test_controlnet_sd3.py 13.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2024 HuggingFace Inc and The InstantX Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest
18
from typing import Optional
19
20

import numpy as np
21
import pytest
22
23
24
25
26
27
28
29
30
31
32
33
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel

from diffusers import (
    AutoencoderKL,
    FlowMatchEulerDiscreteScheduler,
    SD3Transformer2DModel,
    StableDiffusion3ControlNetPipeline,
)
from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel
from diffusers.utils import load_image
from diffusers.utils.testing_utils import (
34
    backend_empty_cache,
35
    enable_full_determinism,
36
    numpy_cosine_similarity_distance,
37
    require_big_accelerator,
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    slow,
    torch_device,
)
from diffusers.utils.torch_utils import randn_tensor

from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class StableDiffusion3ControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
    pipeline_class = StableDiffusion3ControlNetPipeline
    params = frozenset(
        [
            "prompt",
            "height",
            "width",
            "guidance_scale",
            "negative_prompt",
            "prompt_embeds",
            "negative_prompt_embeds",
        ]
    )
    batch_params = frozenset(["prompt", "negative_prompt"])
Aryan's avatar
Aryan committed
63
    test_layerwise_casting = True
Aryan's avatar
Aryan committed
64
    test_group_offloading = True
65

66
67
68
    def get_dummy_components(
        self, num_controlnet_layers: int = 3, qk_norm: Optional[str] = "rms_norm", use_dual_attention=False
    ):
69
70
71
72
73
74
75
76
77
78
79
80
        torch.manual_seed(0)
        transformer = SD3Transformer2DModel(
            sample_size=32,
            patch_size=1,
            in_channels=8,
            num_layers=4,
            attention_head_dim=8,
            num_attention_heads=4,
            joint_attention_dim=32,
            caption_projection_dim=32,
            pooled_projection_dim=64,
            out_channels=8,
81
            qk_norm=qk_norm,
82
            dual_attention_layers=() if not use_dual_attention else (0, 1),
83
84
85
86
87
88
89
        )

        torch.manual_seed(0)
        controlnet = SD3ControlNetModel(
            sample_size=32,
            patch_size=1,
            in_channels=8,
90
            num_layers=num_controlnet_layers,
91
92
93
94
95
96
            attention_head_dim=8,
            num_attention_heads=4,
            joint_attention_dim=32,
            caption_projection_dim=32,
            pooled_projection_dim=64,
            out_channels=8,
97
98
            qk_norm=qk_norm,
            dual_attention_layers=() if not use_dual_attention else (0,),
99
        )
100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
        clip_text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            hidden_act="gelu",
            projection_dim=32,
        )

        torch.manual_seed(0)
        text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config)

        torch.manual_seed(0)
        text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)

        torch.manual_seed(0)
        text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        vae = AutoencoderKL(
            sample_size=32,
            in_channels=3,
            out_channels=3,
            block_out_channels=(4,),
            layers_per_block=1,
            latent_channels=8,
            norm_num_groups=1,
            use_quant_conv=False,
            use_post_quant_conv=False,
            shift_factor=0.0609,
            scaling_factor=1.5035,
        )

        scheduler = FlowMatchEulerDiscreteScheduler()

        return {
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "text_encoder_3": text_encoder_3,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
            "tokenizer_3": tokenizer_3,
            "transformer": transformer,
            "vae": vae,
            "controlnet": controlnet,
156
157
            "image_encoder": None,
            "feature_extractor": None,
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
        }

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        control_image = randn_tensor(
            (1, 3, 32, 32),
            generator=generator,
            device=torch.device(device),
            dtype=torch.float16,
        )

        controlnet_conditioning_scale = 0.5

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "output_type": "np",
            "control_image": control_image,
            "controlnet_conditioning_scale": controlnet_conditioning_scale,
        }

        return inputs

187
    def run_pipe(self, components, use_sd35=False):
188
189
190
191
192
193
194
195
196
        sd_pipe = StableDiffusion3ControlNetPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device, dtype=torch.float16)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]
197

198
199
        assert image.shape == (1, 32, 32, 3)

200
201
202
203
        if not use_sd35:
            expected_slice = np.array([0.5767, 0.7100, 0.5981, 0.5674, 0.5952, 0.4102, 0.5093, 0.5044, 0.6030])
        else:
            expected_slice = np.array([1.0000, 0.9072, 0.4209, 0.2744, 0.5737, 0.3840, 0.6113, 0.6250, 0.6328])
204

205
206
207
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2, (
            f"Expected: {expected_slice}, got: {image_slice.flatten()}"
        )
208

209
210
211
212
213
214
215
216
    def test_controlnet_sd3(self):
        components = self.get_dummy_components()
        self.run_pipe(components)

    def test_controlnet_sd35(self):
        components = self.get_dummy_components(num_controlnet_layers=1, qk_norm="rms_norm", use_dual_attention=True)
        self.run_pipe(components, use_sd35=True)

Dhruv Nair's avatar
Dhruv Nair committed
217
218
219
220
    @unittest.skip("xFormersAttnProcessor does not work with SD3 Joint Attention")
    def test_xformers_attention_forwardGenerator_pass(self):
        pass

221
222

@slow
223
@require_big_accelerator
224
@pytest.mark.big_accelerator
225
226
227
228
229
230
class StableDiffusion3ControlNetPipelineSlowTests(unittest.TestCase):
    pipeline_class = StableDiffusion3ControlNetPipeline

    def setUp(self):
        super().setUp()
        gc.collect()
231
        backend_empty_cache(torch_device)
232
233
234
235

    def tearDown(self):
        super().tearDown()
        gc.collect()
236
        backend_empty_cache(torch_device)
237
238
239
240
241
242

    def test_canny(self):
        controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16)
        pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
        )
243
        pipe.enable_model_cpu_offload(device=torch_device)
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text 'InstantX' on image"
        n_prompt = "NSFW, nude, naked, porn, ugly"
        control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")

        output = pipe(
            prompt,
            negative_prompt=n_prompt,
            control_image=control_image,
            controlnet_conditioning_scale=0.5,
            guidance_scale=5.0,
            num_inference_steps=2,
            output_type="np",
            generator=generator,
        )
        image = output.images[0]

        assert image.shape == (1024, 1024, 3)

        original_image = image[-3:, -3:, -1].flatten()

267
        expected_image = np.array([0.7314, 0.7075, 0.6611, 0.7539, 0.7563, 0.6650, 0.6123, 0.7275, 0.7222])
268

269
        assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2
270
271
272
273
274
275

    def test_pose(self):
        controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Pose", torch_dtype=torch.float16)
        pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
        )
276
        pipe.enable_model_cpu_offload(device=torch_device)
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image'
        n_prompt = "NSFW, nude, naked, porn, ugly"
        control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Pose/resolve/main/pose.jpg")

        output = pipe(
            prompt,
            negative_prompt=n_prompt,
            control_image=control_image,
            controlnet_conditioning_scale=0.5,
            guidance_scale=5.0,
            num_inference_steps=2,
            output_type="np",
            generator=generator,
        )
        image = output.images[0]

        assert image.shape == (1024, 1024, 3)

        original_image = image[-3:, -3:, -1].flatten()
299
        expected_image = np.array([0.9048, 0.8740, 0.8936, 0.8516, 0.8799, 0.9360, 0.8379, 0.8408, 0.8652])
300

301
        assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2
302
303

    def test_tile(self):
304
        controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Tile", torch_dtype=torch.float16)
305
306
307
        pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
        )
308
        pipe.enable_model_cpu_offload(device=torch_device)
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image'
        n_prompt = "NSFW, nude, naked, porn, ugly"
        control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Tile/resolve/main/tile.jpg")

        output = pipe(
            prompt,
            negative_prompt=n_prompt,
            control_image=control_image,
            controlnet_conditioning_scale=0.5,
            guidance_scale=5.0,
            num_inference_steps=2,
            output_type="np",
            generator=generator,
        )
        image = output.images[0]

        assert image.shape == (1024, 1024, 3)

        original_image = image[-3:, -3:, -1].flatten()
331
        expected_image = np.array([0.6699, 0.6836, 0.6226, 0.6572, 0.7310, 0.6646, 0.6650, 0.6694, 0.6011])
332

333
        assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2
334
335
336
337
338
339
340
341

    def test_multi_controlnet(self):
        controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16)
        controlnet = SD3MultiControlNetModel([controlnet, controlnet])

        pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
        )
342
        pipe.enable_model_cpu_offload(device=torch_device)
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text 'InstantX' on image"
        n_prompt = "NSFW, nude, naked, porn, ugly"
        control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")

        output = pipe(
            prompt,
            negative_prompt=n_prompt,
            control_image=[control_image, control_image],
            controlnet_conditioning_scale=[0.25, 0.25],
            guidance_scale=5.0,
            num_inference_steps=2,
            output_type="np",
            generator=generator,
        )
        image = output.images[0]

        assert image.shape == (1024, 1024, 3)

        original_image = image[-3:, -3:, -1].flatten()
365
        expected_image = np.array([0.7207, 0.7041, 0.6543, 0.7500, 0.7490, 0.6592, 0.6001, 0.7168, 0.7231])
366

367
        assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2