(torch.pow(rks, i - 1))
            b.append(h_phi_k * factorial_i / B_h)
            factorial_i *= i + 1
            h_phi_k = h_phi_k / hh - 1 / factorial_i

        R = torch.stack(R)
        b = torch.tensor(b, device=device)

        if len(D1s) > 0:
            D1s = torch.stack(D1s, dim=1)
        else:
            D1s = None

        # for order 1, we use a simplified version
        if order == 1:
            rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device)
        else:
897
            rhos_c = torch.linalg.solve(R, b).to(device).to(x.dtype)
898
899
900
901

        if self.predict_x0:
            x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
            if D1s is not None:
902
                corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s)
903
904
905
906
907
908
909
            else:
                corr_res = 0
            D1_t = model_t - m0
            x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t)
        else:
            x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
            if D1s is not None:
910
                corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s)
911
912
913
914
915
916
917
            else:
                corr_res = 0
            D1_t = model_t - m0
            x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t)
        x_t = x_t.to(x.dtype)
        return x_t

918
919
920
921
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
922

923
        index_candidates = (schedule_timesteps == timestep).nonzero()
924
925
926
927
928
929
930
931
932
933
934
935

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

936
937
938
939
940
941
942
943
944
945
946
947
948
949
        return step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
    def _init_step_index(self, timestep):
        """
        Initialize the step_index counter for the scheduler.
        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
950

951
952
    def step(
        self,
953
        model_output: torch.Tensor,
954
        timestep: Union[int, torch.Tensor],
955
        sample: torch.Tensor,
956
957
958
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
959
960
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the multistep UniPC.
961
962

        Args:
963
            model_output (`torch.Tensor`):
964
965
966
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
967
            sample (`torch.Tensor`):
968
969
970
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
971
972

        Returns:
973
974
975
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
976
977
978
979
980
981
982

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

983
984
        if self.step_index is None:
            self._init_step_index(timestep)
985
986

        use_corrector = (
987
            self.step_index > 0 and self.step_index - 1 not in self.disable_corrector and self.last_sample is not None
988
989
        )

990
        model_output_convert = self.convert_model_output(model_output, sample=sample)
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
        if use_corrector:
            sample = self.multistep_uni_c_bh_update(
                this_model_output=model_output_convert,
                last_sample=self.last_sample,
                this_sample=sample,
                order=self.this_order,
            )

        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
            self.timestep_list[i] = self.timestep_list[i + 1]

        self.model_outputs[-1] = model_output_convert
        self.timestep_list[-1] = timestep

        if self.config.lower_order_final:
1007
            this_order = min(self.config.solver_order, len(self.timesteps) - self.step_index)
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
        else:
            this_order = self.config.solver_order

        self.this_order = min(this_order, self.lower_order_nums + 1)  # warmup for multistep
        assert self.this_order > 0

        self.last_sample = sample
        prev_sample = self.multistep_uni_p_bh_update(
            model_output=model_output,  # pass the original non-converted model output, in case solver-p is used
            sample=sample,
            order=self.this_order,
        )

        if self.lower_order_nums < self.config.solver_order:
            self.lower_order_nums += 1

1024
1025
1026
        # upon completion increase step index by one
        self._step_index += 1

1027
1028
1029
1030
1031
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

1032
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
1033
1034
1035
1036
1037
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
1038
            sample (`torch.Tensor`):
1039
                The input sample.
1040
1041

        Returns:
1042
            `torch.Tensor`:
1043
                A scaled input sample.
1044
1045
1046
        """
        return sample

1047
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
1048
1049
    def add_noise(
        self,
1050
1051
        original_samples: torch.Tensor,
        noise: torch.Tensor,
1052
        timesteps: torch.IntTensor,
1053
    ) -> torch.Tensor:
1054
1055
1056
1057
1058
1059
1060
1061
1062
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
1063

1064
        # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
1065
1066
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
1067
1068
1069
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
1070
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1071
            # add noise is called before first denoising step to create initial latent(img2img)
1072
            step_indices = [self.begin_index] * timesteps.shape[0]
1073

1074
1075
1076
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
1077

1078
1079
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
1080
1081
1082
1083
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps