test_modeling_utils.py 10.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
16

17
18
19
import random
import tempfile
import unittest
Patrick von Platen's avatar
improve  
Patrick von Platen committed
20
21
import os
from distutils.util import strtobool
22
23
24

import torch

Patrick von Platen's avatar
improve  
Patrick von Platen committed
25
from diffusers import GaussianDDPMScheduler, UNetModel
26
from diffusers.pipeline_utils import DiffusionPipeline
27
from diffusers.configuration_utils import ConfigMixin
28
from models.vision.ddpm.modeling_ddpm import DDPM
29
30
31


global_rng = random.Random()
Patrick von Platen's avatar
improve  
Patrick von Platen committed
32
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
Patrick von Platen's avatar
Patrick von Platen committed
33
torch.backends.cuda.matmul.allow_tf32 = False
Patrick von Platen's avatar
Patrick von Platen committed
34
35


Patrick von Platen's avatar
improve  
Patrick von Platen committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
def parse_flag_from_env(key, default=False):
    try:
        value = os.environ[key]
    except KeyError:
        # KEY isn't set, default to `default`.
        _value = default
    else:
        # KEY is set, convert it to True or False.
        try:
            _value = strtobool(value)
        except ValueError:
            # More values are supported, but let's keep the message simple.
            raise ValueError(f"If set, {key} must be yes or no.")
    return _value


_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)


def slow(test_case):
    """
    Decorator marking a test as slow.

    Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them.

    """
    return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80


def floats_tensor(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

    return torch.tensor(data=values, dtype=torch.float).view(shape).contiguous()


81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
class ConfigTester(unittest.TestCase):
    def test_load_not_from_mixin(self):
        with self.assertRaises(ValueError):
            ConfigMixin.from_config("dummy_path")

    def test_save_load(self):

        class SampleObject(ConfigMixin):
            config_name = "config.json"

            def __init__(
                self,
                a=2,
                b=5,
                c=(2, 5),
                d="for diffusion",
                e=[1, 3],
            ):
                self.register(a=a, b=b, c=c, d=d, e=e)

        obj = SampleObject()
        config = obj.config

        assert config["a"] == 2
        assert config["b"] == 5
        assert config["c"] == (2, 5)
        assert config["d"] == "for diffusion"
        assert config["e"] == [1, 3]

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            new_obj = SampleObject.from_config(tmpdirname)
            new_config = new_obj.config

        assert config.pop("c") == (2, 5)  # instantiated as tuple
        assert new_config.pop("c") == [2, 5]  # saved & loaded as list because of json
        assert config == new_config


120
class ModelTesterMixin(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
121
122
    @property
    def dummy_input(self):
Patrick von Platen's avatar
up  
Patrick von Platen committed
123
        batch_size = 4
Patrick von Platen's avatar
Patrick von Platen committed
124
125
126
127
128
129
130
131
        num_channels = 3
        sizes = (32, 32)

        noise = floats_tensor((batch_size, num_channels) + sizes)
        time_step = torch.tensor([10])

        return (noise, time_step)

132
    def test_from_pretrained_save_pretrained(self):
Patrick von Platen's avatar
improve  
Patrick von Platen committed
133
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
134
135
136
137
138

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            new_model = UNetModel.from_pretrained(tmpdirname)

Patrick von Platen's avatar
Patrick von Platen committed
139
        dummy_input = self.dummy_input
140

Patrick von Platen's avatar
Patrick von Platen committed
141
142
        image = model(*dummy_input)
        new_image = new_model(*dummy_input)
143
144

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"
Patrick von Platen's avatar
Patrick von Platen committed
145
146
147
148
149
150
151

    def test_from_pretrained_hub(self):
        model = UNetModel.from_pretrained("fusing/ddpm_dummy")

        image = model(*self.dummy_input)

        assert image is not None, "Make sure output is not None"
152
153
154
155


class SamplerTesterMixin(unittest.TestCase):

Patrick von Platen's avatar
improve  
Patrick von Platen committed
156
157
    @slow
    def test_sample(self):
Patrick von Platen's avatar
Patrick von Platen committed
158
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
159
160
161
162
163
164
165
166
167
168
169

        # 1. Load models
        scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church")
        model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)

        # 2. Sample gaussian noise
        image = scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)

        # 3. Denoise
        for t in reversed(range(len(scheduler))):
            # i) define coefficients for time step t
patil-suraj's avatar
patil-suraj committed
170
171
            clipped_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
            clipped_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
172
            image_coeff = (1 - scheduler.get_alpha_prod(t - 1)) * torch.sqrt(scheduler.get_alpha(t)) / (1 - scheduler.get_alpha_prod(t))
patil-suraj's avatar
patil-suraj committed
173
            clipped_coeff = torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))
Patrick von Platen's avatar
improve  
Patrick von Platen committed
174
175
176
177
178
179
180

            # ii) predict noise residual
            with torch.no_grad():
                noise_residual = model(image, t)

            # iii) compute predicted image from residual
            # See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
patil-suraj's avatar
patil-suraj committed
181
            pred_mean = clipped_image_coeff * image - clipped_noise_coeff * noise_residual
Patrick von Platen's avatar
improve  
Patrick von Platen committed
182
            pred_mean = torch.clamp(pred_mean, -1, 1)
patil-suraj's avatar
patil-suraj committed
183
            prev_image = clipped_coeff * pred_mean + image_coeff * image
Patrick von Platen's avatar
improve  
Patrick von Platen committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

            # iv) sample variance
            prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)

            # v) sample  x_{t-1} ~ N(prev_image, prev_variance)
            sampled_prev_image = prev_image + prev_variance
            image = sampled_prev_image

        # Note: The better test is to simply check with the following lines of code that the image is sensible
        # import PIL
        # import numpy as np
        # image_processed = image.cpu().permute(0, 2, 3, 1)
        # image_processed = (image_processed + 1.0) * 127.5
        # image_processed = image_processed.numpy().astype(np.uint8)
        # image_pil = PIL.Image.fromarray(image_processed[0])
        # image_pil.save("test.png")

        assert image.shape == (1, 3, 256, 256)
        image_slice = image[0, -1, -3:, -3:].cpu()
Patrick von Platen's avatar
Patrick von Platen committed
203
204
        expected_slice = torch.tensor([-0.1636, -0.1765, -0.1968, -0.1338, -0.1432, -0.1622, -0.1793, -0.2001, -0.2280])
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
Patrick von Platen's avatar
improve  
Patrick von Platen committed
205
206
207

    def test_sample_fast(self):
        # 1. Load models
Patrick von Platen's avatar
Patrick von Platen committed
208
        generator = torch.manual_seed(0)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
209
210
211
212
213
214
215
216
217
218

        scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church", timesteps=10)
        model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)

        # 2. Sample gaussian noise
        image = scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)

        # 3. Denoise
        for t in reversed(range(len(scheduler))):
            # i) define coefficients for time step t
patil-suraj's avatar
patil-suraj committed
219
220
            clipped_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
            clipped_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
221
            image_coeff = (1 - scheduler.get_alpha_prod(t - 1)) * torch.sqrt(scheduler.get_alpha(t)) / (1 - scheduler.get_alpha_prod(t))
patil-suraj's avatar
patil-suraj committed
222
            clipped_coeff = torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))
Patrick von Platen's avatar
improve  
Patrick von Platen committed
223
224
225
226
227
228
229

            # ii) predict noise residual
            with torch.no_grad():
                noise_residual = model(image, t)

            # iii) compute predicted image from residual
            # See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
patil-suraj's avatar
patil-suraj committed
230
            pred_mean = clipped_image_coeff * image - clipped_noise_coeff * noise_residual
Patrick von Platen's avatar
improve  
Patrick von Platen committed
231
            pred_mean = torch.clamp(pred_mean, -1, 1)
patil-suraj's avatar
patil-suraj committed
232
            prev_image = clipped_coeff * pred_mean + image_coeff * image
Patrick von Platen's avatar
improve  
Patrick von Platen committed
233
234
235
236
237
238
239
240
241
242

            # iv) sample variance
            prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)

            # v) sample  x_{t-1} ~ N(prev_image, prev_variance)
            sampled_prev_image = prev_image + prev_variance
            image = sampled_prev_image

        assert image.shape == (1, 3, 256, 256)
        image_slice = image[0, -1, -3:, -3:].cpu()
Patrick von Platen's avatar
Patrick von Platen committed
243
        expected_slice = torch.tensor([-0.0304, -0.1895, -0.2436, -0.9837, -0.5422, 0.1931, -0.8175, 0.0862, -0.7783])
Patrick von Platen's avatar
Patrick von Platen committed
244
        assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2
245
246
247
248
249
250
251
252
253
254
255
256
257


class PipelineTesterMixin(unittest.TestCase):
    def test_from_pretrained_save_pretrained(self):
        # 1. Load models
        model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32)
        schedular = GaussianDDPMScheduler(timesteps=10)

        ddpm = DDPM(model, schedular)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPM.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
258
259

        generator = torch.manual_seed(0)
260

patil-suraj's avatar
patil-suraj committed
261
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
262
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
263
        new_image = new_ddpm(generator=generator)
264
265
266
267
268
269
270
271
272
273
274
275
276

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"

    @slow
    def test_from_pretrained_hub(self):
        model_path = "fusing/ddpm-cifar10"

        ddpm = DDPM.from_pretrained(model_path)
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path)

        ddpm.noise_scheduler.num_timesteps = 10
        ddpm_from_hub.noise_scheduler.num_timesteps = 10

Patrick von Platen's avatar
Patrick von Platen committed
277
        generator = torch.manual_seed(0)
278

patil-suraj's avatar
patil-suraj committed
279
        image = ddpm(generator=generator)
Patrick von Platen's avatar
Patrick von Platen committed
280
        generator = generator.manual_seed(0)
patil-suraj's avatar
patil-suraj committed
281
        new_image = ddpm_from_hub(generator=generator)
282
283

        assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass"