__init__.py 3.85 KB
Newer Older
1
2
3
from typing import TYPE_CHECKING

from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, deprecate
4
from ..utils.import_utils import is_peft_available, is_torch_available, is_transformers_available
5
6
7
8
9
10


def text_encoder_lora_state_dict(text_encoder):
    deprecate(
        "text_encoder_load_state_dict in `models`",
        "0.27.0",
11
        "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.",
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
    )
    state_dict = {}

    for name, module in text_encoder_attn_modules(text_encoder):
        for k, v in module.q_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v

        for k, v in module.k_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v

        for k, v in module.v_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v

        for k, v in module.out_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v

    return state_dict


if is_transformers_available():

    def text_encoder_attn_modules(text_encoder):
        deprecate(
            "text_encoder_attn_modules in `models`",
            "0.27.0",
37
            "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.",
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
        )
        from transformers import CLIPTextModel, CLIPTextModelWithProjection

        attn_modules = []

        if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
            for i, layer in enumerate(text_encoder.text_model.encoder.layers):
                name = f"text_model.encoder.layers.{i}.self_attn"
                mod = layer.self_attn
                attn_modules.append((name, mod))
        else:
            raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")

        return attn_modules


_import_structure = {}

if is_torch_available():
57
    _import_structure["single_file_model"] = ["FromOriginalModelMixin"]
58
59
    _import_structure["transformer_sd3"] = ["SD3TransformerLoRALoadersMixin"]

60
61
62
    _import_structure["unet"] = ["UNet2DConditionLoadersMixin"]
    _import_structure["utils"] = ["AttnProcsLayers"]
    if is_transformers_available():
63
        _import_structure["single_file"] = ["FromSingleFileMixin"]
64
65
66
67
68
69
        _import_structure["lora_pipeline"] = [
            "AmusedLoraLoaderMixin",
            "StableDiffusionLoraLoaderMixin",
            "SD3LoraLoaderMixin",
            "StableDiffusionXLLoraLoaderMixin",
        ]
70
        _import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"]
71
        _import_structure["ip_adapter"] = ["IPAdapterMixin"]
72

73
74
_import_structure["peft"] = ["PeftAdapterMixin"]

75
76
77

if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
    if is_torch_available():
78
        from .single_file_model import FromOriginalModelMixin
79
80
81
82
        from .unet import UNet2DConditionLoadersMixin
        from .utils import AttnProcsLayers

        if is_transformers_available():
83
            from .ip_adapter import IPAdapterMixin
84
85
86
87
88
89
            from .lora_pipeline import (
                AmusedLoraLoaderMixin,
                SD3LoraLoaderMixin,
                StableDiffusionLoraLoaderMixin,
                StableDiffusionXLLoraLoaderMixin,
            )
90
91
            from .single_file import FromSingleFileMixin
            from .textual_inversion import TextualInversionLoaderMixin
92
93

    from .peft import PeftAdapterMixin
94
95
96
97
else:
    import sys

    sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)