scheduling_unipc_multistep.py 45.1 KB
Newer Older
1
# Copyright 2024 TSAIL Team and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Wenliang Zhao's avatar
Wenliang Zhao committed
15
16
# DISCLAIMER: check https://arxiv.org/abs/2302.04867 and https://github.com/wl-zhao/UniPC for more info
# The codebase is modified based on https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
17
18
19
20
21
22
23
24

import math
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
25
from ..utils import deprecate, is_scipy_available
26
27
28
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput


29
30
31
32
if is_scipy_available():
    import scipy.stats


33
34
35
36
37
38
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
39
40
41
42
43
44
45
46
47
48
49
50
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
51
52
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
53
54
55
56

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
57
    if alpha_transform_type == "cosine":
58

59
60
61
62
63
64
65
66
67
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
68
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
69
70
71
72
73

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
74
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
75
76
77
    return torch.tensor(betas, dtype=torch.float32)


78
79
80
81
82
83
84
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
    """
    Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)


    Args:
85
        betas (`torch.Tensor`):
86
87
88
            the betas that the scheduler is being initialized with.

    Returns:
89
        `torch.Tensor`: rescaled betas with zero terminal SNR
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


115
116
class UniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
    """
117
    `UniPCMultistepScheduler` is a training-free framework designed for the fast sampling of diffusion models.
118

119
120
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
121
122

    Args:
123
124
125
126
127
128
129
130
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
131
            `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
132
133
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
134
        solver_order (`int`, default `2`):
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
            The UniPC order which can be any positive integer. The effective order of accuracy is `solver_order + 1`
            due to the UniC. It is recommended to use `solver_order=2` for guided sampling, and `solver_order=3` for
            unconditional sampling.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
        sample_max_value (`float`, defaults to 1.0):
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and `predict_x0=True`.
        predict_x0 (`bool`, defaults to `True`):
            Whether to use the updating algorithm on the predicted x0.
151
        solver_type (`str`, default `bh2`):
152
            Solver type for UniPC. It is recommended to use `bh1` for unconditional sampling when steps < 10, and `bh2`
153
154
            otherwise.
        lower_order_final (`bool`, default `True`):
155
156
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
157
        disable_corrector (`list`, default `[]`):
158
159
160
            Decides which step to disable the corrector to mitigate the misalignment between `epsilon_theta(x_t, c)`
            and `epsilon_theta(x_t^c, c)` which can influence convergence for a large guidance scale. Corrector is
            usually disabled during the first few steps.
161
        solver_p (`SchedulerMixin`, default `None`):
162
            Any other scheduler that if specified, the algorithm becomes `solver_p + UniC`.
163
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
164
165
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
166
167
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
168
169
170
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
171
172
173
174
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
175
            An offset added to the inference steps, as required by some model families.
176
        final_sigmas_type (`str`, defaults to `"zero"`):
177
178
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
            sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
179
180
181
182
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    """

    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        solver_order: int = 2,
        prediction_type: str = "epsilon",
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        predict_x0: bool = True,
Wenliang Zhao's avatar
Wenliang Zhao committed
202
        solver_type: str = "bh2",
203
204
205
        lower_order_final: bool = True,
        disable_corrector: List[int] = [],
        solver_p: SchedulerMixin = None,
206
        use_karras_sigmas: Optional[bool] = False,
207
        use_exponential_sigmas: Optional[bool] = False,
208
        use_beta_sigmas: Optional[bool] = False,
209
210
        use_flow_sigmas: Optional[bool] = False,
        flow_shift: Optional[float] = 1.0,
211
212
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
213
        final_sigmas_type: Optional[str] = "zero",  # "zero", "sigma_min"
214
        rescale_betas_zero_snr: bool = False,
215
    ):
216
217
218
219
220
221
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
222
223
224
225
226
227
        if trained_betas is not None:
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
228
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
229
230
231
232
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
        else:
233
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
234

235
236
237
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

238
239
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
240
241
242
243
244
245

        if rescale_betas_zero_snr:
            # Close to 0 without being 0 so first sigma is not inf
            # FP16 smallest positive subnormal works well here
            self.alphas_cumprod[-1] = 2**-24

246
247
248
249
        # Currently we only support VP-type noise schedule
        self.alpha_t = torch.sqrt(self.alphas_cumprod)
        self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
        self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
250
        self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
251
252
253
254
255
256

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

        if solver_type not in ["bh1", "bh2"]:
            if solver_type in ["midpoint", "heun", "logrho"]:
257
                self.register_to_config(solver_type="bh2")
258
            else:
259
                raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
260
261
262
263
264
265
266
267
268
269
270
271

        self.predict_x0 = predict_x0
        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.model_outputs = [None] * solver_order
        self.timestep_list = [None] * solver_order
        self.lower_order_nums = 0
        self.disable_corrector = disable_corrector
        self.solver_p = solver_p
        self.last_sample = None
272
        self._step_index = None
273
        self._begin_index = None
274
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
275
276
277
278

    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
279
        The index counter for current timestep. It will increase 1 after each scheduler step.
280
281
        """
        return self._step_index
282

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

301
302
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
303
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
304
305
306

        Args:
            num_inference_steps (`int`):
307
308
309
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
310
        """
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1)
                .round()[::-1][:-1]
                .copy()
                .astype(np.int64)
            )
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // (num_inference_steps + 1)
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.arange(self.config.num_train_timesteps, 0, -step_ratio).round().copy().astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
335

336
337
338
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        if self.config.use_karras_sigmas:
            log_sigmas = np.log(sigmas)
339
            sigmas = np.flip(sigmas).copy()
340
341
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
342
343
344
345
346
347
348
349
350
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = sigmas[-1]
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
351
        elif self.config.use_exponential_sigmas:
352
353
354
            log_sigmas = np.log(sigmas)
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
355
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
356
357
358
359
360
361
362
363
364
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = sigmas[-1]
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
365
        elif self.config.use_beta_sigmas:
366
367
368
            log_sigmas = np.log(sigmas)
            sigmas = np.flip(sigmas).copy()
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
369
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
370
371
372
373
374
375
376
377
378
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = sigmas[-1]
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
379
380
381
        elif self.config.use_flow_sigmas:
            alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
            sigmas = 1.0 - alphas
hlky's avatar
hlky committed
382
            sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
383
            timesteps = (sigmas * self.config.num_train_timesteps).copy()
384
385
        else:
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
386
387
388
389
390
391
392
393
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )
394
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
395

396
397
        self.sigmas = torch.from_numpy(sigmas)
        self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
398
399
400

        self.num_inference_steps = len(timesteps)

401
402
403
404
405
406
        self.model_outputs = [
            None,
        ] * self.config.solver_order
        self.lower_order_nums = 0
        self.last_sample = None
        if self.solver_p:
407
            self.solver_p.set_timesteps(self.num_inference_steps, device=device)
408

409
410
        # add an index counter for schedulers that allow duplicated timesteps
        self._step_index = None
411
        self._begin_index = None
412
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
413

414
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
415
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
416
417
418
419
420
421
422
423
424
425
        """
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

        https://arxiv.org/abs/2205.11487
        """
        dtype = sample.dtype
426
        batch_size, channels, *remaining_dims = sample.shape
427
428
429
430
431

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
432
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
433
434
435
436
437
438
439
440
441
442

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

443
        sample = sample.reshape(batch_size, channels, *remaining_dims)
444
445
446
        sample = sample.to(dtype)

        return sample
447

448
449
450
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
451
        log_sigma = np.log(np.maximum(sigma, 1e-10))
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

472
473
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
    def _sigma_to_alpha_sigma_t(self, sigma):
474
475
476
477
478
479
        if self.config.use_flow_sigmas:
            alpha_t = 1 - sigma
            sigma_t = sigma
        else:
            alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
            sigma_t = sigma * alpha_t
480
481
482

        return alpha_t, sigma_t

483
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
484
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
485
486
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
487
488
489
490
491
492
493
494
495
496
497
498
499
500
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
501
502
503
504
505
506
507
508

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
        """Constructs an exponential noise schedule."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

528
        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
529
530
        return sigmas

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
        """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

552
        sigmas = np.array(
553
554
555
556
557
558
559
560
561
562
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

563
    def convert_model_output(
564
        self,
565
        model_output: torch.Tensor,
566
        *args,
567
        sample: torch.Tensor = None,
568
        **kwargs,
569
    ) -> torch.Tensor:
570
        r"""
571
        Convert the model output to the corresponding type the UniPC algorithm needs.
572
573

        Args:
574
            model_output (`torch.Tensor`):
575
576
577
                The direct output from the learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
578
            sample (`torch.Tensor`):
579
                A current instance of a sample created by the diffusion process.
580
581

        Returns:
582
            `torch.Tensor`:
583
                The converted model output.
584
        """
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
                raise ValueError("missing `sample` as a required keyward argument")
        if timestep is not None:
            deprecate(
                "timesteps",
                "1.0.0",
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

        sigma = self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)

601
602
603
604
605
606
607
        if self.predict_x0:
            if self.config.prediction_type == "epsilon":
                x0_pred = (sample - sigma_t * model_output) / alpha_t
            elif self.config.prediction_type == "sample":
                x0_pred = model_output
            elif self.config.prediction_type == "v_prediction":
                x0_pred = alpha_t * sample - sigma_t * model_output
608
609
610
            elif self.config.prediction_type == "flow_prediction":
                sigma_t = self.sigmas[self.step_index]
                x0_pred = sample - sigma_t * model_output
611
612
            else:
                raise ValueError(
613
614
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
                    "`v_prediction`, or `flow_prediction` for the UniPCMultistepScheduler."
615
616
617
                )

            if self.config.thresholding:
618
619
                x0_pred = self._threshold_sample(x0_pred)

620
621
622
623
624
625
626
627
628
629
630
631
632
            return x0_pred
        else:
            if self.config.prediction_type == "epsilon":
                return model_output
            elif self.config.prediction_type == "sample":
                epsilon = (sample - alpha_t * model_output) / sigma_t
                return epsilon
            elif self.config.prediction_type == "v_prediction":
                epsilon = alpha_t * model_output + sigma_t * sample
                return epsilon
            else:
                raise ValueError(
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
Wenliang Zhao's avatar
Wenliang Zhao committed
633
                    " `v_prediction` for the UniPCMultistepScheduler."
634
635
636
637
                )

    def multistep_uni_p_bh_update(
        self,
638
        model_output: torch.Tensor,
639
        *args,
640
        sample: torch.Tensor = None,
641
642
        order: int = None,
        **kwargs,
643
    ) -> torch.Tensor:
644
645
646
647
        """
        One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified.

        Args:
648
            model_output (`torch.Tensor`):
649
650
651
                The direct output from the learned diffusion model at the current timestep.
            prev_timestep (`int`):
                The previous discrete timestep in the diffusion chain.
652
            sample (`torch.Tensor`):
653
654
655
                A current instance of a sample created by the diffusion process.
            order (`int`):
                The order of UniP at this timestep (corresponds to the *p* in UniPC-p).
656
657

        Returns:
658
            `torch.Tensor`:
659
                The sample tensor at the previous timestep.
660
        """
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
        prev_timestep = args[0] if len(args) > 0 else kwargs.pop("prev_timestep", None)
        if sample is None:
            if len(args) > 1:
                sample = args[1]
            else:
                raise ValueError(" missing `sample` as a required keyward argument")
        if order is None:
            if len(args) > 2:
                order = args[2]
            else:
                raise ValueError(" missing `order` as a required keyward argument")
        if prev_timestep is not None:
            deprecate(
                "prev_timestep",
                "1.0.0",
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )
678
679
        model_output_list = self.model_outputs

680
        s0 = self.timestep_list[-1]
681
682
683
684
685
686
687
        m0 = model_output_list[-1]
        x = sample

        if self.solver_p:
            x_t = self.solver_p.step(model_output, s0, x).prev_sample
            return x_t

688
689
690
691
692
693
        sigma_t, sigma_s0 = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
694
695
696
697
698
699
700

        h = lambda_t - lambda_s0
        device = sample.device

        rks = []
        D1s = []
        for i in range(1, order):
701
            si = self.step_index - i
702
            mi = model_output_list[-(i + 1)]
703
704
            alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
            lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
            rk = (lambda_si - lambda_s0) / h
            rks.append(rk)
            D1s.append((mi - m0) / rk)

        rks.append(1.0)
        rks = torch.tensor(rks, device=device)

        R = []
        b = []

        hh = -h if self.predict_x0 else h
        h_phi_1 = torch.expm1(hh)  # h\phi_1(h) = e^h - 1
        h_phi_k = h_phi_1 / hh - 1

        factorial_i = 1

        if self.config.solver_type == "bh1":
            B_h = hh
        elif self.config.solver_type == "bh2":
            B_h = torch.expm1(hh)
        else:
            raise NotImplementedError()

        for i in range(1, order + 1):
            R.append(torch.pow(rks, i - 1))
            b.append(h_phi_k * factorial_i / B_h)
            factorial_i *= i + 1
            h_phi_k = h_phi_k / hh - 1 / factorial_i

        R = torch.stack(R)
        b = torch.tensor(b, device=device)

        if len(D1s) > 0:
            D1s = torch.stack(D1s, dim=1)  # (B, K)
            # for order 2, we use a simplified version
            if order == 2:
                rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device)
            else:
743
                rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1]).to(device).to(x.dtype)
744
745
746
747
748
749
        else:
            D1s = None

        if self.predict_x0:
            x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
            if D1s is not None:
750
                pred_res = torch.einsum("k,bkc...->bc...", rhos_p, D1s)
751
752
753
754
755
756
            else:
                pred_res = 0
            x_t = x_t_ - alpha_t * B_h * pred_res
        else:
            x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
            if D1s is not None:
757
                pred_res = torch.einsum("k,bkc...->bc...", rhos_p, D1s)
758
759
760
761
762
763
764
765
766
            else:
                pred_res = 0
            x_t = x_t_ - sigma_t * B_h * pred_res

        x_t = x_t.to(x.dtype)
        return x_t

    def multistep_uni_c_bh_update(
        self,
767
        this_model_output: torch.Tensor,
768
        *args,
769
770
        last_sample: torch.Tensor = None,
        this_sample: torch.Tensor = None,
771
772
        order: int = None,
        **kwargs,
773
    ) -> torch.Tensor:
774
775
776
777
        """
        One step for the UniC (B(h) version).

        Args:
778
            this_model_output (`torch.Tensor`):
779
780
781
                The model outputs at `x_t`.
            this_timestep (`int`):
                The current timestep `t`.
782
            last_sample (`torch.Tensor`):
783
                The generated sample before the last predictor `x_{t-1}`.
784
            this_sample (`torch.Tensor`):
785
786
787
                The generated sample after the last predictor `x_{t}`.
            order (`int`):
                The `p` of UniC-p at this step. The effective order of accuracy should be `order + 1`.
788
789

        Returns:
790
            `torch.Tensor`:
791
                The corrected sample tensor at the current timestep.
792
        """
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
        this_timestep = args[0] if len(args) > 0 else kwargs.pop("this_timestep", None)
        if last_sample is None:
            if len(args) > 1:
                last_sample = args[1]
            else:
                raise ValueError(" missing`last_sample` as a required keyward argument")
        if this_sample is None:
            if len(args) > 2:
                this_sample = args[2]
            else:
                raise ValueError(" missing`this_sample` as a required keyward argument")
        if order is None:
            if len(args) > 3:
                order = args[3]
            else:
                raise ValueError(" missing`order` as a required keyward argument")
        if this_timestep is not None:
            deprecate(
                "this_timestep",
                "1.0.0",
                "Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
            )

816
817
818
819
820
821
822
        model_output_list = self.model_outputs

        m0 = model_output_list[-1]
        x = last_sample
        x_t = this_sample
        model_t = this_model_output

823
824
825
826
827
828
        sigma_t, sigma_s0 = self.sigmas[self.step_index], self.sigmas[self.step_index - 1]
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
829
830
831
832
833
834
835

        h = lambda_t - lambda_s0
        device = this_sample.device

        rks = []
        D1s = []
        for i in range(1, order):
836
            si = self.step_index - (i + 1)
837
            mi = model_output_list[-(i + 1)]
838
839
            alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
            lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
            rk = (lambda_si - lambda_s0) / h
            rks.append(rk)
            D1s.append((mi - m0) / rk)

        rks.append(1.0)
        rks = torch.tensor(rks, device=device)

        R = []
        b = []

        hh = -h if self.predict_x0 else h
        h_phi_1 = torch.expm1(hh)  # h\phi_1(h) = e^h - 1
        h_phi_k = h_phi_1 / hh - 1

        factorial_i = 1

        if self.config.solver_type == "bh1":
            B_h = hh
        elif self.config.solver_type == "bh2":
            B_h = torch.expm1(hh)
        else:
            raise NotImplementedError()

        for i in range(1, order + 1):
            R.append(torch.pow(rks, i - 1))
            b.append(h_phi_k * factorial_i / B_h)
            factorial_i *= i + 1
            h_phi_k = h_phi_k / hh - 1 / factorial_i

        R = torch.stack(R)
        b = torch.tensor(b, device=device)

        if len(D1s) > 0:
            D1s = torch.stack(D1s, dim=1)
        else:
            D1s = None

        # for order 1, we use a simplified version
        if order == 1:
            rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device)
        else:
881
            rhos_c = torch.linalg.solve(R, b).to(device).to(x.dtype)
882
883
884
885

        if self.predict_x0:
            x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
            if D1s is not None:
886
                corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s)
887
888
889
890
891
892
893
            else:
                corr_res = 0
            D1_t = model_t - m0
            x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t)
        else:
            x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
            if D1s is not None:
894
                corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s)
895
896
897
898
899
900
901
            else:
                corr_res = 0
            D1_t = model_t - m0
            x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t)
        x_t = x_t.to(x.dtype)
        return x_t

902
903
904
905
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
906

907
        index_candidates = (schedule_timesteps == timestep).nonzero()
908
909
910
911
912
913
914
915
916
917
918
919

        if len(index_candidates) == 0:
            step_index = len(self.timesteps) - 1
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        elif len(index_candidates) > 1:
            step_index = index_candidates[1].item()
        else:
            step_index = index_candidates[0].item()

920
921
922
923
924
925
926
927
928
929
930
931
932
933
        return step_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
    def _init_step_index(self, timestep):
        """
        Initialize the step_index counter for the scheduler.
        """

        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
934

935
936
    def step(
        self,
937
        model_output: torch.Tensor,
938
        timestep: Union[int, torch.Tensor],
939
        sample: torch.Tensor,
940
941
942
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
943
944
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
        the multistep UniPC.
945
946

        Args:
947
            model_output (`torch.Tensor`):
948
949
950
                The direct output from learned diffusion model.
            timestep (`int`):
                The current discrete timestep in the diffusion chain.
951
            sample (`torch.Tensor`):
952
953
954
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
955
956

        Returns:
957
958
959
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
960
961
962
963
964
965
966

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

967
968
        if self.step_index is None:
            self._init_step_index(timestep)
969
970

        use_corrector = (
971
            self.step_index > 0 and self.step_index - 1 not in self.disable_corrector and self.last_sample is not None
972
973
        )

974
        model_output_convert = self.convert_model_output(model_output, sample=sample)
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
        if use_corrector:
            sample = self.multistep_uni_c_bh_update(
                this_model_output=model_output_convert,
                last_sample=self.last_sample,
                this_sample=sample,
                order=self.this_order,
            )

        for i in range(self.config.solver_order - 1):
            self.model_outputs[i] = self.model_outputs[i + 1]
            self.timestep_list[i] = self.timestep_list[i + 1]

        self.model_outputs[-1] = model_output_convert
        self.timestep_list[-1] = timestep

        if self.config.lower_order_final:
991
            this_order = min(self.config.solver_order, len(self.timesteps) - self.step_index)
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
        else:
            this_order = self.config.solver_order

        self.this_order = min(this_order, self.lower_order_nums + 1)  # warmup for multistep
        assert self.this_order > 0

        self.last_sample = sample
        prev_sample = self.multistep_uni_p_bh_update(
            model_output=model_output,  # pass the original non-converted model output, in case solver-p is used
            sample=sample,
            order=self.this_order,
        )

        if self.lower_order_nums < self.config.solver_order:
            self.lower_order_nums += 1

1008
1009
1010
        # upon completion increase step index by one
        self._step_index += 1

1011
1012
1013
1014
1015
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

1016
    def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
1017
1018
1019
1020
1021
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
1022
            sample (`torch.Tensor`):
1023
                The input sample.
1024
1025

        Returns:
1026
            `torch.Tensor`:
1027
                A scaled input sample.
1028
1029
1030
        """
        return sample

1031
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
1032
1033
    def add_noise(
        self,
1034
1035
        original_samples: torch.Tensor,
        noise: torch.Tensor,
1036
        timesteps: torch.IntTensor,
1037
    ) -> torch.Tensor:
1038
1039
1040
1041
1042
1043
1044
1045
1046
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
1047

1048
        # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
1049
1050
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
1051
1052
1053
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
1054
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1055
            # add noise is called before first denoising step to create initial latent(img2img)
1056
            step_indices = [self.begin_index] * timesteps.shape[0]
1057

1058
1059
1060
        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)
1061

1062
1063
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
        noisy_samples = alpha_t * original_samples + sigma_t * noise
1064
1065
1066
1067
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps